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ABSTRACT In recent years, several robots have been developed and deployed to perform casualty
extraction tasks. However, the majority of these robots are overly complex, and require teleoperation via
either a skilled operator or a specialised device, and often the operator must be present at the scene to
navigate safely around the casualty. Instead, improving the autonomy of such robots can reduce the reliance
on expert operators and potentially unstable communication systems, while still extracting the casualty in a
safe manner. There are several stages in the casualty extraction procedure, from navigating to the location
of the emergency, safely approaching and loading the casualty, to finally navigating back to the medical
assistance location. In this paper, we propose a Hierarchical Decomposed-Objective based Model Predictive
Control (HiDO-MPC) method for safely approaching and manoeuvring around the casualty. We implement
this controller on ResQbot — a proof-of-concept mobile rescue robot we previously developed — capable
of safely rescuing an injured person lying on the ground, i.e. performing the casualty extraction procedure.
HiDO-MPC achieves the desired casualty extraction behaviour by decomposing the main objective into
multiple sub-objectives with a hierarchical structure. At every time step, the controller evaluates this
hierarchical decomposed objective and generates the optimal control decision. We have conducted a number
of experiments both in simulation and using the real robot to evaluate the proposed method’s performance,
and compare it with baseline approaches. The results demonstrate that the proposed control strategy gives
significantly better results than baseline approaches in terms of accuracy, robustness, and execution time,
when applied to casualty extraction scenarios.

INDEX TERMS Autonomous casualty extraction, mobile rescue robot, mobile robot control, model
predictive control, search and rescue.

I. INTRODUCTION

A number of research studies have been conducted to develop
mobile rescue robots that can perform rescue interventions,
and more specifically casualty extraction tasks [1]–[8]. Some
of these robots have been also deployed to assist the first
responders in practice rescue mission scenarios. The existing
robots that are currently in use require a high degree of
human intervention, in terms of teleoperation or presence at
the scene, to help the robot in performing the mission [1].

In many scenarios, teleoperation can be difficult to execute
properly, for reasons such as: (i) limitations on the teleoper-
ator’s perception, e.g. a limited field of view; (ii) significant
delays in signal transmission which render the teleoperation
difficult; (iii) teleoperating the robot with first-person per-
spective requires a highly experienced operator, which limits
the scalability of the number of robots deployed. Therefore,
adding a certain degree of autonomy to mobile rescue robots
is a crucial milestone on the road to developing a reliable
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FIGURE 1. The phases that occur during casualty extraction in a search and rescue (SAR) scenario. The figure illustrates robot modules implemented
on ResQbot corresponding to each of the phases. The phase highlighted in light blue is the focus of the work presented in this paper.

rescue platform for disaster response.
In the following subsections we formalise the casualty ex-

traction procedure and additional requirements which present
the basis for search and rescue (SAR) robots and control
algorithm development.

A. THE CASUALTY EXTRACTION PROCEDURE
In order to formalise the casualty extraction procedure, we
identify several key phases. Described in Fig. 1, each phase
has distinct requirements that must be met by the corre-
sponding robot modules, in order to execute the extraction
safely and successfully. We define the five main phases of the
casualty extraction procedure as follows:

Phase 1: Search and navigate. At the very beginning,
the mobile rescue robot is given initial information about the
task. This includes a rough estimate of all possible casualty
positions, the state of their vital signs, environment map, and
the feasible scenarios for extracting each of the casualties.
If all the required data is well received, the robot can then
navigate to the location of the casualty to start the extraction
process.

Phase 2: Detect the casualty. Once the target casualty
is within the range of the robot’s field of view (i.e. within
the perception range of the robot), the robot determines the
casualty’s position and orientation with respect to its own ref-
erence frame. This phase requires a robust perception module
in order to provide an accurate casualty pose estimate.

Phase 3: Safely approach the casualty. After determin-
ing the casualty’s pose with respects to its own frame, the
robot proceeds to approaching the casualty. The robot ap-

proaches the casualty safely until reaching a desired target
pose from which the casualty can be loaded. The ability
of the robot to safely manoeuvre around the casualty is
critical in this phase, as a misaligned approach could lead
to a collision with the casualty. Similarly, the robot must
be able to accurately perform the approach while avoiding
obstacles and withstanding external disturbances, as these
can affect the approach and compromise the safety of the
loading procedure.

Phase 4: Load the casualty. When the approach phase
has been safely and accurately completed, the robot can then
start to load the casualty. This must be performed gently and
smoothly to minimise risk of further injury to the casualty.

Phase 5: Transporting the casualty. The robot begins
to transport the casualty, after ensuring that the casualty is
loaded safely onto the stretcher. In this phase, the mobile
robot is required to safely navigate its way from the disaster
scene towards a safe place where the casualty can receive
further medical assistance.

B. AUTONOMOUS CASUALTY EXTRACTION ROBOT
Our long term research goal is to develop an autonomous
mobile robot that can help in emergency situations, with
the ability to autonomously rescue an injured person lying
on the ground — i.e. casualty extraction. The fundamental
characteristics that an autonomous rescue robot performing
casualty extraction should possess are (summarised in Fig.
2):
• Safe: It is critical that the safety of the casualty is

ensured at all times. In particular, approaching, loading
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FIGURE 2. ResQbot — a previously developed robot (in the middle) for autonomous casualty extraction — and several fundamental aspects used
behind the design of good casualty extraction robots.

and transporting the casualty should be performed in a
way that minimises the risk of additional injury to the
casualty.

• Hazard-aware: The casualty extraction process can be
hazardous as the environment could be dynamically
changing during the process. To adapt to this, the rescue
robot should be able to update its extraction strategy in
real-time according to current hazards and obstacles.

• Time-efficient: In order to preserve the casualty’s
health, extraction to medical professionals should be
performed as fast and as safely as possible.

• Robust: Casualty extraction environments can be chal-
lenging for robot’s sensors and actuators, so it is impor-
tant that control algorithms are robust to noise, distur-
bances, and other external factors.

• Sensor-equipped: The robot should be able to sense
hazards, obstacles, casualties, and reliably provide this
information to the control algorithms governing the
casualty extraction procedure.

• Autonomous: Operator communication is a common
problem in challenging extraction environments, so ca-
sualty extraction should be performed autonomously
after initial information is provided.

C. MAIN RESEARCH FOCUS AND MOTIVATION
In our previous works, we focused on developing methods
for casualty detection (see Phase 2 in Fig. 1) [9], [10] and
the procedure of safely loading the casualty (see Phase 4
in Fig. 1) [11], [12], as part of a complete casualty extrac-
tion scenario. In this study, we investigate and develop a
novel control strategy in order to safely and autonomously
approach the casualty prior to the casualty loading process
(see Fig. 1 in Phase 3). This phase is one of the most
delicate phases (along with loading the casualty), in which
the robot will operate in close proximity to the casualty and
the controller has to prioritise the casualty’s safety as part of
the controller constraints.

In our work presented in [12], we conducted a number
of experiments to investigate ResQbot1, the proposed search
and rescue robot, in performing the casualty extraction proce-
dure safely by controlling it via teleoperation. By observing
how the casualty extraction procedure is safely executed
via teleoperation by an experienced operator, we can de-
rive a heuristic procedure of how the mobile robot should
safely approach the target casualty. Based on our observation,
the casualty-approaching procedure can be decomposed into
three subsequent tasks: (i) aligning the robot position to the
casualty orientation, (ii) adjusting the robot orientation with
respect to the casualty orientation and (iii) gently approach-
ing the casualty prior to the casualty loading process.

While achieving each task objective is critical for execut-
ing the proceeding task, keeping the prior task objectives
in mind during every subtask execution is also essential in
order to achieve the overall task goals. Therefore, the three
subtasks are executed sequentially while tracking the states
of the prior subtasks. We call this process ‘task execution as
a hierarchical decomposed-objective approach’.

In order to control ResQbot in autonomously execut-
ing the casualty-approaching task using the hierarchical
decomposed-objective approach, we investigate a number of
studies in the mobile robot control domain, mainly using
optimal control methods. We focus on investigating optimal
control methods since a large number of studies using these
methods have been reported to be successful in various
applications relating to autonomous mobile robots. Optimal
control methods could address the limitation of reported clas-
sical methods, while offering broader applications in which
either of the following challenges occurs:
• The dynamics of the controlled systems are too difficult

to handle.
• The applications require many operating constraints that

must be satisfied.

1https://www.imperial.ac.uk/robot-intelligence/robots/resqbot/
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Model predictive control (MPC) – that can be derived as
a finite horizon optimal control problem (OCP) – is one of
the most widely used advanced control technique, and is im-
plemented in various applications, including those of mobile
robot control [13]–[22]. The ability of an MPC controller to
handle a wide variety of constraints and its feasibility to be
implemented in real-time applications are the reasons why
this method is so popular. Nevertheless, to the best of our
knowledge, most of the MPC formulations presented in these
studies are designed to achieve optimal controls that produce
a single control behaviour over the whole trajectory.

To execute a hierarchical decomposed-objective task —
such as the autonomous casualty-approaching problem ex-
plained in the earlier paragraphs — a single control behaviour
could be non-optimal for achieving the overall objectives.
Therefore, the focus of our study is investigating the MPC
formulation that can handle the hierarchical decomposed-
objective execution approach while satisfying the operational
constraints, such as the non-holonomic constraint of ResQbot
and the safety constraint requirements.

D. CONTRIBUTIONS
The main contributions of this work can be summarised as
follows:

1) The novel hierarchical decomposed-objective model
predictive control (HiDO-MPC) approach — described
in algorithm 1 — to solve tasks with decomposed
objectives, such as the casualty-approaching task de-
scribed in the subsection IV-A.

2) The formulation of the proposed HiDO-MPC for the
casualty-approaching task, including the hierarchical
objective function formulation and the required con-
straints formulation.

3) The performance evaluation of the proposed method
in the autonomous casualty-approaching scenario, in-
cluding task accomplishment and safety performance.

4) The source code implementation of the proposed
method used in the experiments that will be publicly
available on the project website2 upon publication.

This paper is further organised as follows. In Section II
we review the literature related to autonomous mobile rescue
robots, including casualty-extraction mobile robots and au-
tonomous control for mobile robots. In Section III we define
the casualty approach problem. We present our proposed
approach and the algorithm of HiDO-MPC in Section IV,
including the detail-controller design formulation of the pro-
posed method, the computational implementation of the con-
trol problem, and the introduction of the other three methods
— adapted from the state of the art — to compare them to
our proposed method. The experimental set-up is explained
in Section V, and the discussion of the results is provided in
Section VI. Finally, we conclude our findings in Section VII.

2https://sites.google.com/view/hido-mpc-resqbot/source-code

II. RELATED WORK
In this section we present an overview of the existing mobile
rescue robots designed for casualty extraction and existing
control methods that can be implemented for autonomous
mobile robot control.

A. RESCUE ROBOT DESIGN AND CONTROL
One of the design streams for casualty extraction robots is
a robot with a humanoid upper body form design, with a
heavy-duty dual-arm manipulator. Battlefield Extraction As-
sist Robot (BEAR) developed by Vecna Technologies [1], [2]
and HERCULES robot developed by the Agency for Defense
Development, Republic of Korea [3] are examples of a semi-
humanoid form mobile robot platforms, designed and devel-
oped specifically for casualty-extraction procedures. These
robots are designed to be able to perform casualty extraction
using their arms by scooping, lifting up and carrying the
casualty (see presented work in [3]). While this casualty ex-
traction procedure seems to be flexible, feasible and mimics
how a normal person handles a casualty, controlling such a
complex robot performing an intricate and sensitive task is a
significant challenge. Teleoperating such a complex system
most likely requires more than one highly skilled and experi-
enced operator. Developing a fully autonomous controller for
such a system is a non-trivial task.

On the other hand, another design stream has been pro-
posed in several research studies [4]–[8]. In these studies, a
stretcher-type construction or litter is implemented to achieve
a more compact and simpler mechanism, compared to the
semi-humanoid-type design. In the stretcher-type design, the
casualty extraction procedure is achieved by using a conveyor
belt mechanism that loads a casualty from the ground onto
the mobile platform without any direct lifting process. The
conveyor belt module properly supports the casualty’s body
during the process so it can additionally serve as a stretcher
bed for transport.

Introduced in our previous works, ResQbot (see Fig. 2)
is a stretcher-type mobile rescue robot designed to load the
casualty using a loco-manipulation approach, i.e. using the
robot’s locomotion system — wheeled locomotion — to per-
form a manipulation task [11]. It was found that teleoperating
the loco-manipulation process allows the robot to load the
casualty while ensuring key safety thresholds are adhered
to [12]; avoiding possible causes of head or neck injury [23],
[24].

Compared to the semi-humanoid-type design, the
stretcher-type mechanism is significantly simpler. Therefore,
adding certain degree of autonomy to the stretcher-type
robots is more feasible than to the semi-humanoid-type
robots.

B. MOBILE ROBOT CONTROL
A multitude of research studies have been conducted in the
field of autonomous mobile robot control, especially for non-
holonomic mobile robot systems [25]–[30]. In general, these
studies address proposed solutions for three main control
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problems, including point stabilisation, trajectory tracking
and path following. A wide range of techniques have been
proposed, including back-stepping [26], dynamic feedback
linearisation [27], sliding mode control [28] and Lyapunov
control [29]. However, according to recent studies [30], it is
observed that most of these techniques are not designed to be
able to cope with a variety of constraints. These constraints
include both physical and behavioural constraints of the
robot, such as a complex state space and the requirements
for safe and efficient executions [31].

C. MODEL PREDICTIVE CONTROL
A large number of studies have been reported in the domain
of optimal control methods as they prove to be successful in
a range of applications. The methods are widely used, espe-
cially in applications in which the dynamics of the controlled
systems are too difficult to handle or the applications require
many operating constraints to be satisfied [31]–[36].

Meanwhile, MPC — a feedback control technique that
solves optimal control problems over a finite time horizon —
has recently gained popularity. Due to its flexibility to handle
constraints and the capacity for real-time computation, MPC
has been implemented in various applications, including au-
tonomous mobile robot control [13]–[22]. A large number
of studies have been conducted using variations of MPC
approaches and formulations for solving non-holonomic mo-
bile robot controls that cover three general applications:
point stabilisation, trajectory tracking, and collision avoid-
ance [15]–[22]. The work presented by Neunert et al. in [20],
for instance, proposes a framework for real-time non-linear
MPC that solves mobile robot trajectory optimisation and
tracking problems simultaneously in a single approach. The
framework introduces an iterative optimal control algorithm,
a.k.a. sequential linear quadratic, to solve the non-linear
MPC problem. Li et al., in [17], propose using a primal-
dual neural network to solve the quadratic programming (QP)
problem in a finite receding horizon to achieve trajectory
control of mobile robot systems. The proposed approach is
designed to make the formulated constrained QP cost func-
tion converge to the exact optimal values and achieve real-
time performance on a real mobile robot system. Another
work that incorporates neural networks into the MPC scheme
is presented by Hirose et al. in [19]. In contrast to the work
in [17], the authors in [19] use a deep neural network to learn
the MPC policy.

Despite a wide range of problems presented in the MPC
studies associated with mobile robot controls, the presented
MPC formulations are designed to achieve optimal controls
using a single objective function and produce a single control
behaviour over the whole trajectory. It is possible that single
control objectives could be non-optimal for achieving more
complex tasks, such as those that require multiple control
behaviours along a single trajectory. This means that the task
could require a different control behaviour (i.e. control strat-
egy) in different state-space regions to achieve the desired
overall performance.

D. MULTI-OBJECTIVE AND HIERARCHICAL CONTROL
In order to solve high-dimensional problems such as complex
multi-behaviour tasks and multi-constrained systems, several
studies have been proposed using hierarchical and multi-
objective controller approaches. These approaches have been
implemented successfully in a wide range of applications
[37]–[42].

Multi-objective model predictive controls have been pro-
posed in a number of studies in order to achieve desired per-
formances [37]–[40]. In [38], for example, a weighted sum
of multiple objective functions was proposed, and in [39] the
authors compute a Pareto optimal solution to solve the multi-
objective MPC as a multi-parametric multi-objective linear or
quadratic program. A study on MPC using a more complex
objective function has been also presented by Zhanget et
al. in [40]. In this study, a complex objective problem is
decomposed into a sequential-multi-objective MPC formula-
tion. This multi-objective approach is evaluated sequentially
based on priority, in contrast to the classical multi-objective
MPC strategies with weighting factors.

On the other hand, various hierarchical approaches have
been proposed based on several interests, including the res-
olution relevance of information, task decomposition, be-
haviours and hierarchical multi-objectives. The study pre-
sented in [43], for instance, proposes a hierarchical structure
of mobile robot controllers based on information surrounding
the resolution relevance of the environment. The highest level
of path-planning is generated based on a coarse and incom-
plete world description, while the lowest level controller will
refine the robot motion based on the more-detailed obtained
information, during the course. Similarly, the work proposed
by Moore and Flann in [44] is characterised by a hierarchical
task-decomposition approach. The hierarchical structure of
the decomposed tasks in this work is similar to the structure
in [43], including the high-level planner, trajectory generator
and low-level actuator controller.

In contrast, hierarchical controllers based on behaviour
approaches are proposed in [45]–[50]. In general, the purpose
of these studies is to generate a complex behaviour by de-
composing the whole complex behaviour into several simpler
behaviours in a hierarchical structure. Each behaviour is
controlled independently in combination with the others. In
the case of mobile robot controls, these behaviours could
be path-following, obstacle-avoidance, wall-following, goal-
reaching or emergency-related.

The problem becomes how to combine or formulate these
behaviours, which might conflict with each other, and pro-
duce the desired whole complex behaviour. Hasegawa and
Fukuda in [45] propose a learning method (i.e. multiple
regression analysis) to determine the deficient sub-controller
(i.e. sub-behaviour) in the system. Meanwhile, Abdessemed
et al., in [49], combine behaviour controllers by formulat-
ing them into a set of fuzzy-rule statements, so that the
problem become a fuzzy decision-making one. Similarly,
in [48], Meléndez and Castillo also convert the problem into a
fuzzy decision-making one, in which they propose to use the
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FIGURE 3. Problem formulation. This study is focused on the proposed
method for controlling ResQbot to safely approach the casualty, with
constrained manoeuvrability.

weighted fuzzy inference system as it is presented in [47].
Multi-objective MPC strategies employing hierarchical

controllers for high-level planning and low-level control have
been introduced in several works on autonomous mobile
robot controls [51]–[53]. Similar to the structure presented
in [44], the high-level planner generates a collision-free
trajectory computed online to reach a desired target. The low-
level controller is then responsible for the robot’s trajectory
tracking by controlling the actuators, such as the robot’s
steering angle. Another study introduces a hierarchical struc-
ture to multi-robot controllers in order to solve a complex
MPC problem [54]. It is applied to control multiple mobile
robots wherein the high-level component optimises collective
robot configurations while the low-level component performs
obstacle avoidance.

In this study we derive a heuristic procedure for the
casualty-approaching task as a hierarchical decomposed-
objective approach in order to achieve a specific behaviour
(see IV-A). We formulate the problem as a hierarchical
control task based on a multiple-behaviour approach and
propose HiDO-MPC to solve the problem. Even though in
this study we focus on the implementation for solving the
autonomous casualty-approaching task, the proposed HiDO-
MPC approach could also have wider practical applications.
In particular this approach would be suitable for complex
tasks that can be decomposed into several subsequent tasks,
executed using the hierarchical decomposed-objective ap-
proach. For instance, solving complex manipulation tasks as
presented in [55], which is using a similar high-level concept
(i.e. hierarchical task decomposition).

III. PROBLEM FORMULATION
A. CASUALTY APPROACH PROBLEM
The casualty approach problem — illustrated in Fig. 3 —
can be formulated as an optimal control problem, where the
high-level objective is to minimise the state deviation from
the robot’s current pose, xr, to the robot’s target pose, xt

corresponding to the casualty’s pose, xc:

J = ||xr − xt||2. (1)

The casualty extraction robot, ResQbot, is a non-
holonomic robot with position and orientation xr =
[xr, yr, φr]ᵀ. Similarly, the casualty has 2D pose xc =
[xc, yc, φc]ᵀ. ResQbot is controlled with input u = [v, ω]ᵀ

where v and ω are forward velocity and angular velocity,
respectively. The robot dynamics are therefore:

ẋr(t) = f
(
xr(t), u(t)

)
=

v(t) cosφ(t)
v(t) sinφ(t)

ω(t)

 , (2)

or, in discrete time:

xr|k+1 = f(xr|k,u|k)

= xr|k︸︷︷︸
current state

+∆t

v|k cosφr|k
v|k sinφr|k

ω|k


︸ ︷︷ ︸

state transition

. (3)

To ensure safety during the casualty approach, the robot
needs to avoid colliding with all possible obstacles (i.e.
prohibited area in Fig. 3) in all directions, so that:

xr|k ∈ X
free (4)

where Xfree is the set by all possible robot states in which
the robot is free from collision, including collision with the
casualty.

The casualty approach problem can therefore be written as
a model predictive control problem as follows:

min
u

JN (x0,u) =

N−1∑
k=0

∥∥∥xr|k − xt
∥∥∥2
Q

+
∥∥u|k − ut

∥∥2
R

s.t. xr|k+1 = f(xr|k,u|k), ∀k ∈ [0, N − 1]

xr|0 = x0

u|k ∈ U, ∀k ∈ [0, N − 1]

xr|k ∈ X
free, ∀k ∈ [0, N ]

(5)

where
∥∥∥xr|k − xt

∥∥∥2
Q

and
∥∥u|k − ut

∥∥2
R

are the functions of

the state deviation and the control effort, respectively. The
expression ‖A‖2B ≡ ATBA. The matrices Q, R, and P
are positive definite symmetric weighting-matrices of the
appropriate dimensions.

B. CONTROLLER DESIGN REQUIREMENTS
There are two main design requirements that the designed
controller needs to achieve:
• Task accomplishment: the controller generates deci-

sion control that enables the ResQbot to execute the
casualty approaching task and to achieve the desired
behaviour described in subsection IV-A. We formulate a
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specific hierarchical cost function — derived in subsec-
tion IV-C — for the proposed HiDO-MPC, to achieve
this task accomplishment requirement.

• Collision free operation: During the task execution, the
robot needs to avoid colliding with all possible obstacles
(i.e. prohibited area in Fig. 3) in all directions, including
walls and the casualty. To achieve this requirement, we
formulate the collision avoidance constraint function —
derived in subsection IV-D — and include it as one of
the HiDO-MPC constraints.

C. SCOPE AND ASSUMPTIONS
In this paper, we focus on the development of an MPC-based
controller to generate control commands for the ResQbot to
safely approach the target casualty as a part of a complete
casualty extraction scenario. The controller takes the state of
the current robot xr, casualty xc, and the desired robot state
xt as input for controlling the robot motion, as well as the
environmental information, such as the map and the list of
obstacles.

Conceptually, all the information is given in real-time by
a state observer module. This state observer module is not
within the scope of the current study. In simulation exper-
iments all the information is available to the controller. In
real robot experiments, the real-time robot states are provided
by the implementation of simultaneous localisation and map-
ping (SLAM), presented in [56], [57], which is also out of
scope of this paper.

Another assumption in this study is that the controller
developed in this work would generate control commands for
ResQbot, including linear velocity command v and angular
velocity ω. The low-level controller — actuating the robot
actuators based on the control commands v and ω — is also
beyond the scope of this work.

IV. PROPOSED METHOD
In this study, we propose a hierarchical decomposed-
objective model predictive control approach (HiDO-MPC)
to achieve the overall objective of the casualty approach
task (see III-A). The proposed approach is derived based on
our observation of how the casualty extraction procedure is
safely executed via teleoperation by an experienced operator
in [12].

A. CASUALTY APPROACHING HIERARCHICAL TASK
DECOMPOSITION
To achieve the overall objective of the casualty approach task,
we decompose the task of approaching the casualty into three
subtasks (illustrated in Fig. 4):

1) aligning the robot position to the casualty heading line
(H ) until the desired threshold;

2) adjusting the robot orientation φr with respect to the
casualty orientation φr up to the desired threshold ∆φ,
while keeping the robot alignment; and

3) approaching the casualty, while keeping the robot
alignment and the robot orientation.

(2) Adjusting robot's orientation

(3) Gently approaching target casualty

(1) Aligning robot's position

FIGURE 4. Casualty approaching task decomposition inspired by the
loco-manipulation approach presented in [11].

These three subtasks are executed sequentially while tracking
the states of the prior subtasks to achieve the overall task
goals. In contrast to a pure sequential execution, we called
this execution as a hierarchical execution.

We introduce three specific cost functions to the desired
behaviours that correspond to the three subtasks during the
task execution:
• Distance-to-line objective: Given the robot position

pr = [xr, yr]ᵀ as a spatial component of the robot states
xr and the finite heading line segment H as a function
of the casualty pose xc, minimising the distance from
pr to the line segment H ensures the robot-casualty
alignment:

F1(xr, xc) = d(pr, H). (6)

Detailed derivation of this objective function can be
found in Appendix A.

• Heading objective: Given the robot orientation φr and
the casualty orientation φc, minimising the difference
between these orientations ∆ ensures that the robot
could approach the casualty in the correct heading:

F2(xr, xc) = ∆(φr, φt) = π −
∣∣∣∣φr − φt∣∣− π∣∣ , (7)

where:
φ ∈ [−π, π].

so that it takes into account the periodicity of angles (i.e.
angle wrapping).

• Distance-to-point objective: Given the current robot
position pr = [xr, yr]ᵀ and the target robot position
pt = [xt, yt]ᵀ, which is a function of the casualty
pose xc, minimising the distance from the current robot
position to the target position will drive the robot to
achieve the final goal of the casualty approaching task.
The distance between these two points in 2D space can
be defined as the Euclidean norm:

F3(xr, xc) =
∥∥pr − pt

∥∥2 (8)

B. HIERARCHICAL DECOMPOSED-OBJECTIVE MPC
Fig. 5 illustrates a high-level overview of the proposed ap-
proach. We formulate HiDO-MPC to achieve the casualty
approaching hierarchical task decomposition. In contrast to
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Observer Plant

Objective level 1
Objective level 2

Objective level 3

Optimiser

FIGURE 5. Illustration of a three-level hierarchical
decomposed-objective model predictive control (HiDO-MPC) applied to
the ResQbot control for autonomous casualty approach.

the generic MPC formulation, which uses a single overall
objective function JN (Eq. 5), in HiDO-MPC, we formulate
decomposed objective functions corresponding to the sub-
tasks derived in IV-A. These objective functions are then
executed hierarchically to ensure that each sub-objective is
achieved while maintaining the the states of the prior sub-
objective.

Let us denote the stage s as a subtask of a complete overall
task, s ∈ S = {1, 2, 3}, of the hierarchical task decomposi-
tion. Each stage s(·) is evaluated based on the current state
xr with respect to the overall goal state xt and the objective
of each subtask. The discrete HiDO-MPC controller here is
defined as an OCP with a finite control horizon N , which
evaluates the robot stage s at every sampling instant k.

The stage evaluation process determines the objective
function corresponding to that stage, JsN . Then, the optimal
control, u∗, for the robot is produced at every time step by
solving the OCP with respect to the decomposed-objective
function at this respective stage, JsN , which satisfies the
optimal value, V sN (x̂) (i.e. minimising the output of the
cost function, JsN , s.t. constraints). The first element of the
produced optimal control trajectory, u∗0, is then applied to the
system. Algorithm 1 summarises the proposed approach.

C. OBJECTIVE FUNCTION DESIGN AND
IMPLEMENTATION TO HIDO-MPC
We implement the three objective functions formulated in
Eq. 6, 7, and 8 into the proposed HiDO-MPC algorithm (see
Algorithm 1) as a three-stage hierarchical objective, s ∈ S =
{1, 2, 3}. Each stage corresponds to the task decomposition
described in subsection IV-A. We formulate the objective
function at each stage, JsN , as a weighted combination of
the three proposed objective functions with different weights
(WH

1 −WH
9 ), written as:

• Objective Stage 1

J1
N =

N−1∑
k=0

WH
1 F1(xr|k, x

c) +WH
2

∥∥u|k − ut
∥∥2
R

(9)

Algorithm 1: HiDO-MPC control approach for casu-
alty approach task

Initialisation:
StageNumber := n
s := 1 ∈ S = {1, 2, 3}

MPCInit:
ControlHorizon := N
Define the initial robot state:

xr|0 := x0 ∈ Xnx

Get the target state:
x̂t ← StateObserver

Define the initial control: u|0
Apply u|0 to the system.

for every sampling instant k = 1, 2, ... do
Estimate the states xr|k and xt:

[x̂r|k, x̂
t]← StateObserver

Evaluate s = S(xr|k,x
t)

∀ s ∈ {0, 1, 3}
Evaluate the sub-objective switching

w.r.t. current stage s:
JN = JsN

Solve OCP w.r.t. current stage s:
Find the optimal control horizon

u∗ = {u∗|0, · · · ,u
∗
|N−1} ∈ U

N ,
which satisfies

JsN (x̂,u∗) = V sN (x̂).
s.t. constraints

Apply u∗|0 to the system.

• Objective Stage 2

J2
N =

N−1∑
k=0

WH
3 F1(xr|k, x

c) +WH
4 F2(xr|k, x

c)

+WH
5

∥∥u|k − ut
∥∥2
R

(10)

• Objective Stage 3

J3
N =

N−1∑
k=0

WH
6 F1(xr|k, x

c) +WH
7 F2(xr|k, x

c)

+WH
8 F3(xr|k, x

c)) +WH
9

∥∥u|k − ut
∥∥2
R

(11)

D. COLLISION AVOIDANCE AS EQUALITY
CONSTRAINTS
Another design requirement of the proposed controller is to
accomplish the casualty approaching task safely.

To achieve this design requirement, we formulate the colli-
sion avoidance as one of the constraints included in the MPC
formulation (Eq. 5). Inspired by the work presented in [58]–
[60], we introduce collision function between two objects,
written as:

[col]+ = max {0, col} . (12)

We formulate the collision function, col as an expression so
that the value is positive when the objects are in collision and
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negative when they are collision free. We model the collision
geometry of each object — including robot, casualty, and
obstacles — as a set of circles, so that the optimisation pro-
cess still feasible in real-time. Full derivation of the collision
function used in this work can be found in Appendix B.

E. SOLVING THE OPTIMAL CONTROL PROBLEM (OCP)
VIA NON-LINEAR PROGRAMMING USING CASADI
To solve the finite OCP problem in the proposed HiDO-MPC,
in this study, we use CasADi API [61] computing the real-
time optimisation problem. The OCP is computed via the
API’s Non-Linear Programming (NLP) using ipopt solver.
The standard NLP formulation for the numerical parametric
optimisation problem is as follows:

min :
w

Φ(w,p)

subject to: g1(w,p) ≤ 0,

g2(w,p) = 0.

(13)

in which w ∈ Rnw is the decision variable and p ∈ Rnp is a
known parameter vector. Φ(w,p) is the objective function
of the optimisation problem, while terms g1(w,p) ≤ 0
and g2(w,p) = 0 are inequality and equality constraint
functions, respectively.

The detailed derivation of transforming the proposed
HiDO-MPC OCP into NLP problem can be found in Ap-
pendix C.

F. COMPARISON TO THE STATE OF THE ART
To evaluate the proposed HiDO-MPC approach, this study
compared the proposed approach to several other methods,
adapted from the related work. These methods include: i)
sequential MPC (SMPC) adapted from [40], ii) bundled
objectives MPC (BMPC) adapted from [38], and iii) vanilla
MPC (VMPC) which is a generic MPC method implemented
on mobile robot control as presented in [17]–[19].

The derivation of the objective function implementation of
these three methods, in contrast to the HiDO-MPC can be
found in Appendix D.

V. EXPERIMENTAL SETUP
To evaluate the proposed HiDO-MPC, we design several ex-
perimental scenarios, both in simulation and on the ResQbot
physical robot platform. Two main controller design require-
ments are evaluated, the task accomplishment and collision-
free operation (see III-B). Our main hypothesis is that the
proposed HiDO-MPC controller could generate the desired
behaviour of ResQbot (see IV-A) to safely accomplish the
casualty approaching task as part of the casualty extraction
procedure described in Section 1.

A. EXPERIMENTAL SCENARIOS
We have designed several experiments to emphasise each of
the design requirement points. The following experiments are
conducted in simulation and on the real robot:

Misalignment Heading error

FIGURE 6. Illustration of pre-loading misalignment and heading error
which lead to failure during loading and could cause additional injury to
the casualty.

1) Different obstacle densities (simulation): This exper-
iment is designed to show hazard-awareness capabili-
ties by avoiding obstacles and achieving the target pose
safely. This evaluates the collision-free requirement
formulated as a collision avoidance constraint in the
controller design.

2) State estimation error and control perturbation
(simulation): This experiment is intended to demon-
strate the robustness of the proposed controller in the
presence of different types of sensor measurement
errors and control disturbances. This evaluates the
advantage of the implementation of the hierarchical
decomposed-objective approach in HiDO-MPC (hi-
erarchical structure) in comparison to the sequential
approach methods in SMPC (sequential structure), as
illustrated in Fig. 14 Appendix D.

3) Execution time (simulation): This experiment is de-
signed to evaluate the time-efficiency of the controllers
during task execution. This assesses the objective func-
tion formulation. Shorter execution time means that the
controller could generate optimal decision control for
the ResQbot to accomplish the desired task.

4) Narrow corridor case (simulation and real): This
experiment is a case study of ResQbot performing the
casualty extraction task in an environment with limited
space for manoeuvring. This appraises the formulation
of the ResQbot model (see III-A) implemented in real
robot experiments and the robustness of the proposed
controller in the presence of the actual model and
measurement error.

We describe in more detail the setup of the proposed
experiments in Appendix E.

B. PERFORMANCE METRICS
To quantitatively assess the task accomplishment of the pro-
posed method, the experimental results are evaluated based
on two metrics:
• Distance to heading line (i.e. misalignment) [m]
• Heading error [◦]

If the errors exceed 0.1 m or 10◦, respectively, the experiment
is considered to have failed. The reason is that if the robot
were to start loading the casualty from such a pose, with
large errors, it could cause significant injuries to the casualty.
Fig. 6 illustrates the misalignment and heading errors be-
tween ResQbot and the casualty, before the casualty loading
stage.
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FIGURE 7. Performance comparison of the evaluated controllers in
different obstacle density experiments. The failure ratio is calculated
over 600 trials, and the variance is obtained based on binomial
distribution.

We also calculate failure ratio to assess the HiDO-MPC
performance compared to the other methods. For each set of
experiments, the failure ratio is calculated as the number of
failure cases (i.e. misalignment or heading error exceeds the
thresholds) divided by the total number of experiments in the
corresponding set.

C. HYPER-PARAMETER TUNING
Prior to the main experiments, we perform hyper-parameter
tuning, including finding the optimal weights for cost func-
tions in all MPC methods (see IV-C and Appendix D). We
also observe the computation times of all controllers with
respect to the prediction horizon lengths N , in order to
assure that the controllers can be implemented in real-time.
The results of these parameter tuning can be found in the
Appendix G.

D. PHYSICAL ROBOT EXPERIMENTS
The physical robot experiments are conducted using the
ResQbot platform [12] in an indoor laboratory environment.
We run a set of experiments having the robot and casualty
placed at pre-defined poses within the environment map, as
indicated in Table 3 Appendix E-D.

To update the robot states in real-time, we use the
implementation of simultaneous localisation and mapping
(SLAM), presented in [56], [57]. To execute the control
command from the MPC controllers, ResQbot uses its on-
board low-level controller to manage the linear speed and
angular rate of the differential drive wheels.

In the experiments, there are at least two sources of
stochasticity contributing to the controller. First, the state es-
timation error produced by the SLAM implementation using
2D light detection and ranging (LIDAR) sensor. The second
sources of stochasticity, is the model discrepancy of the robot
dynamics model. The error from the low-level controller
execution and the actual non-uniform distribution of friction
(e.g. between the robot’s wheels and the surface, wheel) are
such instances of the source of the model discrepancy.

VI. RESULTS AND DISCUSSION
In this section, we present the results of the experimental
setups described in the previous section. We further discuss
how these findings relate to the controller design require-
ments presented in III-B.

A. THE EFFECT OF OBSTACLE DENSITY
In Fig. 7 we present the averaged failure ratio for each
obstacle density (low, medium and high) and controller
method, calculated over 600 trials. The overall results illus-
trate that while all controllers can achieve 100% successful
performance in no-obstacle experiments, when obstacles are
present HiDO-MPC and SMPC demonstrate significantly
better performance in comparison to VMPC and BMPC,
with lower average failure ratios and smaller variances. This
similarity between HiDO-MPC and SMPC can be explained
by the fact that both HiDO-MPC and SMPC use multiple
decomposed-objective functions, although implemented dif-
ferently (see Section IV-F and Fig. 14 in Appendix D).
In contrast to HiDO-MPC and SMPC, BMPC and VMPC
use a single fixed-objective function to complete the task.
As expected, the failure ratio increases with the increasing
obstacle density.

This finding demonstrates that using multiple decomposed-
objective functions (implemented in HiDO-MPC and SMPC)
results significantly better performance than using single
objective function (implemented in BMPC and VMPC), in
achieving desired casualty approaching task with collision
free constraint.

B. THE EFFECT OF STATE ESTIMATION ERROR AND
CONTROL PERTURBATION
In this experiment, we analyse the effect of different mod-
elling errors (sensor measurement errors and control pertur-
bations), on the final controller performances. The detailed
detailed noise setup is described in Table 2 Appendix E.

The results of these experiments are presented in Fig. 8.
The overall results shows that the presence of measurement
errors and control perturbation has a significant impact on
the controller performances. This especially holds for SMPC,
which is in contrast to our previous findings in experiments
without noise effects. We can see that even in the low obstacle
density experiments, SMPC exhibits in poor performance.
Based on these findings, we can conclude that in some
instances the presence of modelling errors (i.e. measurement
and control) has a significant effect on the SMPC perfor-
mance.

Conversely, HiDO-MPC demonstrates a consistently
higher performance compared to other controllers, in both
the experiments with and without modelling errors. The
discrepancy between HiDO-MPC and SMPC performances
could be explained by the difference in implementation of
the decomposed-objective functions (see IV-F and Fig. 14 in
Appendix D). In SMPC the multiple decomposed-objective
functions are implemented as an open-loop sequential struc-
ture. Once a subtask objective is achieved, this objective
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FIGURE 8. Controller performance comparison under 15 different experimental setups involving noise effects, including state estimation errors and
control perturbation (see the detailed noise setup in Table 2 Appendix E). Each graph shows the performance with: [a− c]: position (x, y) estimation
errors; [d− f ]: orientation φ estimation error; [g − i]: linear velocity v control signal perturbation; [j − l]: angular velocity ω control signal perturbation;
[m]: both position and orientation estimation errors; [n]: both linear and angular velocity control signal perturbations; [o]: combination of all noise
effects.
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FIGURE 9. Execution time of SMPC, BMPC, and VMPC controllers
represented as a ratio with respect to the HIDO-MPC execution time.

will not be maintained once the next sequence objective
is initiated. In contrast, HiDO-MPC uses closed-loop hi-
erarchical structure, in which each decomposed-objective
function is evaluated hierarchically at every iteration, and
the current stage objective is executed while maintaining the
former subsequent objectives. This specific implementation
difference between HiDO-MPC and SMPC methods makes
the former method results much more robust performance in
the presence of model error.

The graphs presented in Fig. 8-a, 8-b, and 8-c show the
controller failure ratios in the experiments with robot position
estimation error and the effect of robot orientation estimation
errors to the controller failure ratios are illustrated in Fig. 8-
d, 8-e, and 8-f. We can observe from the graphs that the
position estimation errors have a significant effect on the
SMPC failure ratio, as a higher position estimation error
results in a higher SMPC failure ratio. In contrast to the robot
position estimation errors, the results show that robot orien-
tation errors have a less significant effect on the controller
performances (i.e. failure ratio). This finding is explained by
the fact that ResQbot model has non-holonomic constraints.
As a consequence of these constraints, it is easier to adjust
the robot’s heading only, as opposed to adjusting the position
errors.

Fig. (8-g – 8-l) show the experiment results in which
control perturbations — in linear velocity (g-i) and angular
velocity (j-l) — are introduced to the system. The figures
show that control perturbations have a small effect on the
controller performances, and the effect is not as significant
as the effect of the robot position estimation errors.

The failure ratio results from the experiments combining
all the noise factors, including state estimation errors and
control perturbations, is presented in Fig. 8-m, 8-n, 8-o.
These finding highlight the fact that the proposed HiDO-
MPC approach is more robust to the presence of noise and
disturbance while achieving desired casualty approaching
task.

C. EXECUTION TIME COMPARISON
Fig. 9 shows the ratio of the SMPC, BMPC, and VMPC exe-
cution times with respect to the HiDO-MPC execution times.

These results are obtained from the successful subset of all
the conducted experiments (i.e. all the trials in which the
target was reached without failure) considering all obstacle
densities both with and without noise effects. The figures
show that in general HiDO-MPC requires less time to execute
the task compared to the other controllers. In contrast, VMPC
requires a significant amount of time to reach the steady-state
error, because this controller is sub-optimal and produces
more oscillations.

These findings demonstrate that the proposed HiDO-MPC
outperform the other controllers in generating optimal trajec-
tory for the desired casualty approaching task.

D. NARROW CORRIDOR EXPERIMENT
In this experiment, the task is to approach the casualty safely
in the environment where the robot’s manoeuvrability is
limited. We evaluate the implementation in both simulation
and real robot experiments, assess the performance both
qualitatively based on the trajectories generated by the con-
trollers, and quantitatively based on the the robot alignment
and heading errors as described in V-A.

1) Qualitative Comparisons of Generated Trajectories
Fig. 10 shows the trajectories generated by each MPC-based
approach, in two selected scenarios (S5 and S6) from nine
different experiment scenarios (see Table. 3 in Appendix E).
We can see that in general, VMPC and BMPC approaches
generate fairly similar trajectory characteristics, while the
trajectories generated by SMPC have similar characteristics
with the trajectories generated by HiDO-MPC method. This
phenomenon can be explained based on the different objec-
tive functions implementation in these four MPC methods
(see IV-C and Appendix D). VMPC and BMPC use a single
objective function, in which the task (i.e. casualty approach
procedure) is interpreted as a single objective task. On the
other hand, in the SMPC and HiDO-MPC methods the casu-
alty approach task is decomposed into several sub-objectives,
so that these methods use multiple-objective functions corre-
sponding to sequences, in SMPC, or stages, in HiDO-MPC.

In particular, experimental scenarios S5 and S6 high-
light a key benefit of the decomposed-objective methods.
As we can see, single-objective-based controllers generate
oscillatory trajectories, because the controllers attempt to
balance heading error and position error at the same time.
More specifically, in the experimental scenarios S6, VMPC
controller fails to achieve the desired target pose. Multiple-
objective approaches, SMPC and HiDO-MPC, have minimal
oscillations, as the controllers are able to first minimise
positional error then correct for heading error by making a
single reversing move.

2) Quantitative Comparisons using Performance Metrics
In order to quantitatively compare the performance of each
controller, in the real robot experiments and simulation, we
use distance to heading line [cm] and heading error [◦] as
performance metrics.
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VMPCBMPCSMPCHiDO-MPC

FIGURE 10. Comparison of the trajectories generated in simulation by four different MPC methods (HiDO-MPC, SMPC, BMPC, and VMPC), in two
selected experimental scenarios, S5 and S6 (see the scenario setup in Table 3 in Appendix E).

Distance to heading line [cm] Heading error [o]
Simulation Real Simulation Real

FIGURE 11. Experimental results using two main quantitative metrics, distance_to_heading_line error [cm] and heading error [◦] showing both
simulation and real robot experiments, in two selected experimental scenarios, S5 and S6 (see the scenario setup in Table 3 in Appendix E).

Fig. 11 presents the values of these metrics for each of
the control method, in simulation and real robot, for selected
experimental scenarios S5 and S6 (see the scenario setup in
Table 3 in Appendix E. In general, the proposed HiDO-MPC
approach shows superior performance compared to the other
approaches based on the used metrics, in both simulation
and real robot experiments. Results show that approaches
with multiple decomposed objective functions, SMPC and
HiDO-MPC, outperform approaches with a single objective
function, VMPC and BMPC (especially with respect to the
alignment metric), which is in line with our findings from
the qualitative analysis. Scenarios S5 and S6, where the
robot’s initial pose is close to the wall highlight the robot
manoeuvrability limitation, thus reaching the desired heading
requires the robot to turn towards the wall. The approaches
utilise single objective function like BMPC and VMPC have
difficulties finding an optimal trajectory in such cases, be-
cause they are incentivised to fulfil all sub-objectives simul-
taneously. In contrast, SMPC and HiDO-MPC approaches
manage to produce more consistent performances across all
different scenarios.

In the simulation results SMPC and HiDO-MPC gener-
ally produce better performances compared to BMPC and
VMPC. However, this is not the case for real world scenarios.
While HiDO-MPC results significantly better performance
compared to the other methods, in real scenarios S5 and S6

SMPC results the worst performance. SMPC fails to maintain

the heading error within the safety limits in scenarios S5. This
is likely because its pure sequential execution (see Fig. 14
in Appendix D) ignores previous objectives. Minimising the
heading error is the second objective, and is free to vary as the
third objective, distance-to-point, is minimised. In simulation
this is not a problem, as the previous objectives mean that the
distance-to-point objective is achieved by driving forward in
the reference frame of the robot. In reality, measurement error
and control disturbances mean that driving forwards does not
necessarily maintain heading. This finding further supports
the conclusions reached from the obstacle density experi-
ments with presence of noise and disturbance discussed in
Section VI-B.

3) Controller Output Comparisons
Fig. 12 shows the control outputs (i.e. corresponding linear
velocity [v] and angular rate [ω] profiles) generated by all
the evaluated controllers, and the corresponding actual final
robot poses from the real-time physical robot experiment
scenario S5. The figure clearly emphasises the differences
between the generated linear and angular velocity profiles in
simulation and reality. The oscillations that occur are a result
of noise and control disturbances that are inherent to physical
systems. Nevertheless, we can see that HiDO-MPC produces
minimal oscillations compared to other controllers.

Single objective controllers produce large oscillations in
both simulation and reality, as they attempt to balance all ob-
jectives at any one time. Decomposed objective controllers,
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HiDO-MPC SMPC

FIGURE 12. Comparison of the controller output profiles (top), and the final robot pose (bottom) in the real robot experiment scenario [S5] for each of
the methods considered.

SMPC and HiDO-MPC, are able to suppress oscillation
significantly. However, the real robot angular velocity control
output profile of SMPC exhibits an increase of the oscilla-
tion frequency. This occurs as the controller changes from
minimising the heading error objective, to minimising the
distance-to-point objective, and is unable to improve previous
stages. On the contrary, HiDO-MPC is able to maintain the
previous objective while minimising the next one. This al-
lows HiDO-MPC to be more robust to the measurement noise
and control disturbances present in a real-world scenario, to
the point where it is able to achieve the desired pose within
the safety limits in only 30 seconds.

Complete corridor experiment results, including generated
trajectory from simulation and the quantitative metric results
from corridor experiment scenarios [S1 − S9] can be found
in Appendix F.

E. END-TO-END CASUALTY EXTRACTION SCENARIO

In addition to the experimental evaluations, we test our
proposed HiDO-MPC controller within a real-life full end-
to-end autonomous casualty extraction procedure using
ResQbot. Fig. 13 presents the snapshots of ResQbot perform-
ing casualty extraction via the loco-manipulation procedure,
by picking up the casualty — which is a real person — from

14 VOLUME 4, 2016



R. P. Saputra et al.: Hierarchical Decomposed-Objective MPC for Autonomous Casualty Extraction

FIGURE 13. Sequential snapshots of the end-to-end casualty extraction experiment executing a complete casualty approach and loco-manipulation
procedure.

the floor, onto the mobile robot and then transporting it to
safety.

This experiment demonstrates the feasibility of integrating
the HiDO-MPC controller within the full casualty extraction
procedure described in Fig. 1. We find that the ResQbot
is able to successfully perform a complete casualty extrac-
tion procedure safely, without human intervention (i.e. au-
tonomously).

Additional experimental results, including videos, can be
found on the project website3.

VII. CONCLUSION
In this paper, we propose a hierarchical decomposed-
objective model predictive control (HiDO-MPC) method to
control a mobile rescue robot safely approaching a casualty,
as a part of a casualty extraction procedure. The HiDO-
MPC approach is inspired by the hierarchical-sequential
nature of the casualty extraction procedure as performed
by experienced teleoperators. Our hypothesis is that the
proposed approach fulfils the controller design requirements
for achieving the casualty approaching task, including task
accomplishment with safety metrics (as the main priority),
and collision free operation.

A series of experiments has been systematically conducted
to evaluate the hypothesis, and to compare the performance
of the proposed method to other methods (adapted from the
state of the art), both in simulation and on the real robot
experiments. Inspired by the current literature, we use SMPC,
BMPC, and VMPC as comparison methods. ResQbot, a
proof-of-concept mobile rescue robot that we have previously
developed, is used for the real-robot experiments.

The results of the experiments with several different ob-
stacle densities demonstrate that HiDO-MPC — which uses
multiple decomposed objective functions in a hierarchical
execution — significantly outperforms the methods, such as

3https://sites.google.com/view/hido-mpc-resqbot/experiments

BMPC and VMPC — which use a single objective function
— in controlling ResQbot to approach the target casualty,
while satisfying the collision free constraint. Moreover, the
experimental results which incorporate state estimation error
and control perturbations highlight the fact that HiDO-MPC
is robust to the presence of such modelling errors, while
the SMPC performance is significantly affected by these.
This robustness of HiDO-MPC to modelling errors is very
important when implementing the controller on a real phys-
ical system, in which disturbances and measurement noise
is inevitable. Additionally, regarding the time effectiveness,
the experimental results show that by using HiDO-MPC,
ResQbot reaches the desired target pose faster than with
using other methods.

A case study of controlling ResQbot approaching a ca-
sualty in a narrow corridor, has been conducted to evalu-
ate the performance of the proposed HiDO-MPC in both
simulation and real-system experiments. HiDO-MPC outper-
forms other methods in both simulation and real experiments.
More specifically, the real-time physical robot experiments
highlight the fact that the HiDO-MPC method demonstrates
robust performance while dealing with uncertainty occurring
in the real scenarios, and shows potential for a realistic rescue
scenario.

Further work on developing a realistic simulation with
physics engine environments could be leveraged to improve
and evaluate the robustness of the controller, in a wider-range
of real-world scenarios. A significant amount of environment
scenarios could be developed in simulation — which could
considerably mimic the actual environment — and further
used to tune, evaluate and improve the proposed approach
prior to deployment in real-world missions. Another potential
extension work from this study is to explore the potential im-
plementation of the proposed HiDO-MPC (i.e. Algorithm 1)
for a wider practical applications, especially for a high-
dimensional task that can be decomposed into subsequent
tasks (e.g. locomotion and manipulation tasks).
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APPENDIX A DETAILED DERIVATION OF
DISTANCE-TO-LINE OBJECTIVE
This objective function is formulated to achieve the robot
alignment subtask.

Given a finite heading line segment H (an imaginary
line along the casualty orientation, see Fig. 3), where the
line segment is defined through two points, starting point
ps = (xs, ys) and ending point pe = (xe, ye), and the
robot position point pr = (xr, yr), let d(pr, H) denote the
minimum distance from pr to the line segmentH . This is the
shortest distance separating pr andH . SinceH is a finite line
segment, then d(pr, H) is the orthogonal distance between
point pr and the nearest point along line H .

Let p denote the point belonging to the line through the
line segment H defined as:

p = ps + u(pe − ps). (14)

The point p is the projection of the point pr onto the line
segment H if the dot product between vector (pr − p) and
vector (pe − ps) is equal to zero.

(pr − p)·(pe − ps) = 0. (15)

By substituting Eq. 14 to Eq. 15, the value u can be calculated
as:

u =
(xr − xs)(xe − ss) + (yr − ys)(ye − ys)

‖pe − ps‖2
. (16)

Hence, the nearest point coordinate p(x, y) can be deter-
mined as:

x = xs + u(xe − xs)
y = ys + u(ye − ys) (17)

Since the line segment H is constrained between point ps

and pe, the scaling parameter u is also constrained between
0 and 1. The distance-to-line segment objective function can
then be formulated as:

F1(xr,xc) = d(pr, H) = ‖pr − p‖2

s.t.
p = ps + u(pe − ps)

u =

u, 0 ≤ u ≤ 1
0, u < 0
1, u > 1

(18)

APPENDIX B COLLISION FUNCTIONS
We denote the state of each circle as c = [xcr, ycr, rcr],
where (xcr, ycr) is the position of the circle and rcr is the
radius of the circle. The collision function between two
circles is then defined as:

[col(c1, c2)]+ = [(racr + rbcr)
2 − (xacr − xbcr)2

− (yacr − ybcr)2]+
(19)

We then model the collision geometry of ResQbot as ncr
number of circles, so that:

cr(xr, rrcr, ncc) = [xrcrh , y
r
crh
, rrcrh ], ∀ h ∈ [0, ncc ] (20)

Similarly, the collision geometry of the casualty can be
expressed as:

cc(xc, rccr, ncr ) = [xccri , y
c
cri , r

c
cri ], ∀ i ∈ [0, ncc ] (21)

Let pobs denote the vectors of size nobscr that describe the
obstacle position and robscr that describe the obstacle radius.
The collision geometry of the obstacles can then be written
as:

cobs(pobs, robscr , n
obs
cr ) = [xobscrj , y

obs
crj , r

obs
crj ],

∀ j ∈ [0, ncobs ]
(22)

Thus, the vector of obstacle collision constraints and the
casualty collision constraints can be formulated as:

[colobs(c
r, cobs)]+ = 0̄

[colcas(c
r, cc)]+ = 0̄

(23)

Then we can include this collision constraint formulation as
equality expressions such that [col]+ = 0 means that the
collision constraint is satisfied.

APPENDIX C TRANSFORMING HIDO-MPC INTO A NLP
PROBLEM
To transform our finite horizon OCP problem into a
NLP problem formulation, we implement the direct single-
shooting technique. We define the NLP decision variable u
along the finite horizon N as:

u = [u|0, · · · ,u|N−1] (24)

The robot state trajectory Xr along the horizon N can be
explicitly expressed as a recursive function of the control
trajectory using the robot’s dynamic function.

Xr = [xr|0, · · · ,x
r
|N−1]

= F(u,x|0)

where:
x0 = xr|0

(25)

The corresponding objective function w.r.t. current stage,
JsN is a combined function of the three objective function
components, F1, F2, F3, and the control decision variable u
can be expressed as:

JsN =

N−1∑
k=0

Js(F1(xR|k,x
c), F2(xr|k,x

c), F3(xr|k,x
c),u|k),

(26)
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TABLE 1. The optimal cost function weight values of each evaluated MPC controller obtained via Bayesian Optimisation.

MPC Type Weights

1 2 3 4 5 6 7 8 9

VMPC — WV 99.91 1.04 - - - - - - -
BMPC — WB 97.97 95.66 1.63 97.29 - - - - -
SMPC — WS 7.75 3.23 96.51 48.32 99.69 10.71 - - -
HiDO-MPC — WH 36.57 1.13 68.02 60.09 96.78 98.01 93.04 95.28 71.16
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FIGURE 14. Flowcharts illustrate the implementation of different MPC controllers: (a) HiDO-MPC, (b) SMPC, (c) BMPC and VMPC.

where:

F1(xr|k,x
c) = d(pr(xr|k), H(xc))

F2(xr|k,x
c) = ∆(φr(xr|k), φt(xc))

F3(xr|k,x
c) =

∥∥∥pr(xr|k)− pt(xc))
∥∥∥2

The parameters H , φt, and xt can be derived explicitly as a
function of the casualty states, xc. Thus, the function can be
simplified and written as:

JsN =

N−1∑
k=0

Js(u|k,x
r
|k,x

c). (27)

The equality constraints are formulated from the collision
avoidance constraints (see subsection IV-D), and can be re-
expressed as:

C(cr(xr, rrcr, ncc), cc(xc, rccr, ncr ),

cobs(pobs, robscr , n
obs
cr )) = 0

(28)

For all the robot state trajectory prediction xr along the finite
horizon N , these constraints can be written as:

CN (u,xr0, r
r
cr, ncr ,x

c, rccr, ncc ,

pobs, robscr , n
obs
cr , k) = 0,

∀ k ∈ [0, N − 1]

(29)

Thus, from the objective function, Eq. 27, and the con-
straint equality function, Eq. 29, the parametric NLP optimi-
sation problem can be written as:

min :
u

JsN (u, ξ)

subject to: CN (u, ξ) = 0,
(30)

in which ξ is a known parameter vector:

ξ = [xr0, r
r
cr, ncr ,x

c, rccr, ncc ,p
obs, robscr , n

obs
cr , k] (31)

APPENDIX D IMPLEMENTATION COST FUNCTIONS IN
COMPARED METHODS (ADAPTED FROM STATE OF THE
ART)
SMPC: This approach uses the same cost function compo-
nents, F1, F2, F3, as HiDO-MPC. However, in this method,
the three objective function components are independently
executed in a sequential order that corresponds to the
subsequent-tasks (see IV-A). These sequential objective
functions can be written as:

• Objective Sequence 1

JS1N =

N−1∑
k=0

WS
1 F1 +WS

2

∥∥u(·)− ut(·)
∥∥2
R

(32)

• Objective Sequence 2
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(a) Low Density
(5 random obstacles setup)

(b) Medium Density
(10 random obstacles setup)

(c) High Density
(15 random obstacles setup)

FIGURE 15. Samples of generated environments with three different obstacle density levels: (a) low density, (b) medium density, and (c) high density.

TABLE 2. Different combinations of the state estimation error and control perturbations applied in the simulation experiments. The values presented in
the table are chosen to represent the sensor measurement errors and the controller imperfections in real robot system.

Noise
Combination State Estimation Error (E) Control Perturbation Gain (G)

ID Ex [m] Ey [m] Eφ [rad] Gv Gω
µx σx µy σy µφ σφ µv σv µω σω

1 0.0 0.01 0.0 0.01 - - - - - -
2 0.0 0.05 0.0 0.05 - - - - - -
3 0.0 0.1 0.0 0.1 - - - - - -
4 - - - - 0.0 0.01 - - - -
5 - - - - 0.0 0.05 - - - -
6 - - - - 0.0 0.1 - - - -
7 - - - - - - 0.0 0.25 - -
8 - - - - - - 0.25 0.25 - -
9 - - - - - - −0.25 0.25 - -
10 - - - - - - - - 0.0 0.25
11 - - - - - - - - 0.25 0.25
12 - - - - - - - - −0.25 0.25
13 0.0 0.1 0.0 0.1 0.0 0.1 - - - -
14 - - - - - - 0.25 0.25 0.25 0.25
15 0.0 0.1 0.0 0.1 0.0 0.1 0.25 0.25 0.25 0.25

JS2N =

N−1∑
k=0

WS
3 F2 +WS

4

∥∥u(·)− ut(·)
∥∥2
R

(33)

• Objective Sequence 3

JS3N =

N−1∑
k=0

WS
5 F3 +WS

6

∥∥u(·)− ut(·)
∥∥2
R

(34)

BMPC: In contrast to HiDO-MPC and SMPC, BMPC
approach uses a single weighted combination function of all
three cost function components, F1, F2, F3, to generate a sin-
gle robot motion behaviour. This BMPC objective function
can be written as:

JBN =

N−1∑
k=0

WB
1 F1 +WB

2 F2 +WB
3 F3

+WB
4

∥∥u(·)− ut(·)
∥∥2
R

(35)

VMPC: This method is a baseline of generic MPC imple-
mentation for controlling a mobile robot. This approach uses

a simple objective function that can be written as:

JVN =

N−1∑
k=0

WV
1

∥∥x(·)− xt(·)
∥∥2
Q

+

WV
2

∥∥u(·)− ut(·)
∥∥2
R

(36)

The implementation of these three controllers in com-
parison to the proposed HiDO-MPC controller in the op-
timisation framework is illustrated through the flowcharts
in Fig. 14. Flowchart (a) demonstrates the implementation
of the hierarchical decomposed-objective approach of the
HiDO-MPC. In contrast, flowchart (b) shows the imple-
mentation of the sequential execution of the three subse-
quent tasks of the SMPC. Lastly, flowchart (c) illustrates the
generic MPC implementation used for the BMPC and VMPC
methods.

APPENDIX E DETAILED EXPERIMENTAL SETUP
A. OBSTACLES DENSITY EXPERIMENTS
In this experimental setup, we investigate the performance of
each controller when executing the task in environments with
different obstacle density distributions.
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Details of the experimental setup are described as follows:

• In total, we generate 3 [densities] × 600 [samples]
environment setups.

• Each environment consists of a casualty with fixed pose
in the centre of the map, a ResQbot with a random
initial pose, and a set of obstacles which are uniformly
distributed around the casualty in a circular pattern.

• We evaluate three different obstacle density levels: low,
medium and high, having 5, 10, and 15 objects, respec-
tively.

• The collision geometry of each obstacle is modelled as
a circle with a radius of 35 cm.

• Obstacles are fixed and the minimum distance between
the obstacles is 1 m, to ensure execution feasibility.

• The obstacles are uniformly distributed around the ca-
sualty within a 4.5 m radius from the centre (i.e. the
casualty position).

• The robot’s initial pose is randomly generated with the
following constraints:

-- The robot’s initial position is randomly sampled on
a circle of fixed radius (r = 4.5 m) centred on the
casualty (i.e. centre of the map).

-- The robot’s initial orientation φinit is uniformly
sampled from [−π, π].

Figure 15 shows examples of generated environments with
three different obstacle density levels.

B. STATE ESTIMATION ERROR AND CONTROL
PERTURBATION EXPERIMENTS

MPC controllers generate optimal control signals based on
the current robot pose provided by the state estimation
module, and send these control signals to the robot via the
low-level controller module (i.e. linear and angular velocity
controllers). In reality, the state estimation and low-level
controller modules are imperfect. Inaccuracies present in the
state estimation are inevitable, and are mostly due to the sen-
sor measurement errors. Controller imperfections are usually
caused by inaccuracies in the control signal transmission or
environmental effects inherent to the real physical system.

We take into account these sources of uncertainties oc-
curring in the physical system, by modelling them within
the simulation experiments. We then evaluate the controller
performances in these situations based on the failure ratio
metric.

State Estimation Error: We model the state estimation
error to simulate the uncertainty of the state estimation mod-
ule in the real robot perception system. This is achieved by
adding noise to the corresponding elements of the robot’s
state vector, x = [x, y, φ]ᵀ. We denote the state estimation
error vector as E , where each component Ei is modelled
as a stochastic variable with a normal distribution Ei ∼
N (µi, σ

2
i ), where i is the index the vector elements. We

design several experiments by selectively applying Ei to
corresponding elements of the state vector xi, in order to
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FIGURE 16. The illustration of the narrow corridor experiments
conducted in this study. In these experiments, we implement the MPC
controllers for approaching casualties in an environment in which the
robot’s manoeuvrability is highly restricted.

TABLE 3. Different combinations of initial robot pose and the target
casualty pose used in the 1.8 m-wide corridor experiments (see Fig. 16).

Scenario Initial Robot Pose Target Casualty Pose
xr yr φr xt yt φt

S1 0.0 0.0 0.0 3.2 0.0 0.0
S2 0.5 -0.5 0.0 3.2 0.0 0.0
S3 0.5 0.5 0.0 3.2 0.0 0.0
S4 0.0 0.0 0.0 3.2 -0.4 -11.5
S5 0.5 -0.5 0.0 3.2 -0.4 -11.5
S6 0.5 0.5 0.0 3.2 -0.4 -11.5
S7 0.0 0.0 0.0 3.2 0.4 11.5
S8 0.5 -0.5 0.0 3.2 0.4 11.5
S9 0.5 0.5 0.0 3.2 0.4 11.5

Top wall y = 0.9
Bottom wall y = −0.9

analyse the contribution of different noise types. The state
estimation with uncertainty is calculated as:

x̂ ∼ x + E (37)

where:
x̂: state estimation vector with uncertainty,
x: actual value of the state estimation vector,
E : state estimation error.

Control Perturbation: In a differential drive mobile robot
system such as ResQbot, imperfections in the dynamics
model could occur due to non-uniform terrain friction, wheel
slippage or transmission imperfections. In this experiment,
we simulate the controller imperfections as a perturbation
of the control signal proportional to the calculated optimal
control output. This perturbation corresponds to each element
of the control decision vector u = [v, ω]ᵀ. We denote
the perturbation gain as G, where each component of the
vector Gi is modelled as a stochastic variable with a normal
distribution Gi ∼ N (µi, σ

2
i ), and represents the gain applied

to each corresponding element of the control decision vector
ui. The perturbed control decision vector is calculated as:

uexe ∼ (1 + G)ucal (38)

where:
uexe: perturbed control signal,
ucal: calculated optimal control signal,
G: control perturbation gain,
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VMPCBMPCSMPCHiDO-MPC

FIGURE 17. A complete trajectory comparison generated in simulation by four different MPC methods (HiDO-MPC, SMPC, BMPC, and VMPC), in all
corridor experiment scenarios [S1 − S9].

To examine the contributions of the above-mentioned un-
certainty factors, we perform the following steps:

• We use the same environment setups as for the exper-
iments described in the Appendix E-A, to conduct the
uncertainty evaluation scenarios.

• We evaluate 15 different experimental scenarios, each
using a different combinations of uncertainties applied
to different elements of the state vector or the control
signal, presented in Table 2.

• For each uncertainty combination, we conduct the same
number of experimental sets, as in the obstacle density
experiments (i.e. 600 experimental trials for each den-
sity, with random initial robot pose and random obstacle
distribution).

• We then evaluate the performance of the HiDO-MPC in
comparison to SMPC, BMPC, and VMPC, by calculat-
ing their failure ratios.

C. EXECUTION TIME COMPARISON
Execution time performance is calculated based on the
required time for each evaluated controllers to navigate
ResQbot from its starting pose to the target pose. This
evaluation is subject to the main criteria, alignment and
heading error thresholds (see Section V-B), meaning that the
execution time is only considered when the target pose has
been achieved successfully.

Since each initial configuration is random, the execution
time for individual configurations cannot be compared di-
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Distance to heading line [cm] Heading error [o]
Simulation Real Simulation Real

FIGURE 18. Complete quantitative experimental results showing both simulation and real robot experiments from all corridor experiment scenarios
[S1 − S9].

rectly. Therefore, we perform the execution time comparison
for other controllers, in each independent experiment, as the
ratio with respect to the HIDO-MPC execution time as a
baseline.

D. NARROW CORRIDOR EXPERIMENT
In this experimental scenario, we compare the performance
of the MPC-based controllers when approaching a casualty
in a narrow corridor environment. This experimental scenario
is conducted to evaluate the performance of each controller

when the robot’s manoeuvrability is highly restricted (de-
picted in Fig. 16). To ensure the feasibility of the task, we
restrict the scenario in two ways: (i) the casualty pose is
restricted such that there is sufficient space for the robot to
execute the approach safely, (ii) there are no other obstacles,
except the corridor wall, that could block the robot from
reaching the casualty.

In total, nine different narrow corridor scenarios are con-
sidered. Each scenario presents a combination of three initial
robot poses and three casualty poses, within a narrow 1.8 m-
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FIGURE 19. Normalised cost over Bayesian Optimisation iterations
during the weight optimisation process (WH , WV , WB and WS ) for
HiDO-MPC, SMPC, BMPC, and VMPC.

wide corridor. Table 3 summarises the narrow corridor sce-
narios.

APPENDIX F COMPLETE CORRIDOR EXPERIMENT
RESULTS [S1 − S9]
Fig. 17 shows all the trajectories generated by each MPC
approach (i.e. HiDO-MPC, SMPC, BMPC, VMPC), in all
corridor experiment scenarios based on experimental setup
described in Appendix E-D.

Fig. 18 presents the complete results of the quantitative
evaluation of all corridor experiments scenarios, including
simulation and real robot experiments.

APPENDIX G HYPER-PARAMETER TUNING RESULTS
A. TUNING MPC WEIGHTS VIA BAYESIAN
OPTIMISATION
To find the optimal weighing coefficients for each MPC
method (WH , WV , WB and WS), we use Bayesian Opti-
misation (BO) as presented in [62], as it is a sample-efficient
global optimisation method.

We perform 100 iterations of BO in the corridor exper-
iment setups (see Appendix E-D), using the default BO
hyper-parameters presented in [63]. Each iteration consists
of evaluating the current weight coefficient values for each
MPC approach, on the training setup, in which we used the
perturbed versions of test experiment scenarios. We define
the cost for BO optimisation as the sum of the execution
times over all 9 narrow corridor experiment scenarios. We
then normalise the value over the maximum cost during
the optimisation process. Fig. 19 shows the normalised cost
function for each MPC approach over BO iterations, during
the weight optimisation process; optimising WH , WS , WB ,
and WV for HiDO-MPC, SMPC, BMPC, and VMPC, re-
spectively.

The optimisation results show that the optimisation pro-
cesses converge for all evaluated MPC controllers. As we can
see in Fig. 19, the convergence times of the weight optimi-
sation process is closely correlated to the number of weight
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FIGURE 20. Comparison of average computation times for all four
different MPC-based methods, using different prediction horizon lengths.

components in each cost function. The weight optimisation
process for the VMPC cost function converges in less than 10
iterations, whereas HiDO-MPC cost function requires more
than 40 iterations before it converges, and it reaches a lower
overall value. Table 1 shows the optimal weight values for
each of the MPC type cost functions, obtained via Bayesian
Optimisation.

B. OPTIMAL MPC HORIZON
We compare the MPC computation times over five different
prediction horizon lengthsN = {15, 20, 25, 30, 35}, in order
to confirm that the MPC frameworks can be implemented
in real-time. The observation results show an almost linear
correlation between the computation time and the number of
prediction horizon, N, where VMPC and SMPC are slightly
faster than HiDO-MPC due to their simpler cost function
evaluations (see Fig. 20). Any of the MPC approaches with
any of the prediction horizons have a computation time fast
enough to be implemented in real-time.
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