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ABSTRACT

We present an online optimization algorithm which enables bipedal robots to blindly walk over
various kinds of uneven terrains while resisting pushes. The proposed optimization algorithm
performs high level motion planning of footstep locations and center-of-mass height variations
using the decoupled actuated Spring Loaded Inverted Pendulum (aSLIP) model. The decoupled
aSLIP model simplifies the original aSLIP with Linear Inverted Pendulum (LIP) dynamics in
horizontal states and spring dynamics in the vertical state. The motion planning can be
formulated as a discrete-time Model Predictive Control (MPC) problem and solved at a frequency
of 1 kHz. The output of the motion planner is fed into an inverse-dynamics based whole body
controller for execution on the robot. A key result of this controller is that the feet of the robot are
compliant, which further extends the robot’s ability to be robust to unobserved terrain variations.
We evaluate our method in simulation with the bipedal robot SLIDER. Results show the robot
can blindly walk over various uneven terrains including slopes, wave fields and stairs. It can also
resist pushes of up to 40 N for a duration of 0.1 s while walking on uneven terrain.

Keywords: bipedal robot, footstep planning, uneven terrain walking, optimization, model predictive control

1 INTRODUCTION

To make bipedal robots really suitable for many applications, it is important that they can go out of the
lab and walk in the complex real world environment. Real world environments contain various kinds
of uneven terrains: slopes, stairs, hills, etc. Most existing controllers that allow a bipedal robot to walk
over uneven terrains require predefined footstep locations or exact information about the terrain height
variations (Mordatch et al., 2010; Englsberger et al., 2015; Liu et al., 2015). However, even with most
advanced sensors there are some uncertainties on the perception of the terrain. In contrast, humans
can easily walk on uneven terrains, such as outdoor environments. without extra thought or careful
planning. Therefore, it is important to have a reactive controller that is robust to unobserved uneven
terrain variations.

The Spring Loaded Inverted Pendulum (SLIP) model has become a popular model for walking and
running in the legged robotic research (Raibert, 1986). Despite its simplicity, it has been proven to
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Figure 1. SLIDER robot walks on uneven terrain. The three traces are trajectories of CoM, left foot and
right foot respectively.

capture essential dynamics properties of walking and running (Geyer et al., 2006). The standard setting of
SLIP model is energy-conservative: it assumes there is no energy loss at impact. Though this assumption
simplifies the control analysis, it does not resemble the reality. There is energy loss on physical systems,
and robots (Ahmadi and Buehler, 2006; Robotics, 2017) designed to approximate SLIP dynamics have
added actuation to compensate for the energy dissipation. As a result, the actuated Spring Loaded Inverted
Pendulum (aSLIP) model (Ernst et al., 2010) is proposed for a better approximation of the real robot
dynamics. The aSLIP model has been successfully used to design controllers not only for SLIP-like
robots (Apgar et al., 2018; Green et al., 2020; Xiong and Ames, 2018) but also as a template model for
humanoid robots on uneven terrain walking (Liu et al., 2016).

An important step in making a controller reactive is to achieve real-time constrained optimization.
However, due to the nonlinear dynamics that arise from the 3D aSLIP model, fast optimization is difficult.
(Liu et al., 2016) used a gait synthesized from a library of gaits acquired from off-line optimization, but
this requires a large computation load offline and cannot cover all possible situations. (Apgar et al., 2018)
decoupled 3D aSLIP model to facilitate fast computation, but the continuous dynamics of decoupled
aSLIP model is still nonlinear and there is no theoretical guarantee of fast convergence. (Xin et al., 2019)
used the simpler Linear Inverted Pendulum (LIP) model to design a reactive controller for flat ground
walking, but this model cannot be applied to walking on uneven terrains.

Our paper proposes a reactive controller that enables robots to blindly walk over uneven terrains
by optimizing horizontal footstep locations and center of mass (CoM) height online. ”Terrain-blind”
means the robot is not provided with an environment map that specifies terrain height, but the robot
can still get access to its own state through state estimation, for example yhe CoM height. Under the
assumption that the angle the modelled inverted pendulum makes with the vertical is relatively small,
we can decouple the 3D aSLIP model into a 1D actuated spring model responsible for z direction and
2D LIP model responsible for x and y directions. The dynamics of all three dimensions can be written
as linear equations in a discrete-time state space manner. We formulate the online step planner as a
discrete-time model predictive control (MPC) problem and solve it by Quardratic Programming (QP).
To facilitate fast computation, the spring length is constrained to change linearly. As a result, we get a
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step planner which runs at a frequency of 1000 HZ. The step planner using a simple model is embedded
into the inverse-dynamics based whole body controller (Herzog et al., 2015; Kim et al., 2019) which
tackles the inconsistency between the simple model used in high level planning, and full robot dynamics.
With the whole body controller, the feet of the robot show great compliance and this helps the robot to
transition between different terrains without any information about the terrain. Due to the fast execution
frequency and compliance of the foot, our proposed controller enables the robot to blindly walk over
various kinds of moderately uneven terrains including slopes, wave fields and stairs. Our controller can
also handle disturbances from all direction while walking on uneven terrain. We validated our controller
on the straight-legged bipedal robot SLIDER (Wang et al., 2020) in Gazebo simulation.

The main contribution of the paper is the fast online optimization algorithm which enables bipedal robots
to blindly walk over various uneven terrains while resisting disturbances. With reasonable assumptions,
we can decouple the nonlinear 3D aSLIP dynamics and optimize the footstep location and CoM height
separately. By proper reformulation, the control of the vertical dynamics can be formulated as QP and
therefore a solution is guarenteed to be found. Our controller is simple to implement and computationally
efficient; the optimization of both vertical and horizontal motions can be solved by QP and executed at
1 kHz. A video showing the SLIDER robot walking with the proposed controller in simulation is available
at: https://youtu.be/ROyV-ZP8dxA.

2 SYSTEM OVERVIEW

2.1 The SLIDER robot

SLIDER is a knee-less bipedal robot designed by the Robot Intelligence Lab at Imperial College
London, as shown in Figure 2. SLIDER is 1.2 m tall and has 10 Degrees of Freedom (DoF), namely
hip pitch, hip roll, hip slide, ankle roll and ankle pitch on each leg. The robot is very lightweight (14.5 kg
in total) and most of its weight is concentrated at the pelvis. The legs are made of carbon fiber reinforced
polymer and each leg weights only 0.4 kg. The prismatic knee joint design is an unique feature of this robot
that differentiate it from many other robots with anthropomorphic design. Due to its sliding mechanism
and lightweight leg design, SLIDER can be well approximated with an aSLIP model which can greatly
simplify the planning and control problem. Moreover the lightweight leg with a large range of motion
makes the robot suitable for agile locomotion.

2.2 The Control Hierarchy

The controller presented has a hierarchical structure as shown in Fig 3. Due to the computational
complexity of using full body motion planning, a high level planner optimizes online only the foot
placement in x, y directions and the CoM height using the decoupled aSLIP model. The low level whole
body controller (Herzog et al., 2015; Feng et al., 2015) tracks the trajectory generated by high level
planner. The whole body controller considers the full dynamics of the robot and generates the consistent
torque command for each joint.

3 ONLINE FOOTSTEP PLANNING

Motion planning with the full dynamics of the robot is too computationally expensive to be executed at a
fast frequency. Instead we use reduced order models for online footstep planning: the LIP model is used
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Figure 2. The dimension and joint configuration of the SLIDER robot.

to plan footsteps in the horizontal plane and the 1D actuated spring model is used generate in the vertical
direction.

3.1 The Decoupled aSLIP Model

The aSLIP model is different from the classical SLIP model in that the aSLIP model is a combination
of the SLIP model and a virtual linear actuator, as shown in Figure 4. Introducing such a virtual actuator
gives the aSLIP model the capability to actively modify the reference spring length during each walking
phase and makes aSLIP model better at handling vertical changes than the SLIP model. However, similar
to the SLIP model, the dynamics of aSLIP model presented above is nonlinear because of the coupling in
vertical and horizontal dynamics, and the exact dynamic equation needs to be numerically integrated. An
approximate model which decouples the CoM states into horizontal and vertical directions will be used
in this paper. This decoupled approximate model simplifies the nonlinear dynamics of the original aSLIP
model and makes the fast online optimization of footstep locations and CoM height possible. To make
the approximation valid, two assumptions are made. The first assumption is that the vertical deviation of
CoM over each walking period is small relative to the height of the CoM, such that individual steps can
be modelled using the LIP model. The second assumption is that the angle the inverted pendulum makes
with the vertical axis is small, such that the spring contributes to the CoM’s vertical behavior only. This
is reasonable, considering a typical small step length is small compared to the height of the CoM. These
assumptions are summarised in Figure 4.

3.2 Vertical Dynamics of decoupled aSLIP Model

The original dynamics equation of the SLIP model is[
ml̈

ml2θ̈

]
=

[
mlθ̇2 − k(l − l0)−mg cos θ

−2mll̇θ̇ +mgl sin θ

]
(1)
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Figure 3. The hierarchical controller with the execution frequency of each level. The high level trajectory
planner takes the desired velocity as input and generates the optimal CoM trajectory along with the foot
placement. The low level whole body controller (Herzog et al., 2015; Feng et al., 2015) considers full
dynamics of the robot and tracks the trajectory at a frequency of 1 kHz.

where l is the pendulum length and θ is the angle between the pendulum and the vertical axis, as
demonstrated in Figure 4. Under the assumption that θ is negligible and l can be well approximated
by the CoM height z, the dynamics can be simplified into the decoupled aSLIP model in vertical direction
by equation (2), where r denotes the reference spring length, and k is the stiffness of the spring.

mz̈ = −mg + k(z − r) (2)

Compared with the classical SLIP model, the reference spring length r(t) is treated as a time-varying
optimization variable, which is contributed by the virtual linear actuator. We also constrain r(t) to change
linearly between initial and final values over the phase to facilitate fast computation. Therefore, the
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reference spring length should satisfy the condition below,

r(t) = r0 +
t

T
(rT − r0) (3)

where, r0 and rT represents the reference spring length at the start and at the end of one step respectively,
T is the step duration. We can formulate the dynamic equation (2) into a state space equation as,

Ż =

[
0 1

−ω2
z 0

]
Z +

[
0
ω2
z

]
(r − g

ω2
z
) (4)

where the states of CoM in vertical direction are defined as Z = [z, ż]T and we define ωz =
√

k
m . Further,

we can denote r − g
ω2
z

as uz, and equation (5) can be written into a linear state space equation as,

Ż =

[
0 1

−ω2
z 0

]
Z +

[
0
ω2
z

]
uz (5)

Figure 4. The aSLIP model. This model combines the SLIP model with a virtual linear actuator. θ is the
angle between the inverted pendulum and the vertical axis.

Figure 5. The decoupled aSLIP model during walking (top), with vertical dynamics (bottom left) and
horizontal dynamics (bottom right).
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We discretize equation (5) with sampling time Ts and can obtain,

Zk+1 = Φ(Ts)Zk +

∫ Ts

0
Φ(Ts)dt

[
0
ω2
z

]
uz,k (6)

where,

Φ(Ts) =

[
cos(ωzTs) sin(ωzTs)/ω

ωz · sin(ωzTs) cos(ωzTs)

]
(7)

∫ Ts

0
Φ(Ts)dt

[
0
ω2
z

]
=

[
1− cos(ωzTs)
ωz · sin(ωzTs)

]
We can also write this equation as:

Zk+1 = Az(Ts)Zk +Bz(Ts)uz,k

where Zk and Zk+1 are CoM states in the vertical direction at time k and k+1 respectively, Az(Ts) and
Bz(Ts) are time-varying matrices, uz,k is the control input for the spring at time k. Therefore, N future
steps can be computed given fixed sampling time Ts:

Z1 = Az(Ts)Z0 +Bz(Ts)uz,0
Z2 = Az(Ts)Z1 +Bz(Ts)uz,1

...
ZN = Az(Ts)ZN−1 +Bz(Ts)uz,N−1

(8)

where N is the number of steps to be optimized which should be more than 1. In this formulation, the
control input vector for the spring Ū = [uz,0, uz,1, ...uz,N−1] is the optimization variable. Equation (8)
can also be written in a matrix form for MPC:

Z̄ =


Az

A2
z

...

AN
z

Z0 +


Bz 0 0 0

AzBz Bz 0 0
... ... ... ...

AN−1
z Bz A

N−2
z Bz ... Bz

 Ūz (9)

where Z̄ and Ūz are the vectors of states and control inputs in z direction.

3.3 Horizontal Dynamics of Decoupled aSLIP Model

Under the assumption that the leg angle θ is relatively small and therefore the horizontal and the vertical
dynamics can be decoupled, the horizontal dynamics then becomes a classical Linear Inverted Pendulum
(LIP) model as shown in equation (10) , where z0 is the pendulum height and remains constant within
each step but may change between steps. Please note that z0 is different from the CoM height z. Similar
to (Xin et al., 2019), given the continuous dynamics of LIP model in the x direction:

ẍ =
g

z0
(x− px) (10)
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the discrete state space equation can be reformulated into a linear state space as below, with state defined
as X = [x, ẋ]T , and input ux defined as the footstep positions in x direction:

Xk+1 = Ax(Ts)Xk +Bx(Ts)ux,k (11)

where

Ax(Ts) =

[
cosh(ωxTs) sinh(ωxTs)/ωx

ωx · sinh(ωxTs) cosh(ωxTs)

]
Bx(Ts) =

[
1− cosh(ωxTs)
ωx · sinh(ωxTs)

]
Similarly, states in the predicted time horizon can also be obtained by:

X̄ =


Ax

A2
x

...

AN
x

X0 +


Bx 0 0 0

AxBx Bx 0 0
... ... ... ...

AN−1
x Bx A

N−2
x Bx ... Bx

 Ūx (12)

where X̄ and Ūx are the vectors of states and control inputs in x direction. The dynamics in the y direction
has identical formulation to the dynamics in the x direction.

3.4 Foot Placement and CoM Trajectory Optimization

The footstep planning can be formulated as a QP problem due to the fact that both horizontal and vertical
dynamics are linear and the constraints are linear. The formulation is:

min
ux,uy,uz

Γ (cost function)

s.t. Xk+1 = A(Ts)Xk +B(Ts)uk (dynamics)

h(pj) < 0 (reachability)

where Γ = Γ1 + Γ2 + Γ3 is the cost function term, X and u are general representations of states and
control inputs respectively and pj is the left or right foot position.

The cost formulation is composed of the three parts: Γ1, Γ2 and Γ3. The first part is minimizing the
difference between the predicted state and the referenced state, which drives the CoM state to reach the
desired one from the given current state. The formulation is:

Γ1 = ||XN −Xref
N ||2P +

N−1∑
k=0

||Xk −Xref
k ||2Q (13)

where P and Q are the weight matrix respectively. We only care about the velocity of CoM in all
directions, because we want a reactive footstep planner which is not constrained by a absolute reference
trajectory. From another point of view, tracking the reference velocity is equivalent to tracking the relative
CoM reference position. Xref is easy to define with the desired sagittal and frontal velocity. However, the
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reference velocity in vertical direction is not constant during one step. To get the reference velocity, we
can integrate equation (2) and get the continuous dynamics equation:

z(t) = d1 cosωzt+ d2 sinωzt+ r(t)− g/ωz
2 (14)

where

d1 = z0 − r0 + g/ωz
2 (15)

d2 = ż0/ωz
2 − (r(t)− r0)/(Tω) (16)

In this equation, z0 and ż0 are the CoM vertical position and velocity at the start of the current step
respectively. Then the time-varying reference velocity in z direction can be derived from the continuous
dynamics.

The second part is minimizing the difference between the reference control input urefk and the optimized
control input uk and R is the weight matrix.

Γ2 =
N−1∑
k=0

||uk − urefk ||2R (17)

For the reference control input in z direction, recall that the spring length is constrained to change linearly,
as indicated by equation (3). If we denote ∆ri as the change of spring length during one sampling time
Ts at step i, then it is clear that ∆ri is constant throughout step i, and the reference control input in z
direction Ū ref

z is therefore obtained as below:

Ū ref
z =


r0INr

0Ns

...
0Ns

+


1 0 ... 0
1 1 ... 0
1 1 ... 0
1 1 ... 1




0Nr

∆r1INs

...
∆rNstepsINs

 (18)

where Nr is the remaining number of sampling points for the current step and Ns is the number of
sampling points for one step. Nsteps is the number of predicted steps.

For the horizontal trajectory planning, the input of the system is the footstep position. The reference
control input in x direction Ū ref

x is then obtained according to the current support foot position P0 and the
difference between two consecutive steps ∆Px,i.

Ū ref
x =


INr

0Ns

...

0Ns

Px,0 +


0Nr ... 0Nr

INs ... 0Ns

... ... ...

0Ns ... INs




Px,1

Px,2

...

Px,Nsteps

 (19)


Px,1

Px,2

...

Px,Nstep

 =


INr

INs

...

INs

Px,0 +


1 0 0 0
1 1 0 0
... ... ... ...

1 1 ... 1




∆Px,1

∆Px,2

...

∆Px,Nstep
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The third part is tracking the desired change of the control input between two consecutive steps, with
di denoting the desired difference and W denoting weights. For the vertical trajectory planning we set
the desired difference to equal zero, this means the footstep planner tries to keep a constant CoM height
during one step to make the decoupled aSLIP assumption valid.

Γz
3 =

Nsteps∑
i=1

||∆ri − dzi ||2W =

Nsteps∑
i=1

||∆ri||2W (20)

For horizontal trajectory planning,

Γx,y
3 =

Nsteps∑
i=1

||∆P x,y
i − dx,yi ||2W (21)

In x direction, dxi is the step length which is calculated by the desired speed multiplied by the step time.
In y direction, dyi is defined as dyi = dstep ∗ 2 ∗ (−1)j , where dstep is the desired inter-feet clearance
distance, and j is the flag for the supporting foot, 0 stands for left support and 1 stands for right support.
This relative distance regularization term is introduced to keep the feet away from each other to avoid self-
collision. Morever, as this part of the cost function only includes relative distances, it helps to produce a
reactive footstep planner which keeps the robot walking even when unexpected disturbance is applied.

The reachability constraint is responsible for making sure the footstep location is physically possible,

L− rx,y < pj − c < L+ rx,y (22)

where L is the nominal offset of the foot position from the CoM of the robot, rx,y is the reachability
constraint in the x and y directions and c is the CoM position.

4 TRAJECTORY TRACKING

The low level trajectory tracking generates corresponding torques for each joint to minimize the difference
between the actual body trajectory and the desired trajectory given by the high level trajectory planner.
Since the trajectory planning does not include the full body dynamics, the dynamic inconsistency of the
torque command generated by the high level planner is significant. The whole body controller solves the
inverse dynamics based on the full robot dynamics.

4.1 Rigid Body Dynamics

The walking robot is modeled as a floating based rigid body system with coordinates q = [qb, qr]. Here,
qb ∈ R7 represents the position and orientation of the floating base using quaternions, and qr ∈ R10

represents the joint configuration. Inspired by (Herzog et al., 2015), the full dynamics can be decomposed
into an underactuated part and an actuated part:[

Mf

Ma

]
q̈ +

[
Hf

Ha

]
=

[
0
Sa

]
τ +

[
JT
f

JT
a

]
f , (23)
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Figure 6. Snapshots and plots of SLIDER blindly walking on different kinds of terrains, with a constant
forward velocity of 0.3 m/s (a ∼ c) and 0.6 m/s (d). On top row, from left to right: (a) ∼ (d): Walk on flat
terrain. Walk on a slope with an angle of 15 degrees. Walk on a wave field approximated by slopes with
3 different angles: 15, 10 and 5 degree. Walk over stairs, the successive elevation changes are +2 cm, +2
cm, +3 cm, +3 cm, -2 cm, -3 cm, -2 cm, -3 cm. On bottom row, from left to right, (e) ∼ (f): The plots of
desired and measured CoM z position in corresponding scenarios.

where M , H , Sa, τ , J and f are the mass matrix, the Coriolis force vector and the gravitation
force vector, the actuator selection matrix, the joint torques vector, the stacked contact Jacobian and
the reaction force vector respectively. The subscript f and a, indicates the floating part and the actuated
part respectively.

4.2 Contact Force Constraint

Friction is a important contributing factor to the stability of walking to prevent the foot from slipping.
We use the pyramidal friction model which is a linear inequality constraint for fast optimization:

fz ≥ 0, |fx| ≤
µfz√
2
, |fy| ≤

µfz√
2

(24)

where µ is the friction coefficient.

4.3 Swing Foot Trajectory Generation

The swing foot trajectory is generated using a fifth order polynomial. The start and final positions,
velocities and accelerations are specified and a parametric quintic curve is generated in x, y and z
directions. The polynomial in z direction has two halves, with the predefined foot height and zero velocity
at the midpoint. The start and final positions in z direction are calculated using the estimated CoM z

position at the start of current step. Because the robot is walking blindly we don’t define a trajectory for
the foot orientation, and this allows the foot to be compliant to a range of surfaces.

4.4 Whole Body Controller

The whole-body controller takes the responsibility of computing the joint torques to achieve the desired
motions defined in operational space while respecting a set of constraints. The tasks of interest in this
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paper are the CoM position, the pelvis orientation, the angular momentum of the robot, the feet positions
and orientations. The task for the linear motion can be expressed as:

JTq̈ = ẍcmd − J̇Tq̇, (25)

ẍcmd = ẍdes +Kpos
P (xdes − x) +Kpos

D (ẋdes − ẋ), (26)

where JT is the translational Jacobian for the task and x is the actual position of the link. For the task of
angular momentum the centroidal momentum matrix (Orin et al., 2013) is used as the task jacobian.
In uneven terrain walking the angular momentum task is defined as a damping task that damps out
excess angular momentum to make the walking robot more stable. For the task of the angular motion,
the command can be formulated as:

JRq̈ = ω̇cmd − J̇Rq̇, (27)

ω̇cmd = ω̇des +Kang
P (AngleAxis(RdesRT )) +Kang

D (ωdes − ω), (28)

where JR is the rotational Jacobian for the task, R and Rdes denote the actual and desired orientation
of the pelvis link respectively, AngleAxis() maps a rotation matrix to the corresponding axis-angle
representation, ω ∈ R3 is the angular velocity of the link. The angular motion is needed because when
walking on the uneven terrain, the pelvis orientation needs to be regulated around a nominal orientation
to maintain a good posture. We set small values for Kang

P and Kang
D in the foot orientation task to make

the ankle compliant so that the foot can adapt to different terrains. The whole body controller can be
formulated as a QP problem below:

min
q̈,f

∥Aq̈ + Ȧq̇ −Xcmd∥2W (29)

s.t. Mf q̈ − JT
f f = −Hf (floating base dynamics)

Pf ≤ 0 (pyramidal friction cone)

S−1
a (Maq̈ +Ha − JT

a f) ∈ [τmin, τmax] (input limits)

where A is a stack of the Jacobian matrices for the tasks of interest, Xcmd is a stack of the commanded
accelerations and W is the weighting matrix, P denotes the linearized friction cone. We treat the
unilateral contact constraint as a soft constraint by simply assigning a large weight on the desired zero
acceleration of the foot (Apgar et al., 2018; Kuindersma et al., 2016). This can speed up the optimization
and it is reported in (Feng et al., 2015) that this gives better stability. The output joint torque commands
τ at each control iteration can be computed by

τ = S−1
a (Maq̈ +Ha − JT

a f) (30)
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Figure 7. With the whole body controller the foot is compliant and the robot can perform transitions to
different terrains even though the robot does not know how the terrain looks like. This makes the robot
robust to unobserved terrain variations. The green lines indicate the magnitude and direction of the ground
reaction forces. The blue and red lines show the trace of the right and left foot centers, respectively.

5 RESULTS

This section discusses implementation details and simulation results of SLIDER robot walking on
different kinds of uneven terrains including slopes, wave fields and stairs, as shown in Fig.6. All the
experiments are included in the accompanying video https://youtu.be/ROyV-ZP8dxA.

5.1 Implementation

Both the high level footstep planner and low level trajectory tracking controller are implemented in
C++ for real-time performance. In the whole body controller we use Pinocchio (Carpentier et al., 2015–
2021) to compute the full rigid body dynamics and qpOASES (Ferreau et al., 2014) to solve the related QP
problem in both levels. All experiments were carried out in robot simulation environment Gazebo (Koenig
and Howard, 2004) with the physics engine ODE (Drumwright et al., 2010), using the full dynamics of
the real SLIDER robot. The communication through different levels of the control hierarchy is achieved
through ROS.

The decoupled aSLIP parameters are set to match with the physical SLIDER robot, here r0 = 0.715 m,
m = 14.5 kg, k = 1470 N/m. The step duration is chosen to be 0.7 s and the footheight in the swing foot
trajectory generation is 5 cm. The sampling time in the discrete-time MPC is 0.1 s in x and y directions
and 0.05 s in z direction. The motion planner predicts 4 steps in horizontal states and 1 step in the vertical
state. We use the same parameters among all walking experiments except that the forward velocity is
different. In the stair walking experiment the robot has to walk faster otherwise the foot might hit the edge
of the stair.

5.2 Flat Ground Walking

We first validate our approach on flat ground. Because there are no changes in the z direction on flat
ground, the z position of CoM oscillates around r0, as shown in Figure 6a, 6e.

5.3 Walking on Smooth Uneven Terrain

We then validate our approach on slopes and wave fields where the change of terrain height is smooth.
With a forward velocity of 0.3 m/s, the SLIDER robot can walk on a slope with 15 degree and a wave
field approximated by slopes with 3 different angles: 15, 10 and 5 degrees, as shown in Figure 6b, 6c, 6f,
6g. In the experiment the whole body controller plays an important role in making the robot remain robust
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Figure 8. Comparison between proposed aSLIP planner with LIP planner when walking on a 15◦ slope.
Top left is the snapshot showing SLIDER walking using a LIP planner, after two steps the robot stops
walking forward because LIP does not take height change into account. Top right is the snapshot showing
SLIDER walking using our aSLIP planner where the robot is able to walk successfully forward. Bottom
is a plot showing the comparison between the desired CoM height of LIP and aSLIP planner.

to unobserved terrain variations. By properly tuning the PD gain of the foot orientation task in the whole
body controller, the foot is compliant to adapt to large terrain variations, as shown in Figure 7.

Further experiments like pushing the robot while it was walking on uneven terrains were performed. As
shown in Figure 9, the robot was pushed in x or y direction twice while it walking on a wave field. When
the robot was pushed in x direction, the robot quickly took a large step in x direction to regulate the CoM
velocity back to the desired velocity. There is also a big change in z direction because the wave field is
ascending in x direction when the robot got pushed, but the motion quickly got stabilized. In the case of
y direction push, the robot also took a large step in y direction and stabilized in one step. As the terrain
height is only changing along x direction, there is no big change in z direction in this case.

We also compared our proposed planner with a planner using LIP, as shown in Figure 8. The robot with
a LIP planner is unable to walk up a 15◦ slope as the LIP planner assumes a constant CoM height, as
shown in the bottom plot in Figure 8. The aSLIP planner enables SLIDER to walk uphill because it adapts
to height changes.
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Figure 9. Plots showing the states of CoM when the robot got pushed in x or y direction while walking
on a wave field at a speed of 0.3 m/s. The pushes are indicated with circles. All impulses were applied
with a value of 40 N for a duration of 0.1 s. Top row: states of CoM when got pushed in x direction.
Bottom row: states of CoM when got pushed in y direction.

5.4 Walking on Discrete Uneven Terrain

Discrete uneven terrain provides bigger instantaneous variations to terrain height compared with smooth
uneven terrain. As shown in Figure 6d, the robot walked blindly over a set of stairs with a biggest height
change of 3 cm. The robot walked with a forward velocity of 0.6 m/s and a foot height of 5 cm in swing
foot phase. As shown in Figure 6h the CoM Z position exhibits large variations when walking over stairs
but was stabilized quickly. In our experiment the highest steps the robot can walk over is 3 cm, for higher
steps the foot would hit the edge of the stair and get stuck.

6 DISCUSSION

The proposed method is applied to the SLIDER robot and demonstrates successful blind walking on
various uneven terrains and the robustness to disturbances due to fast MPC. Because of SLIDER’s
lightweight legs, the robot can perform fast leg movements which helps to stabilize the robot. Furthermore,
the proposed method is general and can easily be applied to other legged robots.

There are other techniques dealing with variable height CoM trajectories, for example DCM based
approaches (Englsberger et al., 2013; Caron and Kheddar, 2017). But these techniques require the
controller to be terrain-aware to plan future CoM motion. Our proposed controller adjusts the CoM height
online within each step by following a spring dynamics. This has two advantages: firstly, the controller
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doesn’t require terrain information; secondly, the spring dynamics enables the vertical compliance of the
robot so that the robot is robust to unexpected height variations.

The author observed that the tracking error is larger when the robot walks down the wave field or stairs
than walking up, as shown in Figure 6g, 6h. This happens because the feet are still in the air at the end of
one step when the robot walks down. The unexpected sudden drop of the feet at the start of next step gives
the robot a large impact. For robot walking upwards, the effect of early touchdown can be alleviated by
the compliant feet and vertical compliance of the CoM. To improve, a controller with contact detection or
terrain information can achieve a smaller tracking error.

7 CONCLUSIONS AND FUTURE WORK

We present an online optimization algorithm which enables robots to blindly walk over various kinds of
uneven terrains while resisting pushes. The high level motion planner performs fast online optimization on
footstep locations and CoM height, and the low level inverse-dynamics based whole body controller tracks
the trajectory. We show in simulation that using this controller, the robot, SLIDER, can walk over slopes,
wave fields and stairs without any terrain information and can also recover from pushes while walking.
Future work will involve implementing our approach on the real SLIDER robot, and also incorporating
perception information into the high level step planner.
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