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Abstract

Learning complex physical tasks via trial-and-error is still challenging for high-
degree-of-freedom robots. The greatest challenge is optimally selecting the next
trials to evaluate while improving sample efficiency. We propose a novel learning
framework consisting of the task modelling and exploration components. The
task model maps the parameter space defining a trial, to the task outcome space.
The exploration model enables efficient search in the trial parameter space to
generate the subsequent most informative trials, by simultaneously exploiting all
the information gained from previous trials and reducing the task model’s overall
uncertainty. We validate our framework on a challenging bimanual-robot puck-
passing task. Results show that the robot successfully acquires the necessary skills
after only 100 trials without any prior information about the task or target positions.
Our approach also enables efficient skill transfer to new environments which was
validated experimentally.

1 Introduction

The motivation for this work comes from the approach humans take when learning complex tasks
such as acquiring new skills, using new tools or learning sports. Most of their learning process is
centred around trials and errors [19]. Even though there may be demonstrations present (explanatory
videos, user manuals or a human instructor) several trials are necessary to acquire adequate motoric
capabilities, e.g. feel the weight of the utensil, practice hand-eye coordination, etc. For robot learning,
each trial can be uniquely defined by a set of movement parameters [13] which means that performing
a trial is equivalent to selecting a point in the movement parameter space and evaluating it.

In this paper, we introduce a novel online active learning approach consisting of the informed search
in the movement parameter space for generating trials during the training phase. Our aim is to
develop a method which is sample efficient and does not make random or exhaustive exploration,
intended for systems where trial execution is expensive. Moreover, during the training phase, the
agent does not have any prior information about the task or the environment, in order to minimise
domain knowledge. To this end, we propose a learning framework consisting of a task modelling and
an exploration component. The task model is implemented as a Gaussian Process (GP) Regression
(GPR) [22] function that maps the movement parameters as inputs to the task outcomes as the desired
outputs. The exploration model enables efficient search in the movement parameter space to generate
a parameter vector that encodes a subsequent trial which is most informative for the task model. This
is done by exploiting the scarce trial data via probabilistic modeling and by taking into account the
uncertainty inherent to the task model. The exploration model is implemented as a selection function
defining a probability distribution over the movement parameter space, from which parameter vectors
are sampled. The proposed approach performs coupled learning of the task and exploration models
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(a) Robot setup

(b) Angle model

(c) Distance model

Figure 1: (a) Experimental setup of the ice hockey puck passing task: θ andL are the polar coordinates
estimated using the head-mounted Kinect camera. The image coordinates are transferred to the floor
coordinates using perspective transformation. The red line in the bottom is parallel to the heading
direction and is used as the zero-angle reference. The obtained target coordinates are used by the
framework during testing to produce the appropriate swing action needed to pass the puck to the
target. On the right are the GPR task models learned from the successful trials; (b) Learned model for
the angle (c) Distance model. To visualise the 6-dimensional parameter space we fix the remaining
parameters and show functions w.r.t. the wrist angle and right hand x-axis displacement.

by trial and error. During the training phase, the algorithm iteratively finds points in the parameter
space to produce trials which are the most informative about the task model and which lower the
task model’s prediction uncertainty. Since the exploration model maintains information about the
useful trials, they can be directly reproduced (transferred) in different environmental settings. As a
consequence, new task models can be learned from scratch with significantly less trial evaluations.

The framework is executed directly on a physical robot. For evaluation we have selected the ice
bimanual hockey puck-passing task, as shown in Fig. 1a. During the testing phase, the robot
is presented with a target position and expected to automatically generate an appropriate swing
movement action, based on the learned task model, to hit the puck so that it lands on the target. We
selected this particular task as it is interesting for its complexity: (i) it requires dual-arm coordination,
(ii) there is a non-trivial extension of the robot’s kinematic model via the ice hockey stick and (iii) the
surface friction and stick-surface contact models are quite difficult to model. The proposed approach
requires very little prior knowledge about the system: no previous task knowledge (strategies, desired
movements, etc.), prior kinematic (stick and joint constraints) nor environment (surface friction,
contact forces, etc.) models are provided. No demonstrations or expert human supervision are
necessary. Only the number of input parameters is given (which can be anything from basic low-level
control inputs, to more abstract notions such as motion primitives) and their ranges, without any
contextual information regarding their influence or importance.

To summarise, the main contributions of this paper are:

• The probabilistic framework for informed and sample-efficient search of feasible movement
parameter vectors defining the robot motion for the next trial evaluation. The trials are
generated in such a way that their outcomes provide diverse and informative data points in
order to construct accurate, invertible and generalisable task models.

• As a consequence of the proposed framework setup, efficient task transfer to new environ-
ments is possible, as shown experimentally. The robot successfully learns the task models
for the new environments in significantly less trials.
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2 Related work

The concept of efficient exploration strategies is crucial in Reinforcement Learning (RL), but also in
supervised learning where it can improve sample selection and lead to more sample-efficient models.
Several authors argue the importance of exploration and benefits of moving it directly to the parameter
space, as opposed to e.g. action space in RL [20, 24], as it can reduce the variance caused by noisy
trajectories, and generally avoids converging prematurely to suboptimal solutions. Evolutionary
Strategy-based methods [11, 12, 25, 31] introduce noise in the parameter space to guide explorations,
but they act as a black-box optimiser and lead to poor sample-efficiency. Probabilistic approaches
such as Bayesian Optimisation [5, 7, 18, 30] use the prediction entropy to guide the exploration in
a more efficient way. Such methods usually rely on the GP framework due to its generalisability
and intrinsic uncertainty measure derived for each prediction, which can further contribute to the
optimisation process, as utilised in PILCO [8] as well.

The methods above use entropy to guide the exploration and aid the optimisation process, which
by definition requires a cost function. In our problem setting we exclude such a performance
measurement function as it is unfeasible to evaluate the model at each fitting step. Methods relying on
techniques like Motor Babbling [9, 16] can learn the robot’s forward model by iteratively performing
random motor commands and recording their outcomes. However, these methods are usually data-
inefficient due to random exploration. Therefore, we concentrate on the Active Learning (AL) [4, 28]
paradigm as it has proved useful in robotic applications [1, 10, 29] where it helps relieve the sample
complexity — one of the main limitations imposed by hardware for robotic experiments. An
interesting active learning exploration approach applied in robotics is the Estimation-Exploration
Algorithm (EEA) [2]. EEA performs system identification, by selecting trials whose outcome causes
most disagreement among the candidate system models. The probabilistic modelling approaches,
particularly GPs, are exploited within AL [14, 17, 23, 27] to provide uncertainty-based exploration.
However, most of the AL sample query strategies which rely on prediction uncertainty, do not take
into account the historical evolution of the models and the data samples’ relations explicitly, rather
implicitly through the model and its prediction estimates. This is especially important in robotics
where physical constraints play a crucial role [26].

An example of learning robotic tasks with complex kinematics, through exploration in the low-level
control space is presented in [16]. Elements which are not part of the original kinematic chain
are incorporated by adding links and leverage points to skew the mapping of motor torques to the
end-effector pose, and the robot successfully adjusts to these modifications. No explicit model of
the robot’s kinematics is provided, but such approach would have difficulties when scaled. Relevant
example a of single-arm robot learning to play hockey using RL is presented in [6] where the robot
learns to send the puck into desired reward zones and gets feedback after each trial. However,
kinaesthetic teaching is required to extract the shape of the movement. Also in [15] learning from
demonstrations is used to teach the robot to play minigolf. A recent approach [3] combines model-free
and model-based RL updates to learn the optimal policy that shoots the puck to one of the three
possible goals. The tracked puck-to-goal distance is used within the cost function, so this heuristic
provides some form of a reward shaping. Our approach differs from the above two, because during
the training phase no information about the goal nor the environment is provided.

3 Problem formulation and movement parameterisation

We consider the problem of autonomously learning the ice-hockey puck-passing task with a bimanual
Baxter robot with two 7-DOF-arms, as shown in Fig. 1a. The puck-passing motion that the robot
performs consists of a swing motion, making the contact with the puck and transferring the necessary
impulse to move the puck to a certain location. The robot learns this through trial and error without
any target positions provided during the training phase, just by exploring different swing movements
in an informed way and recording their outcomes. Each trial consists of a potential swing movement
which is encoded using a set of movement parameters. We propose a set of 6 movement parameters
which are empirically chosen and sufficient to describe a swing. These parameters represent the
amount of displacement relative to the initial arm configurations. The displacements considered are
along the x and y axes of the robot coordinate frame (task space) for the left (lx, ly) and right (rx, ry)
hands, the joint rotation angle of the left wrist (w), and the overall speed coefficient (s) which defines
how fast the entire swing movement is executed. In this way the swing movement is parameterised
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and can be executed as one action. In the proposed setup, the parameters take discrete values from
a predefined fixed set, equally spaced within the robot’s workspace limits. Although the inverse
kinematics model is used via the position controller, our framework does not exploit this information.
The generated swing movement can either be feasible or not for the robot to execute. If feasible, the
generated swing movement can potentially hit the puck. The hit slides the puck from its fixed starting
position to some final position, which is encoded via polar coordinates θ and L as shown in Fig. 1a.
Such a trial is considered successful and contributes to the task models. In the testing phase, the robot
is presented with target positions that the puck needs to achieve. The target is visually perceived as a
green circle which is placed on the floor by the user (Fig. 1a). Having received the target coordinates
(θd and Ld), the robot applies a proper swing action that passes the puck to the target. Therefore, a
method that constructs a reliable, generic and invertible task model is needed.

4 Proposed approach

The proposed approach consists of two coupled components, both of which are updated based on
the previous experience, i.e. previous trials, the task model and exploration model components. The
pseudocode of the proposed algorithm is presented in the Appendix.

4.1 Task model component

The task model component uses the information from scarce successful trials: the movement parame-
ter values, as inputs, and the puck’s final position, as outputs, and creates a mapping between them.
This component creates two independent task models for each of the puck’s polar coordinates, angle
and distance, as depicted in Figures 1b and 1c, respectively. To this end, we use GPR as it generalises
well with limited function evaluations, which in our case are the successful trials executed on the
robot. Let us define a point in the movement parameter space x ∈ IRD, with D being the parameter
vector dimensionality. The main assumption is that for any finite set of N points X = {xi}Ni=1,
the corresponding function evaluations at these points can be considered as another set of random
variables F = {fxi

}Ni=1, whose joint distribution is a multivariate Gaussian:

fxi ∼ N (µ(xi),K(xi,x
′
i))

where µ(xi) is the prior mean function and K(xi,x
′
i) is the kernel function for some pair of

parameter vectors xi,x
′
i. When applied to all the pairs from X the kernel produces the matrix of

covariancesK. Having a joint probability of the function variables, it is possible to get the conditional
probability of some parameter vector’s evaluation fx∗

i
given the others, and this is how we derive

the posterior based on observations from the trials. In our case,X is the set of movement parameter
vectors which led to successful trials during the training phase. Set X∗ contains all the possible
parameter combinations, since we need to perform inference to obtain the task models. We define the
extended joint probability as below, and use matrix algebra to deduce the posterior:[

fX
fX∗

]
∼ N

(
0,

[
K KT

∗
K∗ K∗∗

])
p(fX∗ |fX ,X∗,X) ∼ N

(
K∗K

−1fx,K∗∗ −K∗K−1KT
∗
)

We assume a mean of 0 for our prior. Similarly to K, K∗∗ is the matrix of covariances for all the
pairs from the setX∗, andK∗ gives us the similarity of the observed parameter vectorsX to each
point in the parameter spaceX∗. Within the kernel definition we also consider zero mean Gaussian
noise, ε ∼ N (0, σ2

ε ), to account for both modelling and measurement inaccuracies. The kernel
function used is the rational quadratic (1), as it showed the best performance.

KRQ(x,x
′) = σ2

f

(
1 +

d2

2ασ2
l

)−α
(1)

The distance measure d is defined as the Euclidean distance between the points in the parameter

space d(x,x′) = ‖x− x′‖ =
√∑D

j=1(xj − x′j)2. From the similarity measure given by the kernel
we get that the points, which are far away from each other, will have a higher variance associated
with their prediction. The coefficients σ2

f and σ2
l are the variance and the lengthscale of the kernel,

respectively, with values set as σ2
f = 1, σ2

l = 1 and α = D/2. One of the advantages of GPR is that
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(a) Penalisation function (b) Model uncertainty (c) Selection function

Figure 2: Components used to generate movement parameter vectors that define a trial: (a) penali-
sation function which inhibits failed trials (b) task model uncertainty (c) selection function which
combines the previous two to get the distribution from which the next parameter vector is sampled.

for every point for which we estimate the posterior distribution, we know its mean and variance. The
means are interpreted as the current models’ predictions, and the variance as the model’s confidence
about these predictions. Therefore, regions of the parameter space which are farther away from the
training points, have a higher variance and thus the uncertainty about their predictions is higher. After
each new successful trial, we re-estimate the posteriors over the whole movement parameter space,
in order to update both the angle and distance task models as well as the uncertainty. This exact
inference is memory demanding but executes in seconds on a workstation with a GTX 1070 GPU.

4.2 Exploration model component

The Exploration Model component exploits all the past (both successful and failed) trial information,
in order to obtain the selection function that guides the movement parameter search and selection pro-
cess. The elements contributing to the selection function are the information about the unsuccessful
trials, expressed through a penalisation function, and the GPR model uncertainty. These functions are
represented as improper density functions (IDF) since their values for each point in the parameter
space are in the range [0, 1] but they do not sum to 1. An example of these IDFs is visualised in Fig. 2.

Penalisation IDF (PIDF) probabilistically penalises regions around the points in the move-
ment parameter space that have led to failed trials. This inhibits repetition and reduces the probability
of selecting parameter vectors which lead to failed trials. A trial is classified as failed in four cases:

(1) The inverse kinematic solution cannot be found for the generated displacements.
(2) The displacements would produce physical damage to the robot (self collision, ignoring the stick
constraint or hitting itself with the stick).
(3) The mechanical fuse breaks off due to an excessive force applied.
(4) The swing movement does not make contact with the puck (no puck movement).

The PIDF is implemented as a mixture of inverted D-dimensional Gaussians (2), which are added to a
uniform prior distribution Π0. The uniform prior ensures that initially all the movement actions have
an equal probability of being selected. Each of the K failed trials is represented by a Gaussian with
a mean µP

k coinciding with the parameter vector associated with this trial. The covariance matrix
ΣP

k is a diagonal matrix, calculated based on how often does each of the D parameters take repeated
values, considering all the previously failed trials. This is implemented by using a counter for each
parameter. In this way, the Gaussians have a smaller variance along the dimensions corresponding
to the parameters that have frequently repeated values, thus applying more intense penalisation and
forcing them to change from these ‘stuck’ values. For the parameters with evenly distributed values,
the Gaussian will be more spread out. This procedure inhibits the selection of parameter values which
are likely to contribute to failed trials, and stimulates selecting others. Conversely, the parameter
vector leading to a successful trial is stimulated with a low positive value Gaussian with a high
variance which allows promotion of the nearby region of the space.

pp(x
∗) = Π0 +

K∑
k=1

φkN (µk,Σk),

{
φk = −1, failed trial
φk = +1, successful trial

(2)
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Model uncertainty IDF (UIDF) is intrinsic to the GPR model (3) and it is used to encourage the
exploration of the parameter space regions expected to yield most information about the underlying
task models. The UIDF is updated for both failed and successful trials as the exploration does not
depend on the actual model values.

pu(x
∗) =K∗∗ −K∗K−1KT

∗ (3)

Selection IDF (SIDF) combines the information provided by the PIDF, which can be interpreted as
the prior over possible movements, and the UIDF as the likelihood of improving the task models.
Through the product of PIDF and UIDF, we derive SIDF (4), our query function, as the posterior IDF
from which the optimal parameter vector for the next trial is sampled.

psel(x
∗) = pp(x

∗)pu(x
∗) (4)

4.3 Learned task model evaluation

In order to evaluate the performance during the testing phase, it is necessary for the angle θ(x) and
distance L(x) models to be invertable. Given the target coordinates, a single appropriate movement
parameter vector defining the swing action that passes the puck to the target needs to be generated.
It is difficult to generate exactly one unique parameter vector x̂ which precisely realises both the
desired coordinate values θd and Ld, so the one which approximates them both best and is feasible
for robot execution is selected. This is achieved by taking the parameter vector which minimises
the pairwise squared distance of the coordinate pair within the combined model parameter space, as
in (5). Additional constraint on the parameter vector is that its corresponding PIDF value has to be
below a certain threshold ε to avoid penalised movements. In our numerical approach, this is done
iteratively over the whole parameter space, and takes a couple of milliseconds to run. Alternatively,
this could be achieved using any standard optimisation algorithm. More importance can be given to a
specific coordinate by adjusting the weighing factor δ.

x̂ = argmin
x

(√
(1− δ)(θ(x)− θd)2 + δ(L(x)− Ld)2 + (pp(x)− ε)

)
(5)

4.4 Task transfer

After the task model is learned, if we were to repeat the approach (with the fixed seed) in a different
environment, we would still get the same trials. However, only the successful trials contribute to
forming the task models, as they actually move the puck, while the failed trials are inherent to the
robot’s physical structure. Therefore, we can decouple the failed and successful trials, and execute
only the latter in the new environment in order to retrain the task models. This significantly reduces
the amount of trials needed to learn the skill in a new environment, because usually while exploring
the parameter space the majority of the trials executed are failed.

5 Experimental setup and training

The proposed approach is evaluated with a Baxter robot using a standard right-handed ice hockey
stick and puck 1. To enable the robot to use this stick, we have equipped its end-effectors with
custom passive joints for attaching the stick. A universal joint is mounted on the left hand, while the
spherical joint is installed on the right (refer to Fig. 1a). This configuration inhibits the undesired
idle roll rotation around the longitudinal stick axis, while allowing good blade-orientation control.
The connection points on the stick are fixed, restricting the hands from sliding along it. This imposes
kinematic constraints on the movement such that the relative displacement of the two hands along
either axis cannot be greater than the distance between the fixture points along the stick. Due to the
right-handed design of the ice hockey stick, the initial position of the puck is shifted to the right side
of the robot and placed approximately 20 cm in front of the blade. For monitoring the movement
effect on the puck, the head-mounted Kinect camera pointing downwards at a 45 degree angle is used.
A simple object-tracking algorithm is applied to the rectified RGB camera image in order to extract
the position of the puck and the target. For calculating the polar coordinates of the puck, the mapping
from pixel coordinates to the floor coordinates w.r.t. the robot is done by applying the perspective

1The video of the experiments is available at https://youtu.be/S9_PHsl0W7g
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transformation obtained via homography. All elements are interconnected using ROS [21]. The
initial configuration of the robot arms and the ranges of the movement parameter values are assigned
empirically. The approach could be extended to autonomously detect the limits for the parameters, but
this could lead to physical damage. This implicitly reduces the number of learning trials, especially
the failed ones. Discretisation resolution of the parameter values is due to the numerical approach to
obtaining the GPR models, and higher resolution and parameters dimensions would require more
memory resources. The parameter value sets assigned are [m]: lx = {−0.3,−0.2,−0.1, 0, 0.1}, ly =
{−0.1,−0.05, 0, 0.05, 0.1}, rx = {0, 0.042, 0.085, 0.128, 0.17}, ry = {−0.1, 0.05, 0.2, 0.35, 0.5},
w = {−0.97,−0.696,−0.422,−0.148, 0.126, 0.4} and s = {0.5, 0.625, 0.75, 0.875, 1.0}. This
produces a parameter space of size 6 × 55 = 18750. The GPR generalises well despite the crude
discretisation. The parameter values are considered normalized as they are in the range [−1, 1].
The training phase consisted of 100 trials of which 24 were successful and contributed to the task
models. The rest of the failed trials did not contribute to the task model explicitly, rather implicitly,
through the exploration component. The stopping criterion is when the model’s average uncertainty
drops below 10% and the last 5 updates do not lead to more than 0.5% improvement each. Further
uncertainty reduction would not make sense as it depends on the inherent task uncertainty which is
hard to quantify. This task uncertainty is affected by the system’s hardware repeatability and noise in
the motion outcome amongst others. The overall training time including resetting is approximately
45 min. Figures 1b and 1c show the angle and distance models learned based on the 24 successful
trials. For visualisation purposes we slice the model and display it along two of the six dimensions.
We visualise rx and w, while the remaining parameters are fixed with values: lx = −0.3, ly = 0.1,
ry = 0.35 and s = 1.0, which is equivalent to a backward motion of the left hand and a full speed
swing. The angle model shows how for this particular swing configuration, the wrist rotation angle
greatly affects the final angle of the puck. This is in line with how professional hockey players
manipulate the puck. Conversely, the right hand displacement along the robot’s x-axis does not
contribute as much. The distance model shows more complex dependencies, where the right hand
displacement has a high positive correlation with the final puck distance, for positive wrist angles. As
the wrist angle value decreases, so does the influence of rx. The range of motions that the puck can
achieve after training are from 0 to 25 degrees for the angle, and the distance from 50 to 350 cm.

6 Results and discussion

The essential interest is to evaluate the main contributions: the informed search approach, and its
application to efficient task transfer. The hypothesis is that the proposed approach needs significantly
less trials to learn a confident and generalisable task models, because the trials generated in this manner
are the most explanatory for the model. To quantitatively asses the performance of our approach, we
analyse the test execution accuracy, i.e. the ability to reach previously unseen targets 2. During testing,
the robot is presented with a target position (green circle as in Fig. 1a) and required to generate
appropriate movement parameters for a swing action that will pass the puck to the target. We evaluate
the accuracy using 28 different target positions, placed in the mechanically feasible range with 4
increments of the angle {0, 10, 15, 20}, and 7 of the distance {100, 120, 150, 175, 200, 250, 300}.
These coordinates have not necessarily been reached during training. For specific target coordinates,
the model is inverted to give an appropriate and unique movement parameter vector, as described in
Sec 4.3. The final repeatability is the one achievable by the robot hardware (±5 cm) and is consistent.

Firstly, we compare the results of our approach to those of a model learned from randomly generated
trials. We generated 100 random points in the movement parameter space which were evaluated
on the robot and used to create the GPR task models. We produced 5 such random models with
different initial seeds, verified their performance on the test target set and averaged the results (see
Table 1). As shown, our model is on average twice as accurate and more importantly, almost three
times more confident than the models produced by random search, based on the standard deviation.
This demonstrates that the informed search selects training points which provide the model with
better generalisation capabilities. We did not consider the grid search approach, as it is not feasible
to evaluate all 18750 movement parameter combinations. Regarding the performance in the related
work, in [6] the puck is sent to a target zone of 40 cm in width, while in [3] there are only three fixed
25 cm-wide goals, in which the execution is deemed as successful. From the results, our method on
average achieves better accuracy over 28 previously unseen target positions.

2The code and experiment data will be made available on the website of the lab upon publication.
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Table 1: Performance comparison of the achieved accuracy in Euclidean distance between the puck
and the target, averaged over 28 test target positions.

Movement Generation Method Mean [cm] STD [cm]

"Original" environment (blue puck, hardwood floor)

Informed Search 29.48 16.33
Random Sampling 64.18 45.72
Inexperienced Volunteers 32.16 27.82
Experienced Volunteers 22.96 18.07

New environments

"Original" model (blue puck, marble floor) 66.18 50.75
Re-trained model (blue puck, marble floor) 43.73 37.08
"Original" model (red puck, marble floor) 63.4 41.85
Re-trained model (red puck, marble floor) 38.32 31.05

Secondly, we compare our approach to human-level performance. We asked 10 volunteers who
had no previous ice hockey experience and 5 members of the college ice hockey club to participate,
under the same settings as the robotic counterpart. They had 24 practice shots to get accustomed to
the stick, puck and the surface. After, they were presented with the same test target positions, and
their averaged results are presented in Table 1. We have to emphasise that such a comparison is not
straightforward to analyse: this task is difficult for a human as it requires repeatability in the arm
control and hand-eye coordination; although the inexperienced subjects have not practiced hockey
previously, through their lifetime they have developed a good general notion of the physical rules and
limb control. The inexperienced volunteers achieve slightly worse accuracy, yet the variance among
the subjects is high, which could be attributed to their various skillsets that are more or less akin to
ice hockey. Expert volunteers performed better than the robot and this can be explained with their
domain knowledge. From qualitative observations we note that several inexperienced volunteers who
showed good performance, discovered that sliding the puck in the blade on the ground improves the
accuracy. This technique was employed by all expert volunteers and was also learned by the robot.

Finally, we demonstrate the task transfer aspect of the proposed approach by re-learning the task
models for different environments. The robot can adapt and perform the task in a new environment by
executing only a the set of 24 movement parameter vectors that generated successful trials from the
"original" training session (standard puck on hardwood floor), not all 100 trials. The successful trials
are independent of the environment and provide descriptive samples for the GPR task models. The
new environments we consider are the marble floor which has a higher friction coefficient than the
hardwood floor, and a wooden puck (red puck) which is lighter than the standard puck. Successful
trials are executed by the robot on the new surface, using both pucks. Two new task models are
learned, evaluated on the test target set, and the results are shown in Table 1. As a benchmark, we
show results of directly transferring the model learned in the "original" environment. The decrease in
accuracy is due to the higher friction and thus decreased sensitivity, so that not all test positions could
be achieved. However, we see that using the blue puck as in the "original" setup, on the new floor
performs worse than the lighter (red) puck, which can be explained by the fact that a lighter puck on
a higher-friction (marble) floor acts as an equivalent to a heavier puck on a lower-friction (hardwood)
floor. Even though completely new task models are learned after only 24 trials, the average accuracy
is still in line with the literature examples and outperforms the random case by more than 20 cm.

7 Conclusions and future work

We have presented a probabilistic framework for learning the robot’s task model and exploration
components based solely on its sensory data, by means of informed search in the movement parameter
space. The presented approach is validated on a physical robot doing bimanual manipulation of an
ice hockey stick in order to pass the puck to target positions. The robot learns the task from scratch
in approximately 45min with an accuracy comparable to human-level performance, and is capable
of adapting it in different environments in significantly less time. We further plan to explore the
applicability of this approach to sequential tasks as a policy search exploration method.
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Appendix

Algorithm 1 Task and Exploration model learning

1: Inputs:
movement parameters: (lx, ly, rx, ry, w, s)

2: Initialize:
PIDF← Π0

UIDF← 1
3: repeat
4: SIDF← PIDF * UIDF
5: xt ∼ SIDF . Sample movement parameter vector
6: trial_outcome, θpuck, Lpuck = ROBOT(xt) . Trial execution on the robot
7: if trial_outcome = failed then
8: Σfail[xt] += 1
9: PIDF −= N (xt,Σfail)

10: UIDF = GPR(xt)
11: else
12: Σfail[xt] −= 1
13: PIDF += N (xt,Σsucc)
14: θx,Lx, UIDF = GPR(xt)

15: until stopping_conditions
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