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ABSTRACT
Neuroevolution is an alternative to gradient-based optimisation that
has the potential to avoid local minima and allows parallelisation.
The main limiting factor is that usually it does not scale well with
parameter space dimensionality. Inspired by recent work examining
neural network intrinsic dimension and loss landscapes, we hypoth-
esise that there exists a low-dimensional manifold, embedded in
the policy network parameter space, around which a high-density
of diverse and useful policies are located. This paper proposes a
novel method for diversity-based policy search via Neuroevolution,
that leverages learned representations of the policy network param-
eters, by performing policy search in this learned representation
space. Our method relies on the Quality-Diversity (QD) framework
which provides a principled approach to policy search, and main-
tains a collection of diverse policies, used as a dataset for learning
policy representations. Further, we use the Jacobian of the inverse-
mapping function to guide the search in the representation space.
This ensures that the generated samples remain in the high-density
regions, after mapping back to the original space. Finally, we evalu-
ate our contributions on four continuous-control tasks in simulated
environments, and compare to diversity-based baselines.
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1 INTRODUCTION
In recent years, we have seen significant progress in tackling contin-
uous control tasks by gradient-free approaches based on Evolution-
ary Algorithms, such as Neuroevolution [40, 43, 44]. Compared to
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Figure 1: The proposed Policy Manifold Search approach
components. Grey boxes at the top are usedwithin themani-
fold search phasewhich adds policies to the collection, while
the manifold learning is shown in green and uses all the
data from the policy collection (C𝜽 ). Blue arrows show pol-
icy network parameter (𝜃 ) flow, grey arrows evaluation in-
formation (𝜃∗, BD), green arrow is the current autoencoder
parameters, and red arrow depicts decoder Jacobian scaling.

Deep Reinforcement Learning (RL) approaches relying on gradient-
based policy network optimisation [41], Neuroevolution achieves
similar performance while allowing for greater parallelisation. How-
ever, these performance-based methods aim to find a unique set
of controller parameters, although there are cases where a diver-
sity of solutions is needed and this becomes an issue. An example
includes environments that can accommodate multiple tasks, and
that different controller policies are necessary to solve and adapt to
a dramatically changing environment or recover from damage [11].
Quality-Diversity (QD) framework [12, 35], has been introduced as
an elegant approach to maintaining a diversity of controller poli-
cies. A popular QD approach, MAP-Elites [33], maintains a diversity
of policies by having each distinct policy assigned to the policy
collection based on the behaviour descriptor, i.e. low-dimensional
representation of the corresponding policy’s behaviour in the en-
vironment [12]. New solutions are then generated by modifying
existing ones via mutation operators.

Applications of MAP-Elites are often limited to low-dimensional
or open-loop controllers [33], while Deep RL and Neuroevolution
have shown to be capable of learning deep neural networks for
continuous control, increasing the agent’s capabilities. Still, the
curse of dimensionality makes evolution quite challenging, partic-
ularly in MAP-Elites, and prevents it to scale with the parameter
dimensionality [9]. A popular approach to addressing this issue is
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representation learning [3, 6], which has been studied extensively
in the context of input spaces such as environment observation
vectors, images, graphs etc [25, 34]. Representation learning relies
on themanifold hypothesis which states that high-dimensional data
tends to lie in the vicinity of a low dimensional manifold. How-
ever, this notion has not been investigated much in the context
of neural network parameter spaces. Recent work on examining
neural network parameters space properties, gives us insights on
the possible existence of low-dimensional manifolds in the network
parameter space [14, 16, 20, 30, 32, 37]. Moreover, using a notion of a
manifold via the hypervolume of elites within MAP-Elites, showed
promising results [46]. These findings suggest a natural question
whether there exists a manifold embedded in the high-dimensional
network parameter space, and what are the potential benefits for
policy search via Neuroevolution, using MAP-Elites?

Inspired by the manifold hypothesis, we hypothesise that there
exists a lower-dimensional, non-linear manifold, embedded in the
high-dimensional policy network parameter space, which contains
a high density of solutions for a particular task. In this paper, we
propose a novel approach, Policy Manifold Search (PoMS), that
learns a mapping to a manifold in the policy network parameter
space, which is used for Neuroevolution-based policy search. We
expand the MAP-Elites framework, by using its policy collection
as a dataset for manifold learning via an Autoencoder (AE). This is
an important component as the quality of the dataset dictates the
quality and generalisability of the learned latent representations.
Focusing the search in the manifold with a high solution density,
improves the sample complexity and the diversity of discovered
behaviours. When mapping back from the manifold to the original
parameter space, we take into account the additional transforma-
tion incurred, due to the imperfect mapping of the AE’s decoder
function. This leads to a consistent parameter search regardless of
the local structure of the latent representation, by accounting for
the distortions induced by the decoder. Finally, we focus solely on
diversity search and do not use performance as a selection criteria.

In order to evaluate our hypothesis, we conduct ablation studies
of the algorithm components, as well as comparisons to the state-
of-the-art MAP-Elites approaches. These experiments are executed
on four different continuous control tasks. As a performance indi-
cator, we use the behaviour coverage metric, typically used in QD
literature [12], to quantify the diversity of policies achieved within
the policy collection. The results suggest that learning a policy
manifold explicitly and using it for policy search works well, but an
additional regularisation of the search process using the decoder
Jacobian is necessary in order to have a well-behaved policy search.

2 RELATEDWORK
In this section, we present relevant work on policy behaviour di-
versity, as well as parameter representation and generation.

Manifold Learning aims to obtain a lower-dimensional repre-
sentation, i.e. a manifold, embedded in the high-dimensional input
space. It is based on the manifold hypothesis that assumes a high
density of useful datapoints located in the vicinity of such a mani-
fold. This notion has been thoroughly explored under representation
learning [3], and applied in RL [1, 8, 15], with important insights

on how to exploit the structure of the manifold to improve an algo-
rithm’s robustness [38, 39]. However, this body of work has focused
on manifold learning in the context of input spaces such as images,
environment observations, etc, which have different structural prop-
erties compared to neural network parameter spaces. Recent work
examines the concept of a manifold in the context of network pa-
rameter spaces, and show that the local optima of deep networks
can be connected by continuous paths which lie in low loss value re-
gions of the network parameter space [14, 17, 20]. This is related to
the redundant nature of networks as multiple configurations could
lead to the same behaviour [31]. Moreover, there are some insights
on the existence of an intrinsic dimension of the network parameter
space, that is dependant on the particular task’s complexity and is
sufficient for solving such a task [13, 19, 30, 37, 48]. Another line
of work investigates the lottery ticket hypothesis, which states that
deep networks contain subnetworks which can reach the same per-
formance as the original network, when trained in isolation [16, 32].
These findings give us inspiration that such a manifold could be
found and used for efficient policy search in QD.

Parameter-generating networks have been proposed as an
approach to few-shot adaptation of the (controller) network pa-
rameters, conditioned on the observations or latent variables as
inputs, in the context of fast/slow weights [2, 22], meta-learning [1],
dynamic filter networks [47] or hypernetworks [24]. The above-
mentioned approaches do not explicitly learn a parameter mani-
fold from which the controller network parameters are generated,
rather a differentiable mapping from the observation space which
can be updated via gradient descent. Conversely, in recent work a
manifold is learned from a collection of converged neural network
policies [7], or simple motion primitive based controllers [27]. They
use learned representations for analysing and assessing new gener-
ated policy network parameters, rather than for policy search. To
the best of our knowledge, Chang et al [7] is the only work besides
ours, that learns policy network parameter representation. How-
ever, they use a set of fully converged policy networks to train the
AE, which is costly to produce and could lead to a less generalisable
representation.

Quality Diversity (QD) algorithms [12, 35] have been recently
introduced as a framework that generates a collection of high-
performing and diverse solutions. Most popular approaches are
Multi-dimensional Archive of Phenotypic Elites (MAP-Elites) [11,
33] and Novelty Search with Local Competition [29], which differ
in how they select and maintain a collection of controller policies
based on their exhibited behaviours. In this work, we expand on
MAP-Elites, due to its simplicity of implementation and proven per-
formance in various applications [11, 23, 45]. Although MAP-Elites
usually uses simple low-dimensional parameterised controllers [11],
recent work proposed scaling MAP-Elites to Neuroevolution and
applied it to more complex environments [9], by combining MAP-
Elites with Evolutionary Strategies to effectively search the high-
dimensional network parameter space. Two recently introduced
MAP-Elites-based approaches present ideas which are close to the
notion of controller parameter manifolds. MAP-Elites via Elite Hy-
pervolumes [46] uses a mix of isotropic and directional Gaussian op-
erators allowing for an adaptive search that implicitly explores the
hypervolume of the elites, which is similar to the learned manifold
in PoMS, but in the original parameter space. Data-driven encoding
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MAP-Elites [18], combines the line mutation with a reconstruction-
crossover operator, based on an AE trained on the policies contained
in the collection, similarly to our approach.

Task-conditioned policies are a widely used framework for
achieving a diversity of policies in RL. These policies are condi-
tioned on a task context identifier, sampled from a discrete [15, 25]
or continuous [42] distribution. Diversity is All You Need (DIAYN)
[15] focuses purely on discovering diverse skills, i.e. behaviours,
and does not consider extrinsic environment rewards. While QD
and task-conditioned policies both aim to promote behaviour di-
versity, they differ in how the diversity is maintained and in the
definition of skills, i.e. behaviours. QD requires certain level of
domain knowledge, still, it is able to consider a significantly larger
number of diverse behaviours.

3 POLICY MANIFOLD SEARCH
In this section, we describe the proposed Policy Manifold Search
(PoMS) algorithm (Fig 1). PoMS is an iterative algorithm, where
each iteration consists of the parameter manifold learning and pa-
rameter manifold search phases (Algorithm 1). The former consists
of finding a latent representation of the parameter space and the
corresponding mapping functions, while the latter performs search
in the learned latent space to generate new diverse policies. Each
iteration potentially adds new policies to the collection, following
the MAP-Elites framework [11], which are then used to refine the
latent representation in the next iteration. The goal of PoMS is to
focus the search in the manifold which contains a high density
of solutions, in order to improve the sample complexity and the
behaviour coverage.

3.1 Preliminaries
Let us consider a typical RL setting, with an environment defined
as a Markov Decision Process (MDP) (S,A,T ,R, 𝛾), with the state
space S, action space A, and the deterministic transition function
T : S × A → S. The reward function R and discount factor and
𝛾 are not used in this work. We define a deterministic policy 𝜋𝜃 ,
parameterised as a deep neural network, that maps the current
state to the action to be taken at that state 𝑎𝑡 = 𝜋𝜃 (𝑠𝑡 ). The policy
parameters 𝜃 are a P-dimensional set of network weights and biases,
𝜃 ∈ R𝑃 , such that each point in the policy parameter space defines a
unique policy. During an episode of length𝑇 , an agent interacts with
the environment, using the policy 𝜋𝜃 , thus generating a trajectory
𝜏 = {𝑠𝑖 , 𝑎𝑖 }𝑇1 . We want to distinguish how a certain deterministic
policy 𝜋𝜃𝑘 interacts with the environment in a quantifiable way. To
this end, we use the concept of a Behaviour Descriptor (BD) from
the QD literature [12] which aims to uniquely describe an episode
rollout. The BD is formalized as a mapping from a state-trajectory
𝜏 space, to a 𝑏-dimensional behaviour space BD : T→ B.

The MAP-Elites framework maintains a collection of multiple
policy parameters, in a multi-dimensional cell-grid C𝜽 , which is
indexed by the behaviour index 𝑏 ∈ B obtained using the BD.
Different policies can produce the same 𝑏, but a specific determin-
istic policy will map to a unique behaviour (surjective mapping).
To resolve the surjective mapping, usually each cell of the grid is
populated by a single highest-performing policy based on some
performance metric. The aim of MAP-Elites is to fill all the cells of

Algorithm 1: Policy Manifold Search (PoMS)
// autoencoder parameter initialisation

𝜉 ← Xavier-Glorot
// collection initialisation

C𝜽 = ∅
𝜽 𝐼𝑁 𝐼𝑇 ∼ U(−1, 1)
𝝉 𝐼𝑁 𝐼𝑇 = environment_eval(𝜋𝜽 𝐼𝑁 𝐼𝑇 )
𝒃𝐼𝑁 𝐼𝑇 = BD(𝝉 𝐼𝑁 𝐼𝑇 )
C𝜽 [𝒃𝐼𝑁 𝐼𝑇 ] ← 𝜽 𝐼𝑁 𝐼𝑇

for nloop in PoMS_loops do
// parameter manifold search phase

for niter in MAP-Elites_iterations do
𝜽𝑆𝐸𝐿 ∼ C𝜽
𝜽𝑀𝑈𝑇 = region_based_search(𝜽𝑆𝐸𝐿)
𝝉𝑀𝑈𝑇 = environment_eval(𝜋𝜽𝑀𝑈𝑇 )
𝒃𝑀𝑈𝑇 = BD(𝝉𝑀𝑈𝑇 )
C𝜽 [𝒃𝑀𝑈𝑇 ] ← 𝜽𝑀𝑈𝑇

end
// parameter manifold learning phase

for 𝜽batch in C𝜽 do
𝜽batch = 𝑓𝐷 ◦ 𝑓𝐸 (𝜽batch; 𝜉)
L𝐴𝐸 ≡ ∥𝜽batch − 𝜽batch∥22
argmin

𝜉

L𝐴𝐸

end
end

C𝜽 with the best possible policies through an iterative process. Each
iteration consists of (i) randomly selecting a batch of individuals
from the collection, (ii) applying a mutation and evaluating these
modified individuals, (iii) based on the outcome of the evaluation,
add the new individuals to the grid if the corresponding cell is
vacant or if they outperform the currently occupying individual. In
this study, we focus solely on policy behaviour diversity, so a cell
occupancy conflict is resolved by a coin-flip. A typical mutation
operator adds an isotropic Gaussian noise N(0, ΣΘ), with a unit
covariance matrix ΣΘ = 𝜎ΘI, where 𝜎Θ is a hyperparameter.

3.2 Parameter Manifold Learning Phase
The main insight of PoMS is learning a lower-dimensional manifold
R𝑀 , embedded in R𝑃 where𝑀 << 𝑃 , around which a high-density
of interesting (i.e. non-degenerate) policies are located. This mani-
fold can then serve as a smaller search space for a more efficient
exploration. To find the manifold, we first generate a set of ran-
domly distributed policy network parameters (uniformly sampled
𝜃𝑖 ∼ U(−1, 1)) and add them to the policy collection according to
the MAP-Elites framework, which preserves diverse and unique be-
haviours. Then, we use the parameters that have been added to the
policy collection to train a dimensionality reduction algorithm, like
a deep AutoEncoder (AE) [26, 28]. The bottleneck layer of the AE
defines the latent parameter representation space, which we refer
to as the learned manifold. In this way, each point in the original



GECCO ’21, July 10–14, 2021, Lille, France N. Rakicevic et al.

parameter space 𝜃𝑖 can be directly mapped into the correspond-
ing point on the manifold 𝑧𝑖 ∈ R𝑀 using the encoder (𝑓𝐸 ), and
reconstructed back using the decoder (𝑓𝐷 ). The AE used is fully-
connected and symmetrical, where 𝑓𝐸 and 𝑓𝐷 are parameterised
by 𝜉 = {𝜉𝐸 , 𝜉𝐷 }. The AE parameters 𝜉 are learned by minimis-
ing the reconstruction loss: L𝐴𝐸 = 1

|C𝜽 |
∑ |C𝜽 |
𝑖
∥𝜃𝑖 − 𝜃𝑖 ∥22, where

𝜃𝑖 = 𝑓𝐷 ◦ 𝑓𝐸 (𝜃𝑖 ; 𝜉). In contrast with recent works [7], we do not
apply any additional regularisation on the latent space, and train
the AE in an unsupervised manner to reconstruct its inputs. As
opposed to the common training strategy on static datasets, in the
case of PoMS , it is not beneficial to normalise the training data
before fitting the AE, as periodic additions to the collection lead to
instability in the training.

Each iteration of PoMS is likely to add new policies to the collec-
tion. The parameter manifold learning phase then uses all the policy
parameters from the collection and continues the training of the AE
to refine the latent representation. Further details on the training
procedure and hyperparameters, are presented in Appendix A.

3.3 Parameter Manifold Search Phase
One of the strengths of MAP-Elites is that it constantly applies
small mutations to the “elites", a subset of solutions contained in
the collection, therefore only exploring around solutions that have
shown to be either high-performing (i.e. exploiting) or different (i.e.
exploring). In PoMS, we sample a random subset of solutions from
the policy collection, as we focus on behaviour diversity rather than
performance. Further, we also apply small mutations to the selected
solutions, although these mutations are applied to the latent repre-
sentations of the solutions in the latent space, as opposed to directly
in parameter space. However, a small perturbation in the latent
space can lead to a very large perturbation in the parameter space,
once reconstructed, due to the complexity of the learned decoder.
Therefore, there is a significant risk that applyingmutations directly
in the latent space (e.g. via Gaussian noise) and reconstructing, will
lead to an uncontrolled mutation overall, similar to random search.

Considering the decoder Jacobian. To address this issue, we
propose limiting the magnitude of the reconstructed samples, by
making the latent parameter space search heteroscedastic. We im-
pose that each mutated point in the latent space 𝑧′ ∼ N(𝑧𝑘 , Σ𝑍 ),
when reconstructed, lands within an isotropic Gaussian distribution
in the original parameter space, i.e. 𝑓𝐷 (𝑧′) ∼ N (𝑓𝐷 (𝑧𝑘 ), ΣΘ = 𝜎ΘI).
Meaning, the reconstructed samples are limited to a hyper-sphere
region around the parameters of the selected policy. To achieve
this, we use the Jacobian of the decoder, which gives us a linear
approximation (first order Taylor expansion) of the transformation
around a specific point in the latent space 𝑧, denoted as J𝐷 (𝑧):

J𝐷 (𝑧) = 𝐽𝐷 (𝑧)𝑖 𝑗 =
𝜕𝑓𝐷 (𝑧)𝑖
𝜕𝑧 𝑗

(1)

Let us define the desired covariance matrix of an isotropic Gaussian
in the original parameter space as ΣΘ = 𝜎ΘI, where𝜎Θ is the desired
radius of the spherical Gaussian and I ∈ R𝑃×𝑃 is the square identity
matrix. The objective is to estimate the appropriate covariance
matrix for the Gaussian noise Σ𝑍 applied in the latent space as a
function of ΣΘ and the Jacobian. This is given by:

Σ𝑍 = J𝑇𝐷ΣΘJ𝐷 (2)

For the full derivation of Equation (2) using Taylor expansion, please
refer to Appendix C.

Algorithm 2: Region-based search

Input: 𝜽𝑆𝐸𝐿 ; C𝜽 , ΣΘ, 𝑓𝐸 , 𝑓𝐷
Output: 𝜽𝑀𝑈𝑇

𝜖𝑟𝑒𝑐𝑛 = 1
|C𝜽 |

∑ |C𝜽 |
𝑖
∥𝜃𝑖 − 𝜃𝑖 ∥22

𝜽𝑀𝑈𝑇 = ∅
for 𝜃𝑖 in 𝜽𝑆𝐸𝐿 do

𝜃𝑖 = 𝑓𝐷 ◦ 𝑓𝐸 (𝜃𝑖 )
if ∥𝜃𝑖 − 𝜃𝑖 ∥22 < 𝜖𝑟𝑒𝑐𝑛 then

𝑧𝑖 = 𝑓𝐸 (𝜃𝑖 )
J𝐷 = calculate_jacobian_matrix(𝑓𝐷 ; 𝑧𝑖 )
Σ𝑍 = J𝑇

𝐷
ΣΘJ𝐷

𝑧𝑀𝑈𝑇
𝑖

= 𝑧𝑖 + N(0, Σ𝑍 )
𝜃𝑀𝑈𝑇
𝑖

= 𝑓𝐷 (𝑧𝑀𝑈𝑇
𝑖
)

else
𝜃𝑀𝑈𝑇
𝑖

= 𝜃𝑖 + N(0, ΣΘ)
end
𝜽𝑀𝑈𝑇 ← 𝜃𝑀𝑈𝑇

𝑖

end

Region-based mixing strategies. Performing the parameter
search in the latent space has the advantage of offering a smaller
search spacewith a high-density of different and interesting policies.
However, like in most autoregressive algorithms, the AE is unable
to generalise far beyond the training set data support. To overcome
this problem, we employ a region-based exploration strategy. If
the reconstruction error of a selected 𝜃𝑖 is below a threshold value
𝜖𝑟𝑒𝑐𝑛 , we perform the mutation in the latent space as explained
above. If the reconstruction error is above the threshold, the mu-
tation is applied directly in the parameter space using N(𝜃𝑖 , ΣΘ).
The reconstruction error threshold 𝜖𝑟𝑒𝑐𝑛 , is determined heuristi-
cally based on the average reconstruction error of all the points
in the collection, achieved after the manifold learning phase. The
pseudocode for region-based policy search is given in Algorithm 2.
This approach allows us to use mutations in the latent space in re-
gions that are well known by the AE (i.e. low reconstruction error),
and unconstrained mutations in the parameter space otherwise.
Periodically adding solutions obtained via parameter space search
helps reduce overfitting, thus making the AE generalise better. This
can be regarded as a type of active learning based on model un-
certainty [36]. In the experiment section, when using the mixing
strategy, we show its average mixing ratio (proportion of the total
number of samples obtained in the parameter space).

4 EVALUATION
Our experimental evaluation 1 aims to find the following insights:
Q1. Are there any benefits of using the learned manifold for policy
search, as opposed to the original parameter space?
Q2. What is the effect of using the Jacobian of the decoder, for
1The code for the proposed approach and evaluation environments is available online:
https://sites.google.com/view/policy-manifold-search

https://sites.google.com/view/policy-manifold-search
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(a) Bipedal-
Walker

(b) Bipedal-
Kicker

(c) 2D-Striker (d) Panda-
Striker

Figure 2: Screenshots of the continuous control environ-
ments used for experimental evaluation. The environments
(a-c) are implemented in Box2D [5] and (d) in PyBullet [10].

scaling the latent space sampling covariance matrix?
Q3. Is the non-linear manifold learning necessary, or does a linear
projection suffice?
Q4. How does PoMS compare to state-of-the-art QD approaches?

In order to answer Q1, we compare the performance of the pro-
posed PoMS approach, to MAP-Elites (MAPE-Iso) which performs
search in the original parameter space. Within this analysis, we
also consider two state-of-the-art baselines which are based on a
notion of a manifold: MAP-Elites via Elite Hypervolumes (MAPE-
IsoLineDD) [46] and Data-driven encoding MAP-Elites (DDE) [18].
In this paper, we mainly focus on the parameter versus manifold
exploration. While other work exists that scale MAP-Elites to Neu-
roevolution using more advanced search strategies in the parameter
space [9], we leave for future work the investigation on how these
two families of approaches can be combined.

Further, we perform an ablation study to address Q2 and Q3.
The first aim is to demonstrate the importance of scaling the latent
space sampling covariance matrix, using the decoder Jacobian. The
alternative to this would be a latent space search, where the latent
sampling covariance matrix Σ𝑍 is determined based on the cur-
rent ranges of the latent representations (PoMS-no-jacobian). The
second aim is to examine the importance of non-linear manifold
learning, using AE, as opposed to using a linear projection of the
parameter space via PCA (PoMS-PCA) to obtain the latent space.

Regarding Q4, we focus on how PoMS compares to MAPE-
IsoLineDD and DDE. Additionally, we examined Diversity is All
You Need (DIAYN) [15], as a task-conditioned policy approach.
However, preliminary tests showed that it is unable to scale to
several thousand skills, and in the time required by MAP-Elites and
PoMS to evaluate million episodes, DIAYN managed to evaluate
just over 2000, without observing any promising results. Therefore,
we decided to exclude this algorithm from our analysis.

Random baselines are included as a ‘sanity check’ to compare
the proposed algorithm with random search. We evaluate two ap-
proaches: (ps-uniform) where each policy network samples are
drawn from a uniform distribution U(−1, 1), and (ps-glorot) in
which each sample is initialised according to Xavier-Glorot scaled
normal distribution, a popular network weight initialiser [21].

4.1 Experiments
We evaluate the methods on four deterministic simulated environ-
ments (shown in Fig. 2). The agent acting in the environments is

controlled by a neural network parameterised policy, whose pa-
rameters are generated by the policy search method and stored in
the policy collection. The policy network takes the full observation
vector as input, and outputs a desired action vector (joint torques
or velocities). The architecture of the policy network is kept the
same across all experiments, and is based on the Proximal Policy
Optimisation [41] policy implementation for continuous control
tasks. It is as a fully-connected neural network with two hidden
layers of 32 neurons each, with 𝑡𝑎𝑛ℎ activation functions. The out-
put layer activation function is linear. The input and output size
vary depending on the observation and action vector sizes, which
are specific to each environment. The environments used are:

Bipedal-Walker [observation 26D, action 4D, collection size
50000] is a standard OpenAI gym [4] environment (Fig. 2a). The
original observation vector has 24 elements, which include the ro-
bot hull angle, horizontal, vertical and angular velocities, joints
angles and angular velocities, legs-ground contact information, and
10 lidar rangefinder measurements. We also added the absolute co-
ordinates of the robot hull, thus creating a 26D observation vector.
The 4D action vector is unaltered and provides torques for each
of the leg joints. At the start of the episode, the robot is placed
in the middle of the terrain so it can walk either forward or back-
wards, in as many diverse ways as possible. The episode is limited
to 500 steps. The policy collection is a 4D grid populated using
the behaviour descriptor based on the agent’s absolute positions
and leg-ground contacts during the episode, where each dimension
index is: D1: average hull y-coordinate, limited to [4.5, 6.2] range
and discretised into 5 bins; D2: final hull x-coordinate, 100 bins
spanning the terrain length; D3-4: proportion of time left and right
legs spent in contact with ground, respectively, normalized to [0, 1]
range discretised into 10 bins each.

Bipedal-Kicker [observation 30D, action 4D, collection size
10000] extends the Bipedal-Walker task by adding a ball (Fig. 2b).
Therefore, the observation vector is extended with the ball x, y po-
sition and velocities, making it 30D. The action output is the same.
Since the goal is to have a diversity of ball ballistic trajectories, we
make the terrain flat to avoid biasing the outcomes to local valleys.
In order to facilitate kicking, as the agent does not have a foot, at
the start of the episode the ball is dropped from a small height so
the agent can hit it. The agent is allowed to move for 100 timesteps
and then stops to avoid multiple kicks, while the ball moves until it
stops due to the damping effects. The behaviour descriptor, used
for the 2D grid policy collection (Fig. 4), is based on the ball trajec-
tory, as a usual way of defining a 2D ballistic trajectory: D1: final
ball x-coordinate, in the right half of the terrain divided into 200
bins; D2: maximum ball y-coordinate achieved during the episode,
limited to [4, 7] range and discretised into 50 bins.

2D-Striker [observation 14D, action 3D, collection size
15300] is a bounded air-hockey-like environment implemented in
Box2D [5], with the goal of controlling the striker to hit the puck so
it lands on as many diverse positions as possible (Fig. 2c). The arena
is bounded by four walls to the size of 100x100 units, created to be
proportional to the striker size (5x2.5 units). The puck has a radius
of 2.5 units. The 14D observation vector, consists of the striker’s
x, y position and angle 𝜙 , the puck’s x, y position, as well as their
corresponding velocities, and puck-wall distances for each of the
walls. The 3D action vector controls the striker’s x, y and angular
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(a) Bipedal-Walker (b) Bipedal-Kicker (c) 2D-Striker (d) Panda-Striker

Figure 3: Behaviour coverage and mixing-ratio plots achieved by the compared methods, for four continuous control environ-
ments. The markers on the lines of approaches using a latent representation, correspond to latent representation updates.

velocities. Similarly to Bipedal-Kicker, the agent is allowed to act
100 steps before the actions are set to 0, in order to have only one
interaction with the puck per episode, while the puck moves until it
stops due to damping effects. The policy collection is a 3D grid, with
the indices corresponding to: D1-2: final x, y position of the puck,
with 30 bins per dimension; D3: index wall(s) the puck bounced off
during the episode, and has 17 possible values (no wall, south, east,
north, west, and 12 additional second order combinations).

Panda-Striker [observation 24D, action 7D, collection size
15300] has the same goal, policy collection and behaviour descrip-
tor as 2D-Striker. However, here the striker is attached to the end-
effector of a 7-DOF Franka-Panda arm implemented in PyBullet [10],
which is used to hit the ball on a bounded table (Fig. 2d). The 24D
observation vector contains the 7 joint positions and velocities,
cartesian position and orientation of the end-effector and the ball’s
position and velocities. The 7D action vector contains joint velocity
controls for moving the robot arm.

In contrast to Bipedal-Walker, the Bipedal-Kicker and both Striker
environments contain a ball, which is an external object manip-
ulated by the agent. This adds complexity to the task as certain
elements of the observation vector can vary independently of the
agent’s actions. Another distinction is that Striker environments
are bounded, while Bipedal ones are not. This leads to certain el-
ements of the observation vector having different scales. Usually
they can be normalised, but in unbounded environments this is not
straightforward. We investigate the influence of these environment
differences on the behaviour diversity via the evaluation metric.

4.2 Metric
We use behaviour coverage as a metric to quantify the behaviour
diversity, in order to assess a search method’s performance [12].
It quantitatively describes the number of distinct behaviours dis-
covered by the algorithm, as a percentage of the policy collection
filled. For the experiments to have statistical significance, 5 runs
are executed with different parameter initialisation seeds. We show
the median of the 5 seeds, 25th and 75th percentile. The x-axis of
the behaviour coverage plots shows the total cumulative number
of episode rollouts to have a fair comparison.

5 RESULTS
Below, we discuss the behaviour coverage achieved by the com-
pared methods (Fig. 3), in the context of questions from Sec. 4.
Implementation details of these methods are given in Appendix B.

A1. Learned latent vs original parameter space search.
The first conclusion we note from the experiments, is that the
standard MAP-Elites algorithm (MAPE-Iso) is competitive in high-
dimensional parameter space problems, which has not been suffi-
ciently investigated in previous work. Comparing the proposed
PoMS approach with MAPE-Iso, PoMS systematically achieves
higher behaviour coverage across the tasks. This is especially evi-
dent with Bipedal-Kicker, where the relationship between the ob-
servation vector and the action outputs, which depend on the policy
parameterisation, is highly complex. This could be attributed to
the unbounded nature of the environment and the presence of
an additional object. The 2D-Striker case is an exception as all
methods converge to the same performance (Fig. 2c). This result
can be explained by the simplicity of the task, as the policy out-
puts can directly influence the planar movement of the striker, and
by extension the puck, while such connection is more complex
within Bipedal environments and to some extent with the Panda
arm. Even though MAPE-IsoLineDD operates in the parameter
space, it uses the hypervolume of elites for search, which can be
related to the notion of a manifold, thus improving its efficiency
over MAPE-Iso. However, besides the Striker tasks where it reaches
equal asymptotic performance, it converges to a lower behaviour
coverage compared to PoMS . By definition of the line mutation, the
MAPE-IsoLineDD usually performs well when the hypervolume
of elites is convex. When this assumption does not hold, a more
involved transformation is needed which PoMS realises via mani-
fold learning. DDE uses the learned latent representation indirectly
by exploiting the reconstruction inaccuracies through its mutation
operator, which on average achieves higher behaviour coverage
than direct policy space search, such as MAPE-Iso. Still, accounting
for the decoder transformation and having a more structured latent
sampling as in PoMS enables better performance. These findings
validate the benefits of using a learned latent representation of the
policy parameters for policy search.
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(a) PoMS (b) PoMS-PCA (c) PoMS-no-jacobian

(d) MAPE-IsoLineDD (e) DDE (f) MAPE-Iso

Figure 4: Policy collections showing the behaviour coverage achieved by the compared methods for the Bipedal-Kicker.

A2. Contribution of decoder Jacobian scaling. By compar-
ing PoMS and PoMS-no-jacobian, we can see that accounting for
the decoder transformation of the latent space samples, via Jacobian
scaling of their covariance matrix, is crucial for the algorithm’s per-
formance. As hypothesised, simple latent perturbation and recon-
struction done in PoMS-no-jacobian, leads to a search that performs
similarly to random search (Fig. 3b, 3c).

A3. Linear vs non-linear representations. The difference in
performance between PoMS and PoMS-PCA, speaks mostly about
the intrinsic complexity of the given task control problem. Envi-
ronments in which locomotion is involved have an intrinsic non-
linearity in the mapping of the policy outputs and actual motions
contained in the observation vector, which is used to determine be-
haviour descriptors. This can explain the performance gap between
PoMS and PoMS-PCA in both Bipedal environments (Fig. 3a, 3b).

A4. State-of-the-art performance comparison. The meth-
ods with consistently highest behaviour coverage are PoMS, PoMS-
PCA, DDE andMAPE-IsoLineDD, where the common characteristic
is using a notion of a manifold, by focusing the search in the hy-
pervolume of elites or the learned manifold. This further solidifies
claims from A1. Even though DDE and MAPE-IsoLineDD were
not originally used with neural network parameterised controllers,
they perform well in high-dimensional parameter spaces. As we
increase the environment complexity, by adding a Panda arm to
Striker, and considering the Bipedal agent, we can observe that
the proposed PoMS, maintains a high behaviour coverage, while
other state-of-the-art methods are not as robust. This drop in per-
formance is higher in purely parameter space search methods such
as MAPE-Iso, ps-uniform and ps-normal. PoMS outperforms the
next best state-of-the-art approach by a relative increase of the me-
dian coverage of 15% and 9% respectively for Bipedal-Walker and
Bipedal-Kicker environments, while it is on-par in both Striker envi-
ronments at convergence. A qualitative comparison of the achieved
behaviour coverage at convergence, for each of the compared meth-
ods is shown in Fig. 4.

Mixing ratio Below the corresponding behaviour coverage
graphs in Fig. 3, we show the mixing ratios for PoMS and PoMS-
PCA. The mixing ratio represents the averaged ratio of samples
generated in the latent, versus the parameter space, during one
search iteration. Mixing ratio of 1 means that all the policy param-
eters are sampled directly in the parameter space, while 0 means
that all are sampled in the latent space (using the scaled covariance

matrix) and then reconstructed. The first loop of the algorithm
starts with a mixing ratio of 0.5 and subsequently the ratio changes
based on the mean reconstruction error, as explained in Section 3.
From the mixing ratios we can see that in the beginning, there is
usually a spike towards parameter space sampling. This is due to
the fact that initially there are many points with a high reconstruc-
tion error, because the AE is trained on a small amount of data, and
needs more diversity - thus it ‘explores’. The mixing ratio slowly
decreases in favor of the latent space samples, with several salient
‘dips’ which loosely correlate to jumps in behaviour discovery. This
can be interpreted as the algorithm ‘exploiting’ the learned latent
representation. This is not evident with PCA as its representations
tend to be more rigid and do not change often with new data.

6 CONCLUSION
In this paper, we proposed the Policy Manifold Search algorithm,
inspired by the manifold hypothesis, that aims to discover a collec-
tion of policies with diverse behaviours by performing search in the
learned manifold embedded in the policy parameter space. We learn
this manifold from a collection of policy parameters maintained
according to the MAP-Elites framework, and use the manifold to
generate novel solutions, thus augmenting the collection. Experi-
mental evaluations of PoMS validate the benefits of using a learned
manifold, coupled with the Jacobian of the decoder for guiding the
search, to discover larger collections of diverse policies compared to
the baselines. The benefits of considering the manifold hypothesis
were further reinforced by examining two state-of-the-art methods
which rely on this notion as well, and achieve good performance.
These findings suggest that the policy parameter space is redundant,
and learning its latent representation is useful as it contains many
diverse solutions close to each other, which helps policy search.

In future work, we plan to further investigate the structure of the
learned manifold and how it can be formed without using domain
knowledge through behaviour descriptors. Another interesting line
of work we plan to pursue is extending this approach to full network
graph encoding, rather than just weight parameters.
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A AUTOENCODER TRAINING DETAILS
During the parameter manifold learning phase of PoMS, the AE is
trained by minimising the reconstruction loss L𝐴𝐸 in order to find
the optimal AE parameters (𝜉). We use the Adam optimiser with:
𝛽1 = 0.9, 𝛽2 = 0.999, 𝜀 = 10−8 and learning rate of 10−5, for 2 · 104
epochs, with batch size of 64. The training hyperparameters are the
same in all experiments. To improve the robustness of the optimiser,
we reset the momentum variables at every loop. Moreover, 30% of
each batch is used as a test set for early stopping of the training.
If the slope of the line fitted to the last 100 test set values is larger
than 10−5, the training is stopped. We found that this improves the
generalisation of the AE and reduces training time.

B IMPLEMENTATION DETAILS
All algorithms based on MAP-Elites (PoMS versions, MAPE-Iso,
MAPE-IsoLineDD and DDE) run 100 iterations of MAP-Elites with
a budget of 200 samples. The policy collection is initialised by draw-
ing 2000 policy samples from a uniform distribution, as usually
done in the MAP-Elites literature [12]. The ps-uniform and ps-
glorot methods run for the same total amount of samples as other
algorithms, while the progress is displayed every 2000 samples.
PoMS has three main hyperparameters that need to be tuned: AE
architecture, latent space dimension (LD) and ΣΘ. The AE is sym-
metric, i.e. both encoder and decoder have one hidden layer with
ELU activations, and we vary the number of hidden nodes (HD).
The activation function of the bottleneck layer forming the latent
space is linear, same as for the output layer of the decoder. The
hyperparameter values used in the experiments are:
Environment HD LD 𝚺Θ

Bipedal-Walker 100 50 0.1
Bipedal-Kicker 100 100 0.01
2D-Striker 100 50 0.1
Panda-Striker 100 50 0.5

PoMS-no-jacobian keeps the same AE architectures as PoMS, in
order to have an appropriate ablation study. The Σ𝑍 is not fixed,
rather, dynamically updated based on the current latent space pa-
rameter ranges, per latent dimension 𝒓𝑍 , in order to scale a unit
covariance matrix Σ𝑍 = 𝒓𝑇

𝑍
I. In this way, we give importance of

each of the latent dimensions based on their spread. As we can see
from the results, two issues arise with this approach: (i) range does
not equal importance (solution density), (ii) applying the inverse
transformation applies an additional distortion which can lead to
undesirable values, because 𝜃 ′ ≠ 𝑓𝐷 (𝑧′), where 𝑧′ ∼ N(𝜇𝑍 , Σ𝑍 )
and 𝜃 ′ ∼ N(𝑓𝐷 (𝜇𝑍 ), ΣΘ), even if ΣΘ = Σ𝑍 = I.
PoMS-PCA requires LD and ΣΘ as hyperparameters. These values
are kept the same as with PoMS, for a proper ablation study.
DDE hyperparameters consist of the AE architecture and mutation
operator specific hyperparameters. The former is kept the same as
with PoMS, for each of the experiments, while the latter are as in
the original paper [18]. Instead of running a fixed window for the
multi-armed bandit upper confidence bound operator selector, we
maintain a moving average.
MAPE-IsoLineDD has two hyperparameters related to the weigh-
ing of the isometric and directional components of the mutation
operator, and they are kept the same as in the original paper [46].

MAPE-Iso needs only ΣΘ, which we set to ΣΘ=0.1 as this achieved
the best performance for MAPE-Iso across the experiments.

C DERIVATION OF JACOBIAN SCALING
Let us assume 𝜃 ∈ Θ ⊂ R𝑃 and 𝑧 ∈ 𝑍 ⊂ R𝑀 to be Gaussians in the
parameter and latent space respectively, such that 𝜃 ∼ N(𝜇Θ, ΣΘ)
and 𝑧 ∼ N(𝜇𝑍 , Σ𝑍 ). We further assume a non-linear, vector-valued
function 𝑓𝐷 : R𝑀 → R𝑃 which maps the latent space to the original
parameter space. Then, we can get a linear approximation 𝑓𝐷 in a
point 𝜇𝑍 by performing a first-order Taylor expansion:

𝑓𝐷 (𝑧) ≈ 𝑓𝐷 (𝜇𝑧) +
𝑀∑
𝑖

𝜕𝑓𝐷 (𝑧)
𝜕𝑧𝑖

����
𝑧=𝜇𝑍

(𝑧𝑖 − 𝜇𝑍𝑖 )

= 𝑓𝐷 (𝜇𝑍 ) +


∇𝑓𝐷 (𝑧)1
∇𝑓𝐷 (𝑧)2

...

∇𝑓𝐷 (𝑧)𝑃

 (𝑧 − 𝜇𝑍 )
= 𝜇Θ + J𝐷 (𝑧 − 𝜇𝑍 )

(3)

where J𝐷 is the Jacobian matrix of 𝑓𝐷 at 𝜇𝑍 :

J𝐷 (𝜇𝑍 ) = 𝐽𝐷 (𝜇𝑍 )𝑖 𝑗 =
𝜕𝑓𝐷 (𝜇𝑍 )𝑖
𝜕𝜇𝑍 𝑗

(4)

where indices 𝑖 and 𝑗 refer to the corresponding elements of the
reconstructed or latent parameter vector, respectively. Further, if
𝜃 = 𝑓𝐷 (𝑧) its expected value can be obtained as:

E[𝜃 ] = E [𝜇Θ + J𝐷 (𝑧 − 𝜇𝑍 )]
= E[𝜇Θ] + E [J𝐷 (𝑧 − 𝜇𝑍 )]
(expected values of a sum is the sum of expected values)
= 𝜇Θ + E [J𝐷𝑧] − E [J𝐷𝜇𝑍 ]
(expectation of a constant is a constant)
= 𝜇Θ + J𝐷E[𝑧] − J𝐷E[𝜇𝑍 ]
= 𝜇Θ + J𝐷𝜇𝑍 − J𝐷𝜇𝑍
= 𝜇Θ

(5)
We can obtain ΣΘ based on Σ𝑍 . We start with the standard equation
for covariance:

ΣΘ = E
[
(𝜃 − E[𝜃 ]) (𝜃 − E[𝜃 ])𝑇

]
= E

[
(𝜇Θ + J𝐷 (𝑧 − 𝜇𝑍 ) − 𝜇Θ) (𝜇Θ + J𝐷 (𝑧 − 𝜇𝑍 ) − 𝜇Θ)𝑇

]
(using Equations 3 and 4)

= E
[
(J𝐷 (𝑧 − 𝜇𝑍 )) (J𝐷 (𝑧 − 𝜇𝑍 ))𝑇

]
= E

[
J𝐷 (𝑧 − 𝜇𝑍 ) (𝑧 − 𝜇𝑍 )𝑇 J𝑇𝐷

]
= J𝐷E

[
(𝑧 − 𝜇𝑍 ) (𝑧 − 𝜇𝑍 )𝑇

]
J𝑇𝐷

(covariance definition for z)

= J𝐷Σ𝑍 J𝑇𝐷

(6)

By rearranging the previous equation we finally get:

Σ𝑍 = J𝑇𝐷ΣΘJ𝐷 (7)
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