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Abstract

Discrete-action algorithms have been central to numerous recent successes of deep
reinforcement learning. However, applying these algorithms to high-dimensional
action tasks requires tackling the combinatorial increase of the number of possible
actions with the number of action dimensions. This problem is further exacerbated
for continuous-action tasks that require fine control of actions via discretization.
In this paper, we propose a novel neural architecture featuring a shared decision
module followed by several network branches, one for each action dimension.
This approach achieves a linear increase of the number of network outputs with
the number of degrees of freedom by allowing a level of independence for each
individual action dimension. To illustrate the approach, we present a novel agent,
called Branching Dueling Q-Network (BDQ), as a branching variant of the Dueling
Double Deep Q-Network (Dueling DDQN). We evaluate the performance of our
agent on a set of challenging continuous control tasks. The empirical results show
that the proposed agent scales gracefully to environments with increasing action
dimensionality and indicate the significance of the shared decision module in
coordination of the distributed action branches. Furthermore, we show that the
proposed agent performs competitively against a state-of-the-art continuous control
algorithm, Deep Deterministic Policy Gradient (DDPG).

1 Introduction

Combining the recent advances in deep learning techniques [LeCun et al., 2015, Schmidhuber, 2015,
Goodfellow et al., 2016] with reinforcement learning algorithms [Bertsekas and Tsitsiklis, 1996,
Sutton and Barto, 1998, Szepesvari, 2010] has proven to be effective in many domains. Notable
examples include the Deep Q-Network (DQN) [Mnih et al., 2013, 2015] and AlphaGo [Silver et al.,
2016, 2017]. The main advantage of using artificial neural networks as function approximators in
reinforcement learning is their ability to deal with high-dimensional input data by modeling complex
hierarchical or compositional data abstractions and features. Despite these successes, which have
enabled the use of reinforcement learning algorithms in domains with unprocessed, high-dimensional
sensory input, the application of these methods to high-dimensional, discrete action spaces remains
to suffer from the same issues as in tabular reinforcement learning—that is, the number of actions
that need to be explicitly represented grows exponentially with increasing action dimensionality.
Formally, for an environment with an N -dimensional action space and nd discrete sub-actions for
each dimension d, using the existing discrete-action algorithms, a total of

∏N
d=1 nd possible actions

need to be considered. This can rapidly render the application of discrete-action reinforcement
learning algorithms intractable to domains with multidimensional action spaces, as such large action
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Figure 1: A conceptual illustration of the proposed action branching network architecture. The shared
network module computes a latent representation of the input state that is then passed forward to the
several action branches. Each action branch is responsible for controlling an individual degree of
freedom and the concatenation of the selected sub-actions results in a joint-action tuple.

spaces are difficult to explore efficiently [Lillicrap et al., 2016]. This limitation is a significant one as
there are numerous efficient discrete-action algorithms whose applications are currently restricted to
domains with relatively small discrete action spaces. For instance, Q-learning [Watkins and Dayan,
1992] is a powerful discrete-action algorithm, with many extensions [Hessel et al., 2017], which
due to its off-policy nature can, in principle, achieve better sample efficiency than policy gradient
methods by reusing transitions from a replay memory of past experience [Gu et al., 2016, 2017].

Given the potential of discrete-action reinforcement learning algorithms and their current limited ap-
plication, in this paper we introduce a novel neural architecture that enables the use of discrete-action
algorithms in deep reinforcement learning for domains with high-dimensional discrete or continuous
action spaces. The core notion of the proposed architecture is to distribute the representation of the
action controllers across individual network branches, meanwhile, maintaining a shared decision
module among them to encode a latent representation of the input and help with the coordination of
the branches (see Figure 1). The proposed decomposition of the actions enables the linear growth
of the total number of network outputs with increasing action dimensionality as opposed to the
combinatorial growth in current discrete-action algorithms. This simple idea can potentially enable a
spectrum of fundamental discrete-action reinforcement learning algorithms to be effectively applied
to domains with high-dimensional action spaces using neural network function approximators.

To showcase this capability, we introduce a novel agent, called Branching Dueling Q-Network (BDQ),
which is a branching variant of the Dueling Double DQN (Dueling DDQN) [Wang et al., 2016].
We evaluate BDQ on a variety of complex control problems via fine-grained discretization of the
continuous action space. Our empirical study shows that BDQ can scale robustly to environments
with high-dimensional action spaces to solve the benchmark domains and even outperform the Deep
Deterministic Policy Gradient (DDPG) algorithm [Lillicrap et al., 2016] in the most challenging
task with a corresponding discretized combinatorial action space of approximately 6.5× 1025 action
tuples. To solve problems in environments with discrete action spaces of this magnitude is a feat that
was previously thought intractable for discrete-action algorithms [Lillicrap et al., 2016, Schulman
et al., 2017]. In order to demonstrate the vital role of the shared decision module in our architecture,
we compare BDQ against a completely independent variant which we refer to as Independent Dueling
Q-Network (IDQ)—an agent consisting of multiple independent networks, one for each action
dimension, and without any shared parameters among the networks. The results show that the
performance of IDQ quickly deteriorates with increasing action dimensionality. This implies the
inability of the agent to coordinate the independent action decisions across its several networks. This
could be due to any of the several well-known issues for independent fully-cooperative learning
agents: Pareto-selection, non-stationarity, stochasticity, alter-exploration, and shadowed equilibria
[Matignon et al., 2012, Wei and Luke, 2016].

Partial distribution of control, or action branching as we call it, is also found in nature. Octopuses,
for instance, have complex neural systems where each arm is able to function with a degree of
autonomy and even respond to stimuli after being detached from the central control. In fact, more
than half of the neurons in an octopus are spread throughout its body, especially within the arms
[Godfrey-Smith, 2016]. Since the octopuses’ arms have virtually unlimited degrees of freedom, they
are highly difficult to control in comparison to jointed limbs. This calls for the partial delegation of
control to the arms in order to work out the details of their motions themselves. Interestingly, not
only do the arms have a degree of autonomy, they have also been observed to engage in independent
exploration [Godfrey-Smith, 2016].
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2 Related Work

To enable the application of reinforcement learning algorithms to large-scale, discrete-action problems,
Dulac-Arnold et al. [2015] propose the Wolpertinger policy architecture based on a combination of
DDPG and an approximate nearest-neighbor method. This approach leverages prior information
about the discrete actions in order to embed them in a continuous space upon which it can generalize,
meanwhile, achieving logarithmic-time lookup complexity relative to the number of actions. Due
to the underlying algorithm being essentially a continuous-action algorithm, this approach may
be unsuitable for domains with naturally discrete action spaces where no assumption should be
imposed on having associated continuous space correlations. Also, this approach does not enable the
application of discrete-action algorithms to domains with high-dimensional action spaces as it relies
on a continuous-action algorithm.

Concurrent to our work, Metz et al. [2017] have developed an approach that can deal with problem
domains with high-dimensional discrete action spaces using Q-learning. They use an autoregressive
network architecture to sequentially predict the action value for each action dimension. This requires
manual ordering of the action dimensions which imposes a priori assumptions on the structure of the
task. Additionally, due to the sequential structure of the network, as the number of action dimensions
increases, so does the noise in the Q-value estimations. Therefore, with increasing number of action
dimensions, the Q-value estimates on the latter layers may become too noisy to be useful. Due
to the parallel representation of the action values or policies, our proposed approach is not prone
to cumulative estimation noise with increasing number of action dimensions and does not impose
manual action factorization. Furthermore, our proposed approach is much simpler to implement as it
does not require advanced neural network architectures, such as recurrent neural networks.

A potential approach towards achieving scalability with increasing action dimensionality is to extend
deep reinforcement learning algorithms to fully-cooperative multiagent settings in which each agent—
responsible for controlling an individual degree of freedom—observes the global state, selects an
individual action, and receives a team reward common to all agents. Tampuu et al. [2017] combine
DQN with independent Q-learning, in which each agent independently and simultaneously learns its
own action-value function. Even though this approach has been successfully applied in practice to
domains with two agents, in principle, it can lead to convergence problems [Matignon et al., 2012].
In this paper, we empirically investigate this scenario and show that by maintaining a shared network
module among the action branches, our approach is able to scale to high-dimensional action spaces.

3 The Action Branching Architecture

The key insight behind the proposed action branching architecture is that for solving problems in
multidimensional action spaces, it is possible to optimize for each action dimension with a degree
of independence. If executed appropriately, this altered perspective has the potential to trigger a
dramatic reduction in the number of required network outputs. However, it is well-known that
the naïve distribution of the value function or the policy representation across several independent
function approximators is subject to numerous challenges which can lead to convergence problems
[Matignon et al., 2012]. To address this, the proposed neural architecture distributes the representation
of the value function or the policy across several network branches while keeping a shared decision
module among them to encode a latent representation of the common input state (see Figure 1). We
hypothesize that this shared network module, paired with an appropriate training procedure, can play
a significant role in coordinating the sub-actions that are based on the semi-independent branches
and, therefore, achieve training stability and convergence to good policies. We believe this is due to
the rich features in the shared network module that is trained via the backpropagation of the gradients
originating from all the branches.

To verify this capability, we present a novel agent that is based on the incorporation of the proposed
action branching architecture into a popular discrete-action reinforcement learning agent, the Dueling
Double Deep Q-Network (Dueling DDQN). The proposed agent, which we call Branching Dueling
Q-Network (BDQ), is only an example of how we envision our action branching architecture can
be combined with a discrete-action algorithm in order to enable its direct application to problem
domains with high-dimensional, discrete or continuous action spaces. We select deep Q-learning
(or DQN) as the algorithmic basis for our proof-of-concept agent as it is a simple, yet powerful,
off-policy algorithm with an excellent track record and numerous extensions [Hessel et al., 2017].
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Figure 2: A visualization of the specific action branching network implemented for the proposed
BDQ agent. When a state is provided at the input, the shared decision module computes a latent
representation that is then used for evaluation of the state value and the factorized (state-dependent)
action advantages on the subsequent independent branches. The state value and the factorized
advantages are then combined, via a special aggregation layer, to output the Q-values for each action
dimension. These factorized Q-values are then queried for the generation of a joint-action tuple. The
weights of the fully connected neural layers are denoted by the gray trapezoids and the size of each
layer (i.e. number of units) is indicated.

While our experiments focus on a specific algorithm (i.e. deep Q-learning), we believe that the
empirical verification of the aforementioned hypothesis, suggests the potential of the proposed
approach in enabling the direct application of a spectrum of existing discrete-action algorithms to
environments with high-dimensional action spaces.

4 Branching Dueling Q-Network

In this section, we begin by providing a brief overview of a select set of available extensions for DQN
that we incorporate into the proposed BDQ agent. We then describe the details of the proposed agent,
including the specific methods that were used to adapt the DQN algorithm and its selected extensions
into our proposed action branching architecture. Figure 2 demonstrates a pictorial view of the BDQ
network.

4.1 Background

The following is an outline of three existing key innovations, designed to improve upon the sample
efficiency and policy evaluation quality of the DQN algorithm.

Double Q-learning. Both tabular Q-learning and DQN have been shown to suffer from the overes-
timation of the action values [van Hasselt, 2010, van Hasselt et al., 2016]. This overoptimism stems
from the fact that the same values are accessed in order to both select and evaluate actions. In the
standard DQN algorithm [Mnih et al., 2013, 2015], a previous version of the current Q-network,
called the target network, is used to select the next greedy action involved in the Q-learning updates.
To address the overoptimism in the Q-value estimations, van Hasselt et al. [2016] propose the Dou-
ble DQN (DDQN) algorithm that uses the current Q-network to select the next greedy action, but
evaluates it using the target network.

Prioritized Experience Replay. The experience replay enables online, off-policy reinforcement
learning agents to reuse past experiences or demonstrations. In the standard DQN algorithm, the
experience transitions were sampled uniformly from a replay buffer. To enable more efficient learning
from the experience transitions, Schaul et al. [2016] propose a framework for prioritizing experience
in order to replay important experience transitions, which have a high expected learning progress,
more frequently.

Dueling Network Architecture. The dueling network architecture [Wang et al., 2016] explicitly
separates the representation of the state value and the (state-dependent) action advantages into
two separate branches while sharing a common feature-learning module among them. The two
branches are combined, via a special aggregating layer, to produce an estimate of the action-value
function. By training this network with no additional considerations than those used for the DQN
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algorithm, the dueling network automatically produces separate estimates of the state value and
advantage functions. Wang et al. [2016] introduce multiple aggregation methods for combining the
state value and advantages. They demonstrate that subtracting the mean of the advantages from
each individual advantage and then summing them with the state value results in improved learning
stability when compared to the naïve summation of the state value and advantages. The dueling
network architecture has been shown to lead to better policy evaluation in the presence of many
similar-valued (or redundant) actions, and thus achieves faster generalization over large action spaces.

4.2 Methods

Here we introduce various methods for adapting the DQN algorithm, as well as its notable extensions
that were explained earlier, into the action branching architecture. For brevity, we mainly focus on
the methods that result in our best performing DQN-based agent, BDQ.

Common State-Value Estimator. As demonstrated in the action branching network of Figure 2,
BDQ uses a common state-value estimator for all action branches. This approach, which can be
thought of as an adaptation of the dueling network into the action branching architecture, generally
yields a better performance. The use of the dueling architecture with action branching is particularly
an interesting augmentation for learning in large action spaces. This is due to the fact that the dueling
architecture can more rapidly identify action redundancies and generalize more efficiently by learning
a general value that is shared across many similar actions. In order to adapt the dueling architecture
into our action branching network, we distribute the representation of the (state-dependent) action
advantages on the several action branches, meanwhile, adding a single additional branch for estimating
the state-value function. Similar to the dueling architecture, the advantages and the state value are
combined, via a special aggregating layer, to produce estimates of the distributed action values. We
experimented with several aggregation methods and our best performing method is to locally subtract
each branch’s mean advantage from its sub-action advantages, prior to their summation with the
state value. Formally, for an action dimension d ∈ {1, ..., N} with |Ad| = n discrete sub-actions,
the individual branch’s Q-value at state s ∈ S and sub-action ad ∈ Ad is expressed in terms of the
common state value V (s) and the corresponding sub-action advantage Ad(s, ad) by:

Qd(s, ad) = V (s) +
(
Ad(s, ad)−

1

n

∑
a′
d∈Ad

Ad(s, a
′
d)
)
. (1)

We realize that this aggregation method does not resolve the lack of identifiability for which the
maximum and the average reduction methods were originally proposed [Wang et al., 2016]. However,
based on our experimentation, this aggregation method yields a better performance than both the
naïve alternative,

Qd(s, ad) = V (s) +Ad(s, ad), (2)
and the local maximum reduction method, which replaces the averaging operator in Equation 1 with
a maximum operator:

Qd(s, ad) = V (s) +
(
Ad(s, ad)− max

a′
d∈Ad

Ad(s, a
′
d)
)
. (3)

Temporal-Difference Target. We tried several different methods for generating the temporal-
difference (TD) targets for the DQN updates. A simple approach is to calculate a TD target, similar
to that in DDQN, for each individual action dimension separately:

yd = r + γQ−d (s
′, argmax

a′
d∈Ad

Qd(s
′, a′d)), (4)

with Q−d denoting the branch d of the target network Q−. Alternatively, the maximum DDQN-
based TD target over the action branches may be set as a single global learning target for all action
dimensions:

y = r + γmax
d

Q−d (s
′, argmax

a′
d∈Ad

Qd(s
′, a′d)). (5)

The best performing method, also used for BDQ, replaces the maximum operator in Equation 5 with
a mean operator:

y = r + γ
1

N

∑
d

Q−d (s
′, argmax

a′
d∈Ad

Qd(s
′, a′d)). (6)
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Loss Function. There exist numerous ways by which the distributed TD errors across the branches
can be aggregated to specify a loss. A simple approach is to define the loss to be the expected value
of a function of the averaged TD errors across the branches. However, due to the signs of such errors,
their summation is subject to canceling out which, in effect, generally reduces the magnitude of the
loss. To overcome this, the loss can be specified as the expected value of a function of the averaged
absolute TD errors across the branches. In practice, we found that defining the loss to be the expected
value of the mean squared TD error across the branches mildly enhances the performance:

L = E(s,a,r,s′)∼D

[
1

N

∑
d

(
yd −Qd(s, ad)

)2]
, (7)

where D denotes a (prioritized) replay buffer and a denotes the joint-action tuple (a1, a2, ..., aN ).

Error for Experience Prioritization. Adapting the prioritized replay into the action branching
architecture requires an appropriate method for aggregating the distributed TD errors (of a single
transition) into a unified one. This error is then used by the replay memory to calculate the transi-
tion’s priority. In order to preserve the magnitudes of the errors, for BDQ, we specify the unified
prioritization error to be the sum across a transition’s absolute, distributed TD errors:

eD(s, a, r, s′) =
∑
d

|yd −Qd(s, ad)| , (8)

where eD(s, a, r, s′) denotes the error used for prioritization of the transition tuple (s, a, r, s′).

Gradient Rescaling. During the backward pass, since all branches backpropagate gradients through
the shared network module, we rescale the combined gradient prior to entering the deepest layer in
the shared network module by 1/(N + 1).

5 Experiments

We evaluate the performance of the proposed BDQ agent on several challenging continuous control
environments of varying action dimensionality and complexity. These environments are simulated
using the MuJoCo physics engine [Todorov et al., 2012]. We first study the performance of BDQ
against its standard non-branching variant, Dueling DDQN, on a set of custom reaching tasks with
increasing degrees of freedom and under two different granularity discretizations. We then compare
the performance of BDQ against a state-of-the-art continuous control algorithm, Deep Deterministic
Policy Gradient (DDPG), on a set of standard continuous control manipulation and locomotion
benchmark domains from the OpenAI’s MuJoCo Gym collection [Brockman et al., 2016, Duan
et al., 2016]. We also compare BDQ against a fully independent alternative, Independent Dueling
Q-Network (IDQ), in order to verify our hypothesis regarding the significance of the shared network
module in coordinating the distributed policies. To make the continuous-action domains compatible
with the discrete-action algorithms in our study (i.e. BDQ, Dueling DDQN, and IDQ), in both sets
of experiments, we discretize each action dimension d ∈ {1, ..., N} into n equally spaced values,
yielding a discrete combinatorial action space of nN possible actions.

5.1 Custom N-Dimensional Action-Space Problems

We begin by comparing the performance of BDQ against its standard non-branching variant, the
Dueling DDQN agent, on a set of physical manipulation tasks with increasing action dimensionality
(see Figure 3). These tasks are custom variants of the standard Reacher-v1 task (from the OpenAI’s
MuJoCo Gym collection) that feature more actuated joints (i.e. N = {3, 4, 5}) with constraints on
their ranges of motion to prevent collision between segments. Unlike the original Reacher-v1 domain,
reaching the target position immediately terminates an episode without the need to decelerate and
maintain position at the target. This was done to simplify these complex control tasks (as a result
of more frequently experienced episodic successes) in order to allow faster experimentation. We
consider two discretization resolutions resulting in n = 5 and n = 9 sub-actions per joint. This is
done in order to examine the impact of finer granularity, or equivalently more discrete sub-actions per
action dimension, with increasing degrees of freedom. The general idea is to empirically study the
effectiveness of action branching in the face of increasing action-space dimensionality as compared to
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Figure 3: Illustrations of the custom physical reaching tasks. From left: Reacher3DOF, Reacher4DOF,
and Reacher5DOF domains with 3, 4, and 5 degrees of freedom, respectively.
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Figure 4: Performance in sum of rewards during evaluation on the y-axis and training episodes on
the x-axis. The solid lines represent smoothed (window size of 20 episodes) averages over 3 runs
with random initialization seeds, while shaded areas show the standard deviations. Evaluations were
conducted every 50 episodes of training for 30 episodes with a greedy policy.

the standard non-branching variant. Therefore, the tasks are designed to have sufficiently small action
spaces for a standard non-branching algorithm to still be tractable for the purpose of our evaluations.

The performances are summarized in Figure 4. The results show that in the low-dimensional reaching
task with N = 3, all agents learn at about the same rate, with slightly steeper learning curves towards
the end for Dueling DDQN. In the task with N = 4, we see that the Dueling DDQN agent with n = 5
starts off less efficiently (i.e. slower learning curve) than its corresponding BDQ agent, but eventually
converges and outperforms both BDQ agents in their final performance. However, in the same task,
the Dueling DDQN agent with n = 9 shows a significantly less efficient learning performance against
its BDQ counterpart. In the high-dimensional reaching task with N = 5, we see that the Dueling
DDQN agent with n = 5 performs rather poorly in terms of its sample efficiency. For this task,
we were unable to run the Dueling DDQN agent with n = 9 since running it was computationally
expensive—due to the large number of actions that need to be explicitly represented by its network
(i.e. 95 ≈ 6× 104) and consequently the extremely large number of network parameters that need
to be trained at every iteration. In contrast, in the same task, we see that BDQ performs well and
converges to good policies with robustness against the discretization granularity.

5.2 Standard Continuous Control Benchmarks

Here we evaluate the performance of BDQ on a set of standard continuous control benchmark
domains from the OpenAI’s MuJoCo Gym collection. Figure 5 demonstrates sample illustrations
of the environments used in our experiments. We compare the performance of BDQ against a
state-of-the-art continuous-action reinforcement learning algorithm, DDPG, as well as against a
completely independent agent, IDQ. For all environments, we evaluate the performance of BDQ with
two different discretization resolutions resulting in n = 17 and n = 33 sub-actions per degree of
freedom. We do this to compare the relative performance of BDQ for the same environments with
substantially larger discrete action spaces. Where feasible (i.e. Reacher-v1 and Hopper-v1), we also
run the Dueling DDQN agent with n = 17.

The results demonstrated in Figure 6 show that IDQ’s performance quickly deteriorates with increas-
ing action dimensionality, while BDQ continues to perform competitively against DDPG. Interestingly,
BDQ significantly outperforms DDPG in the most challenging domain, the Humanoid-v1 task which
involves 17 action dimensions, leading to a combinatorial action space of approximately 6.5× 1025

possible actions for n = 33. Our ablation study on BDQ (with a shared network module) and IDQ
(no shared network module) verifies the significance of the shared decision module in coordinating
the distributed policies, and thus enabling the BDQ agent to progress in learning and to converge
to good policies in a stable manner. Furthermore, remarkably, to perform competitively against a
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Figure 5: Illustrations of the OpenAI’s MuJoCo Gym domains used in our experiments. From left:
Reacher-v1, Hopper-v1, Walker2d-v1, and Humanoid-v1 with 2, 3, 6, and 17 degrees of freedom.
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Figure 6: Learning curves for the OpenAI’s MuJoCo Gym manipulation and locomotion benchmark
domains. The solid lines represent smoothed (window size of 20 episodes) averages over 6 runs
with random initialization seeds, while shaded areas show the standard deviations. Evaluations were
conducted every 50 episodes of training for 30 episodes with a greedy policy.

state-of-the-art continuous control algorithm in such high-dimensional domains is a feat previously
considered intractable for discrete-action algorithms [Lillicrap et al., 2016, Schulman et al., 2017].
However, in the simpler tasks DDPG performs better or on par with BDQ. We think a potential
explanation for this could be the use of a specialized exploration noise process by DDPG which, due
to its temporally correlated nature, enables effective exploration in domains with momentum.

By comparing the performance of BDQ for n = 17 and n = 33, we see that, despite the significant
difference in the total number of possible actions, the proposed agent continues to learn rather
efficiently and converges to similar final performance levels. An interesting point to note is the
exceptional performance of Dueling DDQN for n = 17 in Reacher-v1. Yet, increasing the action
dimensionality by only one degree of freedom (from N = 2 in Reacher-v1 to N = 3 in Hopper-v1)
renders the Dueling DDQN agent ineffective.

Finally, it is noteworthy that BDQ is highly robust against the specifications of the TD target and
loss function, while it highly deteriorates with the ablation of the prioritized replay. Characterizing
the role of the prioritized experience replay, in stabilizing the learning process for action branching
networks, remains the subject of future research.

6 Conclusion

We introduced a novel neural network architecture that distributes the representation of the policy or
the value function over several network branches, meanwhile, maintaining a shared network module
for enabling a form of implicit centralized coordination. We adapted the DQN algorithm, along
with several of its most notable extensions, into the proposed action branching architecture. We
illustrated the effectiveness of the proposed architecture in enabling the application of a currently
restricted discrete-action algorithm to domains with high-dimensional discrete or continuous action
spaces. This is a feat which was previously thought intractable. We believe that the highly promising
performance of the action branching architecture in scaling DQN and its potential generality evoke
further theoretical and empirical investigations.
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Supplementary Information: Action Branching
Architectures for Deep Reinforcement Learning

A Experiment Details

Here we provide information about the technical details and hyperparameters used for training the
agents in our experiments. Common to all agents, training always started after the first 103 steps and,
thereafter, we ran one step of training at every time step. We did not perform tuning of the reward
scaling parameter for either of the algorithms and, instead, used each domain’s raw rewards. We used
the OpenAI Baselines [Hesse et al., 2017] implementation of DQN as the basis for the development
of all the DQN-based agents.

A.1 Branching Dueling Q-Network

We used the Adam optimizer [Kingma and Ba, 2015] with a learning rate of 10−4, β1 = 0.9, and
β2 = 0.999. We trained with a minibatch size of 64 and a discount factor γ = 0.99. The target
network was updated every 103 time steps. We used the rectified non-linearity (or ReLU) [Glorot
et al., 2011] for all hidden layers and linear activation on the output layers. The network had two
hidden layers with 512 and 256 units in the shared network module and one hidden layer per branch
with 128 units. The weights were initialized using the Xavier initialization [Glorot and Bengio, 2010]
and the biases were initialized to zero. A gradient clipping of size 10 was applied. We used the
prioritized replay with a buffer size of 106 and hyperparameters α = 0.6, β0 = 0.4, η = 3× 10−7,
and ε = 10−8.

While an ε-greedy policy is often used with Q-learning, random exploration (with an exploration
probability) in physical, continuous-action domains can be inefficient. To explore well in physical
environments with momentum, such as those in our experiments, DDPG uses an Ornstein-Uhlenbeck
process [Uhlenbeck and Ornstein, 1930] which creates a temporally correlated exploration noise
centered around the output of its deterministic policy. The application of such a noise process to
discrete-action algorithms is, nevertheless, somewhat non-trivial. For BDQ, we decided to sample
actions from a Gaussian distribution with its mean at the greedy actions and with a small fixed
standard deviation throughout the training to encourage life-long exploration. We used a fixed
standard deviation of 0.2 during training and zero during evaluation. This exploration strategy yielded
a mildly better performance as compared to using an ε-greedy policy with a fixed or linearly annealed
exploration probability. For the custom reaching domains, however, we used an ε-greedy policy with
a linearly annealed exploration probability, similar to that commonly used for Dueling DDQN.

A.2 Dueling Double Deep Q-Network

We generally used the same hyperparameters as for BDQ. The gradients from the dueling streams
were rescaled by 1/

√
2 prior to entering the shared feature module as recommended by Wang et al.

[2016]. Same as the reported best performing agent from [Wang et al., 2016], the average aggregation
method was used to combine the state value and advantages. We experimented with both a Gaussian
and an ε-greedy exploration policy with a linearly annealed exploration probability, and observed
a moderately better performance for the linearly annealed ε-greedy strategy. Therefore, in our
experiments we used the latter.

A.3 Independent Dueling Q-Network

Once more, we generally used the same hyperparameters as for BDQ. Similarly, the same number of
hidden layers and hidden units per layer were used for each independent network, with the difference
being that the first two hidden layers were not shared among the several networks (which was the case
for BDQ). The dueling architecture was applied to each network independently (i.e. each network
had its own state-value estimator). This agent serves as a baseline for investigating the significance of
the shared decision module in the proposed action branching architecture.
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A.4 Deep Deterministic Policy Gradient

We used the DDPG implementation of the rllab suite [Duan et al., 2016] and the hyperparameters
reported by Lillicrap et al. [2016], with the exception of not including a L2 weight decay for Q as
opposed to the originally proposed penalty of 10−2 which deteriorated the performance.

B Environment Details

Table 1 states the dimensionality information of the standard benchmark domains from the OpenAI’s
MuJoCo Gym collection that were used in our experiments. The values provided are calculated for
the specific case of n = 33, the finest granularity that we experimented with.

Domain dim(o) N nN n×N
Reacher-v1 11 2 1.1× 103 66
Hopper-v1 11 3 3.6× 104 99
Walker2d-v1 17 6 1.3× 109 198
Humanoid-v1 376 17 6.5× 1025 561

Table 1: Dimensionality of the OpenAI’s MuJoCo Gym benchmark domains: dim(o) denotes the
observation dimensions, N is the number of action dimensions, and nN indicates the number of
possible actions in the combinatorial action space, with n denoting the fixed number of discrete
sub-actions per action dimension. The rightmost column indicates the total number of network
outputs required for the proposed action branching architecture. The values provided are for the most
fine-grained discretization case of n = 33.
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