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ARTICLE INFO ABSTRACT

Keywords: Online footstep planning is essential for bipedal walking robots, allowing them to walk in the presence of
Bipedal walking disturbances and sensory noise. Most of the literature on the topic has focused on optimizing the footstep
Nonlinear optimization placement while keeping the step timing constant. In this work, we introduce a footstep planner capable of

Motion planning optimizing footstep placement and step time online. The proposed planner, consisting of an Interior Point

Optimizer (IPOPT) and an optimizer based on Augmented Lagrangian (AL) method with analytical gradient
descent, solves the full dynamics of the Linear Inverted Pendulum (LIP) model in real time to optimize for
footstep location as well as step timing at the rate of 200 Hz. We show that such asynchronous real-time
optimization with the AL method (ARTO-AL) provides the required robustness and speed for successful online
footstep planning. Furthermore, ARTO-AL can be extended to plan footsteps in 3D, allowing terrain-aware
footstep planning on uneven terrains. Compared to an algorithm with no footstep time adaptation, our proposed
ARTO-AL demonstrates increased stability in simulated walking experiments as it can resist pushes on flat
ground and on a 10° ramp up to 120 N and 100 N respectively. Videos® and open-source code® are released.

1. Introduction focused on simplifying the dynamics used in optimization, or carefully
tailoring heuristic solutions.

In order for legged robots to dynamically balance themselves in One popular method to simplify the control problem is to consider
the presence of disturbance, it is essential for them to plan footstep only the Divergent Component of Motion (DCM) of the body, reducing
positioning and duration in real time. Much of existing work focuses on the dynamics to a first order problem. From this, it is possible to
optimizing footstep locations while keeping step timing fixed, accord- compute the optimal step time to control the DCM about a nominal
ing to the dynamics of a linear inverted pendulum (LIP) model [1,2]. point with Quadratic Programming (QP) [4,5]. The DCM can also be
The LIP model is a widely used reduced-order model of the dynamics of combined with the virtual repellent point [6] to encode all forces on
a bipedal walking robot; the legs are assumed to be massless, and the a robot’s body in one single point. [7] controls the DCM in this way
body is a concentrated point mass located at the robot’s centre of mass by interpolating the virtual repellent point between desired locations.
(CoM) and the height of the CoM with respect to the ground is assumed However, core to DCM-based works is the requirement for a reference
to be constant [3]. Using this model, online footstep planning can be DCM trajectory [4-7], which, given that the DCM is comprised of both
characterized by a real-time nonlinear Model Predictive Control (MPC) the position and velocity of the robot’s centre of mass, requires more
problem. Due to the second order differential equation governing the information than may be readily available and may not be optimal.
LIP model, optimizing footstep duration with respect to time produces A related approach to DCM-based methods is to consider the capture
a non-linear optimization problem which is difficult to solve in real point of the reduced order model of the robot; the footstep location that
time. Thus, real-time footstep timing adaptation work has largely been stabilizes the robot as time approaches infinity [8]. Often, this makes

use of a torso or flywheel model [9,10], but when considering a LIP
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model this is equivalent to DCM approaches. Recent work has used
capture-point methods to adjust footstep timing and location, but again
relies on a reference trajectory that involves predefined nominal step
locations [11] and is sub-optimal and requires a high level of user input
to set up.

Another approach is to directly optimize the system dynamics. [12]
achieves this, interpolating between regenerated gait patterns when
a disturbance is detected. [13,14] also only consider the CoM state
at each step, but reformulates the nonlinear optimization problem to
a sequential quadratic programming problem by writing the nonlin-
ear terms directly as decision variables. However, although [13,14]
are fast, the decision variables, including footstep positions require
references to track — this again requires heuristics provided by the
algorithm designer and may not represent the optimal behaviour.

Rather than simplifying the dynamics of the system, an alternative
method is to simplify the optimization itself. Such approaches focus
on generating approximate solutions that are iteratively improved with
each control step. Real Time Iteration (RTI), introduced in [15] is
an online method for approximately solving MPC problems, where
the solution is found by first linearizing the system at its current
state, then performing one QP step [16]. RTI has been shown to
significantly reduce computation time when solving nonlinear MPC
problems [17]. [18] followed this approach and applied nonlinear
MPC to control a quadruped robot’s dynamic motion. However, their
optimization is unconstrained and requires careful engineering. This
has been improved recently by [19] with adding ‘soft’ constraints —
penalty terms included in the cost function to shape it such that its’
optima satisfy constraints. Constraints can more concretely be handled
by using the augmented Lagrangian (AL) method [20], which ‘aug-
ments’ the standard Lagrange formulation with an added quadratic
component. This method has gained popularity in robotics due to its
fast convergence and numerical robustness [21].

Terrain-aware (also known as terrain-adaptive) locomotion has re-
cently started attracting growing attention. [22] has achieved terrain-
aware real-time locomotion for a 3D simulated humanoid with a gait
library generated offline. The gait library is parameterized so that the
desired pose planned in real-time based on the height map can choose
the right gait to reach the goal. [23] has demonstrated terrain-aware
walking on the quadruped robot ANYmal by tightly integrating terrain
perception for foothold planning. By generating the elevation map in
real time and integrating the map’s information into the optimization
for the footholds, This method enabled ANYmal to climb stairs and
obstacles of heights up to 33% of the robot’s leg length. [24,25]
have shown impressive results of uneven terrain walking with Cassie
robot. However, the controller did not use perception to complete a
locomotion task.

In this work we investigate the use of the augmented Lagrangian
method to solve the planning of footstep location and timing as a non-
linear MPC and demonstrate the robustness of the proposed approach
to disturbances, as shown in Fig. 1. Our contributions are as follows:

» We propose a footstep planner that adapts both footstep location
and timing in real time. Instead of using simplified dynamics or
doing local approximation, our optimizer uses analytical gradi-
ents of the full LIP model, allowing each gradient descent step
to be computed in sub-millisecond time, resulting in a fast and
robust footstep planner.

We propose a structure that combines the best of two optimizers
asynchronously: the secondary interior point optimizer produces
a near-optimal solution at a slower rate, which is used to initialize
the main optimizer such that the solution can be quickly updated.
This improves robustness of the planner.

We prove how the dynamics used in the planner can be extended
to three dimensions under mild assumptions, allowing real-time
footstep planning to be performed on uneven terrains.
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2. Preliminary
2.1. Linear inverted pendulum model

The dynamics of bipedal walking are commonly modelled using
the Linear Inverted Pendulum (LIP) model. This model consists of an
inverted pendulum that has its entire mass located at the top end of
the pendulum with a rotation occurring at the lower end [26]. The
LIP model requires that the position of the lower end is constantly
updated so that the Centre of Mass (CoM) of the pendulum is stable. The
additional constraint of the LIP model is that the CoM remains in the
same plane at all times, maintaining a constant distance to the ground:

=2 (x-u) e))

=2 (v-u). @

This can be equivalently written in state space form for both the sagittal
and coronal motion, with x =[x, y, X, y|7, and u = [u,, u,]":
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The full analytical solution to this second-order differential equation (3)
can be expressed as an exponential Eq. (4). Here we define 47, as
the step duration, x, and x, as the CoM position and velocity at the
beginning of footstep &, and u, ; as the position of the foot.

Xpq1 = a exp(@aty) + by exp(—wAty) + uy . 4)

where a;, = 0.5(x; — u,; + %‘), and b, = 0.5(x; —u,, — %) and

0 = \/%' Note that the positive exponential term is linked to the
divergent component of motion, as it diverges as 4z, increases.

As can be seen, Eq. (4) is non-linear with footstep duration, meaning
real-time optimization is difficult. This is further exacerbated as the
optimization horizon increases, as subsequent optimizations are recur-
sively linked to their predecessors. For more detailed formulation of
these relationship, please see the Appendix.

2.2. Solving constrained optimization with augmented Lagrangian
Constrained optimization problems are commonly solved by con-

verting the problems into unconstrained ones by using Lagrange mul-
tipliers (LM). These problems can be expressed in a general form as:

min f(x)
* (5)
subjectto ¢(x) <0
with
; i €E
=1 9% € ©®

max [O, cj(x)] jeL

where ¢(x) is the equality (E) or inequality (I) constraint, as shown

in Eq. (6). A popular way to solve the constrained optimization problem
is perform dual gradient descent on the Lagrangian of the problem:

P

L=+ ) Ae®);. )
Jj=0

where 4; is the jth Lagrange multiplier. As 4 becomes larger, the

violation of the constraints is penalized more severely, forcing the

optimizer to find a solution within the feasible set. This behaviour leads

to a A that updates at each iteration to achieve a value of infinity in

order to obtain the optimal solution, however an infinite coefficient

would cause an infinite penalty when the constraint is violated [27].
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After applied disturbance force of 30 N, the baseline approach is disturbed and momentarily crosses its legs. time
ARTO-AL successfully recovers from the applied disturbance force with a minimal deviation from the initial position.
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Fig. 1. With the baseline approach which does not optimize step timing, SLIDER suffers from the issue of crossing its legs after experiencing a big lateral push. While with
ARTO-AL, SLIDER is able to successfully stabilize itself with a small deviation from the initial position after experiencing the same push.

As shown in [28], an improved method of optimization is to use the
Augmented Lagrangian method, which adds a quadratic penalty term
to the Lagrangian:

P P

L=fe+ Y Ae); + Y uc’);. (8)
j=0 Jj=0

where u is the positive coefficient of the AL penalty term. The solu-

tions and coefficients of Augmented Lagrangian method are iteratively
updated using gradient descent as follows:

dL
d =dx;, —a— 9
Xiet1 Xk adx 9
A1 = A + pee(x) (10)
iyl = Qi With @ > 1. an

where x is the solution to the optimization problem, « is the update
step size, and y is a scaling parameter that regulates the update of u
by monotonically increasing it.

3. Methods
3.1. System overview

The proposed footstep planner solves the optimal control problem
introduced in Eq. (12), producing footstep locations and durations at a
rate of 200 Hz. As summarized in Fig. 2, given a reference CoM velocity,
the footstep planner makes use of two optimizers to generate optimal
solutions. The main optimizer makes use of the AL method to rapidly
update the footstep plan at 200 Hz, while a secondary interior point op-
timizer produces more optimal solutions at 20 Hz. From the generated
footstep plan, a CoM trajectory is generated following the LIP dynamics
and a swing foot trajectory is generated using fifth order polynomials.
Finally, an inverse dynamics-based whole body controller tracks the
generated trajectories and outputs joint torques at a frequency of 1 kHz.

3.2. Footstep location and timing optimization formulation

Footstep planning for bipedal walking can be formulated as an
optimal control problem. A cost function is specified to allow the CoM

state x, to follow a reference x.¢. At each control step k, this cost is
minimized by two control inputs: footstep location u,, and the duration
of the step 4t,. This optimization is constrained by the CoM dynamics
which are not only dependent on the robot’s physical characteristics,
but also on the model used to represent them. Furthermore, there is a
set of physical inequality and equality constraints that this cost function
is subject to:

N

: _ 2
uk:]l\;rvnAl}k:N l;) ”xk xref”Q (12)
s.t. 13)
X1 = S xp, Ay, uy) 14
g(xy, Aty uy) < 0 (15)
h(x;, At u) =0. (16)

The prediction horizon in this formulation is finite. Importantly, in this
work we consider each footstep as a single control step, as opposed
to considering the centre of pressure of the foot during each step.
This greatly simplifies the optimization problem while allowing us to
plan further into the future. In this work, we consider a prediction
horizon of two footsteps ahead: optimizing two footstep positions and
three footstep durations (including the current footstep duration). The
footstep positions and durations optimized can be illustrated graph-
ically in Fig. 3. At each control step, each optimizer must produce
optimal footstep locations and durations. A reference CoM trajectory
is defined by a reference velocity, such that weighting matrix O =
[wy 0; 0 w)]. The dynamic equality constraint defined by the linear
inverted pendulum model defined in the previous Eq. (4) and physical
inequality constraints are added:

”xpos,k - uk”2 < laxs (next step length)

”xpas,k — Uy ”2 < laxs (current step length)
% ver is1ll, < Omax: (velocity limit)
|uk,y - uk—l,y‘ 2 Tfoot (no crossing feet)

Crk, lower < At < Ct.k, upper - (step time)
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Fig. 2. Illustration of the terrain-aware footstep planner pipeline. Given the reference velocity from the operator, robot states and the height map representing terrain information,

the planner outputs reference footstep location in real time.

Fig. 3. Illustration of the prediction horizon. The current footstep position of the active
supporting foot (grey area) is represented by u,, which will switch to the next footstep
locations u; and u, in the duration dt,, dt,, and dt;.

Step length constraints define a maximum leg extension such that the
robot does not travel too far on its support foot, and does not place the
next foot too far away. No crossing feet constraint prevents the current
and next support foot from crossing each other in the coronal plane.
The velocity and time limit constraints define safety limits to motion
of the robot to avoid joint torque and velocity limits. These are overly
conservative, as they do not consider the joint-level motion of the robot,
however a simple formulation is favoured in order to realize real-time
optimization.

3.3. Augmented Lagrangian optimizer

The AL optimizer makes use of analytically calculated gradients
in order to find approximate optima as quickly as possible. However,
gradient methods often have difficulty handling constraints, so the
AL method introduced in Section 2.2 is used. The analytical gradient
descent is computed by taking the derivative of Eq. (12) with respect
to the x-y footstep location u;, shown in Eq. (17), and footstep duration
At, shown in Eq. (18):

N P P

oL 0xy P 0 T

o 2; T, QUK e ¥ 5 Z A0+ 5o Z ()l pye(x);, (17)
= Jj=1 Jj=1
N P P

oL 0x; i d T

aar 2;:‘1 a3, QUxy, — Xpep) + a Z{ Jje(x); + 3y Z{ () uje(x);.

(18)

Individual expressions for the derivatives of CoM position x, and
velocity x, can be found in Appendix.

We define the criteria of convergence is that the difference for norm
of gradients is smaller than 0.05. In the case that the solution is outside
the bounds defined by constraints, the footstep planner algorithm uses
the projection method to “project” the solution on the lower and upper
bounds of constraints, this can also prevent oscillations observed during
the convergence. One special case is the remaining time of current step,
instead of projecting to boundaries, remaining time is subtracted by the
duration of one iteration, as shown in Eq. (19):

dtg 41 = dto, — 1/LoopRate, if dty <O0. 19)

where k represents the current iteration and k + 1 represents the next
iteration.

3.4. Interior point optimizer

The secondary optimizer uses Interior Point methods to perform
the optimization. In this work we use the IPOPT optimizer [29] via
the software framework CasADi [30]. This optimizer is considerably
slower, but more accurate than the AL optimizer. To warm start the
solver, the initial value of the solution, u? | is set as the previous

k. j?
if 3__ ,» for each step in the prediction horizon,

k €[1,..., N]. The current step duration, At(li)j is adjusted for the time
elapsed between iterations, 7;_;:

iteration’s final solution, u

CI)

“ei T Mo (20)
W _ 4

4 = A — 1)

When a step has been taken between iterations, the initial value of the
solution is provided as follows for the first k € [1,..., N — 1] predicted
steps:

@ _ ()
Ui = %, -1 (22)
@) _ A4
Al =aA)) (23)

With the final predicted step initialized to repeat the motion of the
penultimate step, mirrored in the y direction.

o _ 0 L0l o 0}

Uy =uyn it [0 _1] Uy oy = Uxn_y 1) 29
M _ 0

Aty =4 . (25)

3.5. Asynchronous optimization

The AL and Interior Point optimizers run in parallel threads com-
municating via ROS topics. Each time a feasible solution is computed
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Fig. 4. Flowchart describing the asynchronous optimization process.

from IPOPT, the solutions, as well as the values of Lagrange multipliers,
are fed into the gradient descent optimizer to reinitialize it, as shown
in Fig. 4. Importantly, we observe that the AL optimizer alone can get
stuck in local solutions, or in some situations the analytical gradient
is extremely large (for example at the switching point between feet),
meaning the AL optimizer’s solution is not feasible. For periods of time
where an AL optimizer solution is infeasible, the IPOPT solution is used
as a warm-start for the AL optimizer to generate feasible solutions. The
interaction between the solvers is shown in Fig. 4. This method allows
the footstep planner to run at a rate of 200 Hz: an order of magnitude
increase of speed over the interior point optimizer alone. This structure
combines the best of both optimizers: IPOPT has the advantage of
finding accurate optima, and the AL optimizer is very fast.

3.6. Terrain-aware footstep planning

Inspired by the parallel height constraint of the LIP model proposed
by [31], the LIP model can be actually extended as a viable model for
dealing with uneven terrain by constraining the CoM to move along a
plane parallel to the slope of the terrain, as shown in Fig. 5. Because the
plane has a linear relationship with the x and y position of the robot,
no new decision variables are added to the optimization problem.

If we consider the dynamics of an inverted pendulum, its motion in
the sagittal (x — z) plane is described by the following equation:

X Z+g

=12 (26)
X—u, z—u,
and in the coronal (y — z) plane:
y Z+g
AL 27
y—u, z-u; 27

We assume that the local terrain around the robot can be approximated
as a plane defined by slopes in the x and y directions of « and f,
respectively. Then the motion of the centre of mass can be constrained
to move in a plane parallel to the ground plane with a vertical offset
(height) of hg:

z—uy = a(x —uy) + p(y —uy) + hy, (28)

where the u, is the z coordinate of footsteps. The velocity and acceler-
ation in the z direction can then be computed as:

z=ax+ py, (29)

Fig. 5. 3D illustration of constructing a ground plane on a sloped terrain given current
and optimal next two footsteps. The height of future steps can be queried from a height
map. The CoM moves in a plane parallel to the constructed ground plane.

Z=ax+ py, (30)

Eq. (30) leads to (26) and (27) becoming a more general, however non-
linear, and difficult to optimize model. But we prove the linear inverted
pendulum equations still hold in two cases.

We start by substituting (28) into (26) and (27), giving

X _ aX+pj+eg (31)
x—uy  a(x—u)+py—u)+hy

y__ aX+pj+g (32)
y—u, ax—u)+Py—u)+hy

The first case in which these equations reduce to the linear inverted
pendulum model, as noted in [3], is when a and p are very small
(i.e. flat ground). This is of little interest to a robot walking on uneven
terrain.

The second case occurs when the forward x direction of the robot
aligns with the direction of the steepest slope of the plane. This reduces
the slope in the y direction to zero, namely f = 0. Then (31) reduces to



K. Wang et al.

the LIP equation. Next, we assume that the distance between the centre
of mass and the foot in the y direction is significantly larger than in the
x direction, due to the inter-foot spacing of a bipedal robot:

Y=y > X —u. (33)

Finally, we assume that the acceleration of the sway of the robot
side-to-side is much greater in magnitude than the robot’s forward
acceleration:

y> X (34)

Under these assumptions, the x terms from (32) are negligible, meaning
that it, too, reduces to the equation of a linear inverted pendulum.

The linear inverted pendulum dynamic model can therefore be
applied to a walking robot on uneven terrain, provided that the robot is
able to perceive the terrain and the robot is aligned with the direction
of the local slope of the terrain. This is the case for many structured
environments, such as stairs, ramps and undulating terrain.

The mapping of the terrain is achieved by adapting the state-of-
the-art Robot-Centric Elevation Mapping ROS package provided by
ANYbotics [32,33] to our robot. This provides multiple 2.5d proba-
bilistic mappings of the environment with information on the height,
normals, variance and corresponding uncertainties. This mapping is
updated based on new observations with the uncertainty being deter-
mined by the time of the most recent observation. The choice of a
robot-centric representation allows for planning on a local level when
only local knowledge is necessary while not compromising on the
possibility of global planning with reliable odometry estimates.

With these assumptions, we can construct a controller that computes
the control inputs based on the LIP dynamics, while it is able to adapt
to uneven terrain using perceptive feedback. The movement planes are
constructed using a height map, which provides heights for queried sets
of points. The queried points are centred around the locations of the
next 2 footsteps and contain the averaged value of all points within
the size of a footstep, as computed by the model predictive controller
shown in Fig. 5. These queried points and their heights are then used to
fit a plane passing through them, and are passed to the controller which
moves the CoM onto those planes. The planes can get updated mid-step
without affecting performance or walking stability. The orientation of
the swing foot is also commanded to align with the normals queried
around the footstep position. This allows the robot to walk around
increasingly complex terrains where the orientation of the CoM plane
is different than the orientation of the individual footholds.

3.7. Swing foot trajectory generation

The swing foot trajectory is generated using fifth order polynomials:
current and final positions, velocities and accelerations are specified,
and a parametric quintic curve in the x, y, and z directions is generated
to produce smooth trajectories. The z polynomial is generated in two
halves, with a midpoint foot height with zero velocity and acceleration
specified to ensure no collision with the ground. The LIP model is used
to generate the CoM trajectory during footsteps. Each trajectory point
is calculated at the whole body controller rate of 1000 Hz.

3.8. Whole body controller

We use an inverse dynamics-based whole body controller to track
the foot motion while respecting a set of constraints. In the paper,
the tasks of interest are the CoM position and velocity, the pelvis
orientation, the foot positions and orientations. Each task is comprised
of a desired acceleration as a feed-forward term and a state feedback
term to stabilize the trajectory. Generally, the task for the linear motion
can be expressed as:

Jrg=x" - Jiq,

Robotics and Autonomous Systems 179 (2024) 104742

j-‘cmd — xdes + Kgos(xdes —x)+ KI]JDOS(xdes - x),

where Jp is the translational Jacobian for the task, x is the actual
position of the link, and the superscript des indicates the desired
motion.

For the task of angular motion, the command can be formulated as:

Jrg =™ - Jgq,

& = " + K3'¥(AngleAxis(R® RT)) + KT¥(0™ - o),

where Jg is the rotational Jacobian for the task, R and R%* de-
note the actual and desired orientation of the pelvis link respectively,
AngleAxis() maps a rotation matrix to the corresponding axis-angle
representation to avoid the gimbal lock of using euler angles, » € R?
is the angular velocity of the link.

3.8.1. QP formulation
Inspired by [34], the full dynamics of the walking robot can be
decomposed into the underactuated part and actuated part:

T
o (] =[5 = )+
Ma Ha Sa JZ

where M, H, S,, r, J and f are the mass matrix, Coriolis force
matrix and gravitation force vector, the actuator selection matrix, joint
torques vector, the stacked contact Jacobian and reaction force vector.
The subscript, f and q, indicates the floating part and actuated part
respectively. The weighted sum formulation is applied, in which one
QP problem is solved at each control loop. The formulation of the QP
problem can be written as

. 1 . Y di2
min 214G+ Ag — BTy, (35)
st. M,g—J ; f=-H,; (floating base dynamics)

Pf<0
S;I(Maq+Ha_JIf) € [Tmin’ Tmax]’

(friction cone)
(input limits)

where A is a stack of the Jacobian matrices for the tasks of interest,
B is a stack of the commanded accelerations and W, (i =1, 2) are the
weighting matrices, P denotes the linearized friction cone matrix. We
treated the unilateral contact constraint as a soft constraint by simply
assigning a large weight on the desired zero acceleration. It is reported
in [35] that this gives a better stability.

The output torque commands = at each control iteration is computed
by

t=S'M,g+H,-J". (36)

To aid stable walking on uneven terrains, a different set of gains is
applied for the swing and the stance foot. The stance foot is generally
stable and low gains are preferred. Adversely on the swing foot the
trajectory is aimed to be accurately tracked and thus high gains are
applied.

4. Experimental results
4.1. Experimental platform and scenarios

We use the SLIDER robot as our experimental platform. SLIDER is
a knee-less bipedal robot designed by the Robot Intelligence Lab at
Imperial College London [36]. As shown in Fig. 6, SLIDER is 1.2 m
tall and has 10 Degrees of Freedom (DoF); hip pitch, hip roll, hip slide,
ankle roll and ankle pitch on each leg. The robot is lightweight (14 kg
in total) and most of its weight is concentrated in the pelvis as its legs
are made of carbon fiber reinforced polymer. The prismatic knee joint
design is SLIDER’s unique feature that differentiates it from other robots
with anthropomorphic design. The sliding joint has a large range of
motion, which combined with the light weight makes SLIDER suitable
for agile locomotion.
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Fig. 6. The dimensions and joint configuration of SLIDER.

4.2. Flat ground walking

SLIDER successfully walked 50 m of simulation ground at forward
speed of 0.2 m/s in Gazebo. Figs. 7(a) and 7(b) illustrate the CoM
position and active support foot against time in 3D during the two
locomotion tasks: walking forward and sideways, respectively. The
results show that in both scenarios the CoM remains approximately
at constant height and follows a serpentine pattern on the transverse
plane.

4.3. Push recovery on flat ground

The push recovery experiment consisted of the analysis of SLIDER’s
performances to external forces to compare two footstep planners:
Footstep planner with no time adaptation (No-Time-Adp), and ARTO-
AL. The aim of the experiment was to observe the push recovery of one
footstep planner that adapts time and one that does not, demonstrating
that optimizing both position and time offers better performances to
external disturbances than when time is not optimized. For the first
part of the experiment, SLIDER was stepping in place and then pushed
laterally with a force of 30 N of duration 0.1 s. The nominal step
duration is 0.4 s for both No-Time-Aap and ARTO-AL. Fig. 8 shows the
comparison between a method that does not optimize time and one that
does, i.e. No-Time-Adp and ARTO-AL, respectively. Fig. 9 shows five
snapshots of the recovery motion performed by SLIDER using ARTO-AL
in response to a 30 N, 0.1 s push. Compared to No-Time-Adp, ARTO-
AL is able to stabilize the robot after the push in 2 steps, returning to a
normal stepping in place behaviour. However, without time adaptation,
the robot requires at least 5 steps to return to normal stepping in place.
As seen in Fig. 8(a), this is because the robot is first forced to remain
on the push-side foot, then cannot remain on the opposing foot for long
enough, then must step on the push-side foot again which contributes
to instability, before a final two recovery steps take place.

In the second experiment, the push recovery analysis was performed
with the five footstep planners by measuring the maximum push force
before failing. The five planners are: No-Time-Adp, IPOPT only, AL-
only, DCM and ARTO-AL. The DCM step planner is adapted from the
open source code* which is the implementation of the paper [4]. The
robot was pushed in 8 directions spaced 45 degrees from each other.
As a force is applied, the robot needs to react by taking a step in the
same direction of the push, in order to prevent its body from falling.
A successful push recovery consists of the robot returning to a stable

4 https://github.com/machines-in-motion/reactive_planners.
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walk after the push. The forces were applied at the touchdown moment
of the left foot in a direction from left to right, using an impulse
with a duration of 0.1 s, as shown in Fig. 9. Overall, the maximum
resist force is bigger in angle range [0°,180°) than angle range of
[180°,360°) because of the direction of push force. ARTO-AL has the
best performance over all planners.

4.4. Push recovery on uneven terrain

Fig. 10(b) shows the push recovery performance of 5 planners while
SLIDER walks up a 10° ramp given the slope angle. The maximum
force of the forward push is bigger than the backward push. There
are multiple reasons for this: when pushed backwards, the robot gains
energy from gravity and becomes more unstable. Furthermore, when
pushed forwards the foot makes early contact with the ramp, which
is easier to stabilize than late contact in the backwards case. In the
extreme scenario, the foot cannot touch the ground as a result of the
leg length limit when pushed backward. ARTO-AL performs best among
the 5 planners. Fig. 11 shows the reaction of SLIDER when the robot is
walking on a 10° slope after being pushed by a forward force of 70 N
for 0.1 s. The ARTO-AL planner makes the robot quickly steps forward
for a large step to stabilize itself on the slope. The DCM planner is
not compared because constructing a plane needs two steps prediction
ahead.

4.5. Uneven terrain walking

Fig. 12 shows SLIDER walking on undulating terrain with ARTO-AL.
By querying the elevation map generated in real-time during walking,
ARTO-AL can construct the local plane and plan footsteps and CoM
motions in 3D, enabling the robot to walk on uneven terrains such as
slopes and undulating terrain.

To achieve a smooth landing of the foot on the terrain, we also
experimented with dynamic gains: the gains of tracking the foot are
designed to interpolate linearly for a smooth switch between stance
and swing foot during a short time period. This also helps stabilize
the robot because early contact or late contact can easily make the
robot unstable. Fig. 13 shows the success rate of walking on slopes with
three different strategies. Benchmark: no perception and no dynamic
gains. ARTO-AL+No DG: ARTO-AL without dynamic gains. ARTO-AL
+ DG: ARTO-AL with dynamic gains. As can be seen the inclusion of
terrain-aware ARTO-AL provides large improvements in performance
over the benchmarks bringing the critical failure rate for steps from 3 to
4 cm. The largest improvements can be seen on slopes where the critical
failure rate is above 10° where it is 2.5° for the benchmark. Dynamic
gains further improves the performance, for step height of 3 cm the
success rate reaches around 90%. The success rate also increases to 90%
with dynamic gains when the robot walks on the 10° slope.

5. Discussion and conclusion

Using IPOPT as a initial guess to bootstrap the optimization solver
has greatly improved the performance. On average, ARTO-AL performs
28% better than IPOPT and AL-only, both on flat ground and slopes.
IPOPT and AL-only perform similarly, IPOPT performs slightly better
on forward and backward push while AL-only performs slightly better
on horizontal pushes. ARTO-AL which is the combination of the two
approaches performs better in all cases.

We showed theoretically and experimentally that our approach can
be extended to 3D and therefore applied to uneven terrain walking,
under the assumption that the local terrain around the robot can be
described as a plane. This assumption is valid for terrains where slope
changes are not sharp, such as for shallow slopes and undulating
terrains. Furthermore, our approach does not constrain footsteps in
specific regions so this approach may fail in scenarios like stepping
stones [37] and stairs.
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Fig. 7. Left: 3D illustration of CoM (blue) and supporting foot position (red) when SLIDER is walking forward at 0.2 m/s with the planner ARTO-AL. Right: 3D illustration of
CoM (blue) and supporting foot position (red) when SLIDER is walking sideways at 0.3 m/s with ARTO-AL. (For interpretation of the references to colour in this figure legend,

the reader is referred to the web version of this article.)
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Fig. 8. Push recovery comparison between No-Time-Adp (a) and ARTO-AL (b). The figure highlights the behaviour between a planner that does not optimize time (a) and one
that optimizes both footstep position and duration (b). The red arrow represents a 30 N side push of duration 0.1 s.

Fig. 9. Push recovery using ARTO-AL. The model of SLIDER is stepping in place and is pushed sideways with a force of 30 N on the base and with a duration of 0.1 s. Red
arrow indicates the direction of push. (1-3-5) show the moments corresponding to the switch of active supporting foot. (2-4) correspond to the sideways steps of the robot’s CoM

to absorb the external force.

This paper proposes a terrain-aware footstep planning algorithm
that can adapts step position and timing based on the LIP dynamics.
With an asynchronous structure which combines an augmented la-
grangian solver with analytical gradient descent and IPOPT optimizer,
the planner can achieve real-time performance with 200 Hz update fre-
quency. Furthermore, we extend the planner from flat ground walking

to uneven terrain with perceptive information. We have shown experi-
mental results of the robot walking on flat ground, uneven terrains and
push recovery on both flat ground and a slope with 10°, demonstrating
its performance and robustness to disturbances. Future work will in-
clude realizing real-time footstep location and timing optimization with
more complex models such as centroidal models. Another interesting
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Fig. 10. Left: Maximum push recovery on flat ground with forces parallel to the transverse plane. The impulse was applied with a duration of 0.1 s on the base while SLIDER
was stepping in place. 0° corresponds to the robot being pushed forward. Right: Maximum push recovery on inclined ground with the force vector parallel to the transverse plane.
The impulse of the disturbance lasted 0.1 s and was applied while walking on a 10° ramp at 0.1 m/s. 0° corresponds to the robot being pushed forward.
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Data availability

Supplementary material related to this article can be found online
No data was used for the research described in the article. at https://doi.org/10.1016/j.robot.2024.104742.
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Fig. 12. Snapshots of SLIDER walking through undulating terrain with ARTO-AL using the elevation map generated while walking. The plane is updated at a rate of 5 Hz. Each
picture contains the Gazebo simulation and the rivz visualization of the terrain. (a)-(d): The robot walks down a slope first and then walks up, the height difference between the
bottom and top of the terrain is 25 cm.
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Fig. 13. Plots of success rate when walking in three conditions. Base Benchmark: no perception and no dynamic gains. ARTO-AL+No DG: ARTO-AL without dynamic gains.
ARTO-AL + DG: ARTO-AL with dynamic gains. (a), Success rate with different step height. (b), Success rate with different slope angles.
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