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Abstract Learning complex physical tasks via trial-and-
error is still challenging for high-degree-of-freedom robots.
Greatest challenges are devising a suitable objective func-
tion that defines the task, and the high sample complex-
ity of learning the task. We propose a novel active learn-
ing framework, consisting of decoupled task model and ex-
ploration components, which does not require an objective
function. The task model is specific to a task and maps the
parameter space, defining a trial, to the trial outcome space.
The exploration component enables efficient search in the
trial-parameter space to generate the subsequent most in-
formative trials, by simultaneously exploiting all the infor-
mation gained from previous trials and reducing the task
model’s overall uncertainty. We analyse the performance of
our framework in a simulation environment and further val-
idate it on a challenging bimanual-robot puck-passing task.
Results show that the robot successfully acquires the nec-
essary skills after only 100 trials without any prior infor-
mation about the task or target positions. Decoupling the
framework’s components also enables efficient skill transfer
to new environments which is validated experimentally.

Keywords Active learning · Parameterised movements ·
Parameter space exploration · Bimanual manipulation

1 Introduction

The motivation for this work comes from the approach hu-
mans take when learning complex tasks such as acquiring
new skills, using new tools or learning sports. Most of their
learning process is centred around trials and errors (Newell,
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Fig. 1 Experimental setup: Robot DE NIRO uses both arms to maneu-
ver the ice hockey stick and learns the skills needed to pass the puck
(blue) to user-specified target positions (green). Estimation of the po-
lar coordinates θ and L is done using the head-mounted Kinect camera.
The red line in the bottom is parallel to the robot heading direction and
is the zero-angle reference axis.

1991). These trials do not necessarily lead directly to accom-
plishing the task, but eventually a confident task execution is
learned (Pugh et al, 2016). For robot learning, each trial can
be uniquely defined, i.e. parameterised, by a set of move-
ment parameters (Ijspeert et al, 2013) which means that per-
forming a trial is equivalent to selecting a point in the move-
ment parameter space and evaluating it.

In this paper, we focus on a problem of learning a task
through trial and error, where a task can be executed by
selecting an appropriate point in the movement parameter
space. Our aim is to develop a sample-efficient approach
that avoids trials which are not useful, by not doing random
or exhaustive exploration during learning, intended for sys-
tems where trial execution is expensive. Moreover, during
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the learining phase, we do not provide any prior information
about the task (e.g. goal position or cost function) or the en-
vironment to the agent, in order to reduce inputted domain
knowledge and aim to make the approach “task-agnostic”.

To this end, we introduce a novel iterative and online
active-learning approach, which performs informed search
in the movement parameter space defining the trials, in or-
der to sample datapoints. The proposed learning framework
consists of a task model and an exploration component. The
task model is implemented as a Gaussian Process (GP) Re-
gression (GPR) (Rasmussen and Williams, 2006) function
that maps the movement parameters as inputs, to the trial
outcomes as outputs. The exploration component performs
search in the movement parameter space to find a parame-
ter vector that encodes a subsequent most informative trial
for the task model. This component represents a compos-
ite query strategy in the Active Learning parlance, obtained
via probabilistic modelling of previous trial data and uncer-
tainty inherent to the GPR task model. It is implemented
as a probability distribution over the movement parameter
space, from which parameter vectors are sampled. During
the learning phase, the exploration component iteratively
finds datapoints in the parameter space used to fit the task
model and thus lower the task model’s posterior uncertainty.
Actual performance of the trial outcomes, i.e. cost function,
is not used by either component as the desired target out-
comes are not provided. This renders the components inde-
pendent from a specific task requirement.

For transfer we consider tasks which can be different
but have the same interface, i.e. response, from the envi-
ronment, and the same parameter space. Meaning, the ex-
ploration and sampling of the datapoints for the task model
is independent of a particular task and related to the agent’s
kinematic model. Therefore, the same exploration sequence
would be applied in different environments. Since the explo-
ration component maintains the information about the suc-
cessful trials, these trials can be directly reproduced (trans-
ferred) in different environments, in order to gather data and
fit the task model for the new environment.

As a consequence, new task models can be learned from
scratch with significantly less trial evaluations.

To present and analyse the performance of the proposed
framework we use the MuJoCo (Todorov et al, 2012) sim-
ulation environment as well as a physical robot. Both the
simulated and real robot task are similar, in that they em-
ploy an agent which tries to learn how to move another ob-
ject (puck) to arbitrary locations using its body. During the
testing phase, the agent is presented with a set of previously-
unseen arbitrary target positions. It is expected to automati-
cally generate an appropriate movement action, based on the
learned task model, to hit the puck so that it lands on the tar-
get. This is the actual task that the agent needs to perform
well. For evaluation on the real robot we have selected the

ice hockey puck-passing task, as shown in Fig. 1. We se-
lected this particular task as it is interesting for its complex-
ity: (i) it requires dual-arm coordination, (ii) there is a non-
trivial extension of the robot’s kinematic model via the ice
hockey stick, and (iii) the surface friction and stick-surface
contact models are quite difficult to model.

The proposed approach requires very little prior knowl-
edge about the system: no previous task knowledge (strate-
gies, desired movements, etc.), prior kinematic (stick and
joint constraints) nor environment (surface friction, contact
forces, etc.) models are provided. No demonstrations or ex-
pert human supervision are necessary. The number of in-
put parameters is given (which represent the displacement
of each degree of freedom) and their ranges, without con-
textual information regarding their influence or importance.

To summarise, the main contributions of this work are:

– The probabilistic framework for trial-and-error robot
task learning, based on a task-agnostic and sample-
efficient search of the trial parameter space. This is
achieved through the exploration component which is a
novel composite query function consisting of the model
uncertainty and the penalisation function.

– As a consequence of decoupling the task model and ex-
ploration components, efficient task transfer to new en-
vironments is possible, as shown experimentally. The
robot successfully learns the task models in the new en-
vironments in significantly less trials, by executing only
successful trials generated in the previous environment.

The rest of the paper is organised as follows: Section 2 gives
an overview of the related work. Section 3 formulates the
problem we are addressing and in Section 4 we present the
proposed framework. The proof of concept on a simulated
task is given in Section 5, and robot experiment is presented
and results are discussed in Section 6. Finally, we conclude
and discuss the future directions in Section 7.

2 Literature Review

2.1 Active Learning and Bayesian Optimisation

The proposed approach can be characterised as an Active
Learning (AL) approach (Settles, 2012), a field similar to
Bayesian Optimisation (BO) (Mockus, 1994) and Experi-
mental Design (ED) (Santner et al, 2013). The purpose of
these approaches is to efficiently gather datapoints used to
fit a model, which are most informative about the underly-
ing data distribution. Such datapoins enable learning a good
model in a sample-efficient way. The idea behind ED is that
all the datapoints are defined offline, before the execution,
which limits the flexibility of the approach. The difference
between AL and BO is rather subtle but important, which is
why we focus more on them in this section. Both approaches
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model a low-fidelity surrogate function, which is usually ob-
tained as a posterior over the unknown function. The mean
and variance of this surrogate function are used, through a
set of rules, in order to query a new input from the domain
to evaluate the unknown true function over. In BO termi-
nology, this set of rules is called an Acquisition Function,
while in AL it is called a Query Strategy. In BO the func-
tion that is evaluated needs to be optimised, while in AL
the query strategy is actually a mechanism for obtaining la-
bels for input data to further improve the function estimate.
Therefore, the end-goal of BO is to optimise an underlying
function (whence the name), while for AL it is not. Conse-
quentially, the nature of the acquisition and query functions
slightly differ as in BO they also need to improve the eval-
uated function’s value. The query function in AL focuses
solely on querying inputs that will be most informative for a
supervised learning problem, and minimise the uncertainty
in such a model. Such query functions do not have explicit
exploitation components, as opposed to their counterparts in
BO, thus no explicit function optimisation is being done.

Some of the most popular BO Acquisition Functions
are: probability of improvement (Kushner, 1964), expected
improvement (Močkus, 1975), GP upper confidence bound
(GP-UCB) (Srinivas et al, 2010), entropy search (Hen-
nig and Schuler, 2012) and predictive entropy search
(Hernández-Lobato et al, 2014). The objective function usu-
ally quantifies the model performance on a specific task. If
the acquisition function needs to ”know” the actual value of
an objective function in order to select the next parameter
to evaluate, this selection inherently carries task informa-
tion embedded in the objective function. As opposed to BO,
our proposed approach tries to avoid this. Several interest-
ing examples in the literature use BO in robotic applications
(Lizotte et al, 2007; Martinez-Cantin et al, 2009; Tesch et al,
2011; Calandra et al, 2016).

When AL Query Functions are implemented with
GPs, similarly to BO acquisition functions, they provide
uncertainty-based exploration (Seo et al, 2000; Kapoor et al,
2007; Kroemer et al, 2010; Rodrigues et al, 2014; Kroemer
et al, 2010). However, they do not necessarily need to rely on
the surrogate’s posterior, one example being empirically es-
timating the learning progress (Lopes et al, 2012) which re-
quires performance evaluation. Other examples include un-
certainty sampling introduced by Lewis and Gale (1994),
similar to our approach where the authors use the classifier
prediction uncertainty. However, our uncertainty measure is
derived from the GP posterior distribution and combined
with the penalisation function. Another interesting approach
to querying is based on maintaining multiple models for
prediction and selecting those points over whose prediction
the models disagree the most (Bongard and Lipson, 2005)
which is related to the notion of query by committee (Seung
et al, 1992). Otte et al (2014) and Kulick et al (2015) present

examples of applying AL to robotics, mostly for learning the
parameters of the controller by probing environment interac-
tions. Other robotic applications include (Thrun and Möller,
1992; Daniel et al, 2014; Dima et al, 2004; Baranes and
Oudeyer, 2013; Kroemer et al, 2010) where AL helps re-
lieve the sample complexity — one of the main limitations
imposed by hardware for robotic experiments. Most of the
above-mentioned AL sample query strategies, which rely on
prediction uncertainty, do not take into account the actual
order of acquiring datapoints explicitly, which is important
to understand the boundaries within the parameter space.
This is particularly needed in robotics, where physical con-
straints play a crucial role. Therefore, we explicitly include
such information within our exploration component. Includ-
ing safety constraints within the BO framework has been
done through the optimisation constraints in the objective
function (Englert and Toussaint, 2016; Berkenkamp et al,
2016). Gelbart et al (2014) and Schreiter et al (2015) model
safety constraints as a separate GP model, but this approach
requires additional computational resources.

There have been several approaches in the literature em-
ploying GPs to learn mapping functions similar to our task
model (Nguyen-Tuong et al, 2009; Nemec et al, 2011; Forte
et al, 2012). The latter two generate full trajectories encoded
via DMPs and introduce constraints that guide the new pol-
icy to be close to the previously demonstrated examples in
the trajectory database.

2.2 Parameter Space Exploration

The concept of good exploration strategies is crucial in su-
pervised learning, as well as RL, where it can improve sam-
ple selection and sample-efficiency. Several authors argue
the importance of exploration and benefits of moving it di-
rectly to the parameter space, as opposed to e.g. action space
in RL. This can reduce the variance caused by noisy trajecto-
ries, and generally avoids premature convergence to subop-
timal solutions (Rückstiess et al, 2010; Plappert et al, 2017).
Evolutionary Strategy-based methods (Hansen et al, 2003;
Heidrich-Meisner and Igel, 2009; Wierstra et al, 2014; Sali-
mans et al, 2017) introduce noise in the parameter space to
guide exploration, acting as a black-box optimiser, but have
poor sample-efficiency.

The main inspiration for the proposed work is to shift
away from the common utilitarian paradigm of task learning
through optimising some utility (cost) function. Some of the
approaches in this direction develop exploration which tends
to be decoupled from the actual task definition embodied in
the cost function. A recent parameter space search approach
uses the notion of curiosity (Pathak et al, 2017) where an
intrinsic curiosity module is implemented to promote explo-
ration, by learning to distinguish changes in the environment
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(a) Supervised learning (b) Proposed informed search approach

Fig. 2 Diagrams comparing the information flow in the a) supervised learning paradigm (maps outcome to control parameter) and b) proposed
informed search approach (maps control parameter to outcome). Solid line is the data pipeline, while the dashed line indicates updates. The orange
box is the task execution, i.e. environment interaction.

caused by the agent from random ones. The Quality Diver-
sity (Pugh et al, 2016) family of approaches such as MAP-
elites (Mouret and Clune, 2015; Cully et al, 2015) and Nov-
elty Search with Local Competition (Lehman and Stanley,
2011b) perform exploration by encouraging diversity in can-
didate behaviours and improving fitness over clusters of be-
haviours in the behaviour space. However, in our presented
problem formulation we do not aim to derive diverse be-
haviours, rather to find those for which the system is uncer-
tain about and which avoid dangerous situations. More im-
portantly, there is no notion of relative task fitness involved,
as the proposed exploration component of our method gen-
erates points which are informative for the model, unrelated
to their actual fitness as the fitness is task specific. The
notion behind the proposed framework is akin to the con-
cept of objective-free learning (Lehman and Stanley, 2011a)
which promotes diversifying the behaviours as an alterna-
tive to having the objective as the only mean of discovery,
which can in fact lead to deceptive local optima (Pugh et al,
2016). As opposed to promoting novelty, our approach ac-
tually selects behaviours which are most useful for the task
model. Methods relying on techniques like Motor Babbling
(Demiris and Dearden, 2005; Kormushev et al, 2015), Goal
Babbling (Rolf et al, 2010) and Skill Babbling (Reinhart,
2017) can learn the robot’s forward/inverse model by iter-
atively performing random motor commands and recording
their outcomes. However, these methods are usually data-
inefficient due to random exploration. Kahn et al (2017) use
neural networks with bootstrapping and dropout, to obtain
uncertainty estimates of the observations for predicting pos-
sible collisions and adapting the robot control accordingly.
These estimates are not further used to explore alternative
control policies. Deisenroth et al (2015) show that using GPs
within model-based Reinforcement Learning (RL) helps in
improving the sample-efficiency of learning the task. The
posterior mean and variance are used to address the ex-
ploration/exploitation trade-off during policy learning. Still,
the above-mentioned approaches require an explicit cost
function optimised by the agent in order to learn the task.
Learning robotic tasks with complex kinematics, by explor-
ing the low-level control space is presented in Kormushev
et al (2015). Additional elements such as links and lever-
age points are incorporated into the original kinematic chain

to skew the mapping of motor torques to end-effector pose.
The robot adjusts to these modifications, without an explicit
model of the robot’s kinematics or extra links provided, but
such approach would have difficulties when scaled.

2.3 Bimanual Skill Learning

There are few examples in the literature of learning to play
bimanual ice hockey, but none of them simultaneously ad-
dress: bimanual manipulation, and using a tool which dis-
torts/modifies the original robot kinematics. Relevant exam-
ple of single-arm robot learning to play hockey using RL
is presented in Daniel et al (2013) where the robot learns
to send the puck into desired reward zones and gets feed-
back after each trial. Kinaesthetic teaching is required to ex-
tract the shape of the movement which is then improved.
Recently, Chebotar et al (2017) combined model-free and
model-based RL updates to learn the optimal policy that
shoots the puck to one of the three possible goals. The
tracked puck-to-goal distance is used within the cost func-
tion to provide reward shaping. Our approach differs from
the above two, because during the training phase no infor-
mation about the goal nor the environment is provided.

3 Problem Formulation and Movement
Parameterisation

The main problem we are trying to solve is efficient high-
dimensional parameter search. We employ the proposed ex-
ploration component, to search for movement parameter dat-
apoints used to fit our task model component. The goal is
to eventually have a good model performance during test-
ing, on the task of reaching the desired outcomes. Fig. 2
compares the information flow diagrams for the standard su-
pervised learning paradigm and our proposed approach. The
model outputs a control (e.g. movement) parameter vector,
given an input, and the trial outcome is the produce of this
output when applied in the environment. The performance
metric is a cost function comparing trial outcome and target
desired outcome, and is used in supervised learning (Fig. 2a)
to update the model. In our case (Fig. 2b), the ”input” can
be seen as the whole movement parameter space from which
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the model samples and outputs a movement parameter vec-
tor. The proposed approach does not use the model per-
formance metric to update the model, rather the trial out-
come, since desired outcomes are not provided nor needed.
To demonstrate the proposed approach, we consider a task in
which the agent needs to perform a movement that displaces
its body from a fixed initial configuration. This movement
can potentially lead to a contact with another object (e.g.
a puck) moving this object to a certain location. One such
executed event is called a trial. The movement of the ob-
ject is governed by the dynamical properties of the environ-
ment (object mass, surface friction coefficient, obstacles etc)
which are unknown to the agent. The only feedback that the
agent receives, is whether the movement it performed suc-
cessfully made contact with the object (successful trial) or
not (failed trial), and in the former case, what is the final
resting position of the object (i.e. trial/task outcome).

The action that the agent performs is defined by a vector
of D movement parameters x=

[
∆q1, ...,∆qD−1,s

]
that de-

fine the whole motion sequence as a “one-shot” action. This
movement parameter vector contains the displacements ∆q
for each of the actuators w.r.t. a fixed starting configuration,
and the speed of the overall action execution s. We assume
that there already exists a position controller that translates
the goal position to a trajectory. The set of all movement pa-
rameter vectors that encode actions (trials) is the movement
parameter space. Even though this space is continuous, we
discretise it to obtain a finite set of possible combinations.
This allows us to perform fast and exact inference over the
parameter space, without the need for approximate infer-
ence methods. In the simulation experiments we use revo-
lute joints so the parameters are given in radians. Their units
are the same even though their ranges might be different.
The same holds in robotic experiments where the parame-
ters are displacements in the Cartesian space measured in
centimeters, with the exception of the wrist angle which is
in radians. Although the wrist angle has different units, the
effect it causes can be comparable to the displacements in
centimeters. After the trajectory has been executed, in case
of a successful trial, the obtained trial outcome can be any
value (both continuous or discrete) and is used to fit the task
model component. Both the successful and failed trials con-
tribute to the exploration component. Under such a setup, the
agent does not optimise for a particular task performance,
but rather tries to avoid failed trials.

4 Proposed Approach

The base assumption of our approach is that similar move-
ment parameter vectors result in similar trial outcomes.
Therefore, the task regression mapping function is smooth,
without hard discontinuities, i.e. Lipschitz continuous. In or-
der to provide a sufficiently diverse sample distribution for

the regression model to create a generic mapping during
training, successful trials are necessary, i.e. agent needs to
move the object. The main challenge is selecting the trial
to evaluate next which will lead to the highest informa-
tion gain. The proposed approach consists of two decoupled
components updated using previous experience, i.e. previ-
ous trials — the task model and exploration components.
They are implemented as functions over the movement pa-
rameter space, mapping each movement parameter vector to
a certain value. The mathematical formulation, together with
the underlying intuition behind the task model and explo-
ration components is given in Sec. 4.1 and 4.2, respectively.

4.1 Task Model Component

The task model component uses the information from scarce
successful trials, and creates a mapping between the move-
ment parameter space (X) as input, and the trial outcomes
— puck’s final position (θpuck, Lpuck) as output. This com-
ponent creates two independent task models for each of the
puck’s polar coordinates, angle and distance (as depicted
later on in Sec. 5 in Figures 7a and 7b, respectively). To this
end, we use GPR as it generalises well with limited function
evaluations, which in our case are the successful trials exe-
cuted on the robot. Using the notation from the previous sec-
tion, let us define a point in the movement parameter space
x ∈ IRD. The main assumption is that for any finite set of N
pointsX = {xi}N

i=1, the corresponding function evaluations
(in our case trial outcome) at these points can be considered
as another set of random variables F =

{
fxi

}N
i=1, whose

joint distribution is a multivariate Gaussian:

F ∼N (µ(X),K(X,X))

Where µ(xi) is the prior mean function and K(xi,x
′
i) is the

kernel function for some pair of parameter vectors xi,x
′
i.

When applied to all the pairs from X the kernel produces
the matrix of covariances K. Having a joint probability of
the function variables, it is possible to get the conditional
probability of some parameter vector’s evaluation fx?

i
given

the others, and this is how we derive the posterior based on
observations from the trials. In our case, X? is the set of
movement parameter vectors which led to successful trials
during the training phase. Set X contains all the possible
parameter combinations, since we need to perform inference
over the whole parameter space in order to obtain the task
models. We define the extended joint probability as below,
and use matrix algebra to deduce the posterior:[

fX?

fX

]
∼N

(
0,
[
K?? K

T
?

K? K

])
p( fX | fX? ,X,X?)∼N (K?K

−1
?? fx,

K−K?K
−1
??K

T
? )
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We assume a mean of 0 for our prior as we do not want to in-
put any previous knowledge in out task model. Similarly to
K, K?? is the matrix of covariances for all the pairs from
the set X?, and K? gives us the similarity of the sucess-
ful parameter vectors X? to each point in the parameter
spaceX . Within the kernel definition we also consider zero
mean Gaussian noise, ε ∼ N (0,σ2

ε ), to account for both
modelling and measurement inaccuracies. We evaluated the
performance using the squared exponention (SE), Matern
5/3 and the rational quadratic (RQ) kernels. The best per-

forming kernels are SE: KSE(x,x
′) = σ2

f e
(
− d2

2σl

)
and RQ:

KRQ(x,x
′) = σ2

f

(
1+ d2

2ασ2
l

)−α

, and these results are pre-

sented in Fig. 6. The distance measure d is defined as the Eu-
clidean distance between the points in the parameter space

d(x,x′) = ‖x−x′‖ =
√

∑
D
j=1(x j− x′j)2. Even though the

concept of a distance metric in a high-dimensional space is
not straightforward to decide and interpret, we opt for the
Euclidean distance based on the discussion from Aggarwal
et al (2001) who argue that in problems with a fixed high di-
mensionality, it is preferable to use a lower norm. Moreover,
the presented kernel showed good empirical performance.
From the similarity measure given by the kernel we get that
for the points which are far away from each other, will have
a higher variance associated with their prediction. The co-
efficients α = D/2, σ2

f and σ2
l are the scaling parameter,

variance and the lengthscale of the kernel, respectively.

The advantage of GPR is that for every point for which
we estimate the posterior distribution, we know its mean and
variance. The means are interpreted as the current task mod-
els’ predictions, and the variance as their confidence about
these predictions. Therefore, regions of the parameter space
which are farther away from the training points, will have a
higher variance and thus the uncertainty about their predic-
tions is higher. After each new successful trial, we can re-
estimate the posteriors over the whole movement parameter
space, in order to update both task models, and their uncer-
tainty. The inference is memory demanding but executes in
seconds on a workstation with a GTX 1070 GPU.

Even though it is possible to learn the GPR hyperpa-
rameters from data, we do not perform this because of: i)
Low number of samples; as the main goal of our approach
is sample-efficiency, having a low number of samples and
learning the hyper parameters with the marginal likelihood
is very likely to give overfitting results (at least several
dozens of samples are needed to learn something meaning-
ful (Cully et al, 2015)). ii) Search instability; the order of
acquiring samples is important and each subsequent point in
the search depends on the previous ones. Changing the GPR
hyperparameters after each step, would cause large variance
in the sample acquisitions which may lead to instability.

Therefore, we do extensive search of the hyperparameters,
but keep them fixed throughout the training phase.

4.2 Exploration Component

The exploration component exploits all the past trial infor-
mation, in order to obtain the selection function that guides
the movement parameter search and selection process. The
elements contributing to the selection function are the in-
formation about the unsuccessful trials, expressed through a
penalisation function, and the GPR model uncertainty. Since
the movement parameters used as inputs for GPR are the
same for both the distance and angle task model, their corre-
sponding GPR uncertainty will also be the same. The penal-
isation function and the GPR model uncertainty are repre-
sented as improper density functions (IDF), since their val-
ues for each point in the parameter space are in the range
[0,1] but they do not sum to 1. Therefore, multiplying these
two functions acts as a kind of particle filter. Since we are
interested in the relative “informativeness” of each point in
the parameter space when sampling the next trial, the actual
absolute values of these functions do not play a crucial role.
An example of these IDFs is visualised in Fig. 3.

Penalisation IDF (PIDF) probabilistically penalises re-
gions around the points in the movement parameter space
which have led to failed trials. This inhibits repetition and
reduces the probability of selecting parameters leading to
failed trials. In our experiments, a trial is failed if the agent
does not move the object. Additionally, in the simulation ex-
periment, the trial is stopped if the agent contacts (hits) the
wall. In the robotic experiment, fail cases are also when:

– Inverse kinematic solution cannot be found for the dis-
placements defined by the movement parameters.

– The displacements would produce physical damage to
the robot (self collision, ignoring the stick constraint or
hitting itself with the stick).

– Mechanical fuse breaks off due to excessive force.
– Swing movement misses the puck (no puck movement).

The PIDF is implemented as a mixture of inverted D-
dimensional Gaussians (MoG) (1), as they consider all failed
trials evenly. Gelbart et al (2014); Englert and Toussaint
(2016) chose GP for this, however, MoG provide better ex-
pressiveness of multiple modes in a distribution. PIDF is ini-
tialised as a uniform distribution pp(X)≡ U(X). The uni-
form prior ensures that initially all the movement actions
have an equal probability of being selected. Each of the
K � N evaluated trials is represented by a Gaussian with
a mean µP

k coinciding with the parameter vector xk associ-
ated with this trial. Coefficient cov is the covariance coeffi-
cient hyperparameter. Covariance matrix ΣP

k is a diagonal
matrix, calculated based on how often does each of the D
parameters take repeated values, considering all the previous
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(a) Penalisation function (b) Model uncertainty (c) Selection function
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Fig. 3 The components used to generate movement parameters vectors that define the trials. The figures show: (a) penalisation function which
inhibits the unsuccessful movements, i.e. failed trials, (b) task model uncertainty, and (c) selection function combines the previous two functions in
order to get the distribution from which the parameter vector is sampled. The visualisation of the 6-dimensional parameter space is done by fixing
the remaining parameters and showing the variance of the model w.r.t. the wrist angle and right hand displacement along the x-axis.

failed trials. This is implemented by using a counter for each
parameter. In this way, the Gaussians have a smaller vari-
ance along the dimensions corresponding to the parameters
with frequently repeating values, thus applying higher pe-
nalisation and forcing them to change when ‘stuck’. Param-
eters with evenly occurring values have wider Gaussians.

This procedure inhibits the selection of parameter val-
ues which are likely to contribute to failed trials, and stim-
ulates exploring new ones. Conversely, the parameter vec-
tor leading to a successful trial is stimulated with a non-
inverted and high variance Gaussian, which promotes ex-
ploring nearby regions of the space. PIDF can be interpreted
as p(successful trial|uncertain trial) i.e. the likelihood that
the parameter vector will lead to a successful trial given that
the model is uncertain about it.

pp(X) = U(X)+
K

∑
k=1
φkN (µP

k ,covΣ),{
φk =−1,Σ =ΣP

k failed trial
φk =+1,Σ = I successful trial

(1)

Model Uncertainty IDF (UIDF) is intrinsic to GPR (2)
and is used to encourage the exploration of the parameter
space regions which are most unknown to the underlying
task models. UIDF is updated for both successful and failed
trials, as the exploration does not depend on the actual trial
outcomes.

pu(X) =K−K?K
−1
?? K

T
? (2)

Selection IDF (SIDF) combines the information pro-
vided by the UIDF, which can be interpreted as the prior
over unevaluated movements, and the PIDF as the likelihood
of improving the task models. Through the product of PIDF
and UIDF, we derive SIDF (3), a non-parametric distribution

used as a query function, as the posterior IDF from which
the optimal parameter vector for the next trial is sampled.

psel(X) ∝ pp(X)pu(X) (3)

The trial generation and execution are repeated iteratively
until the stopping conditions are met. Since we are not
minimising a cost function, the learning procedure can be
stopped when the average model uncertainty (i.e. entropy)
drops below a certain threshold. This can be interpreted as
stopping when the agent is certain that it has learned some
task model. The pseudocode showing the learning process
of the proposed framework is presented in Algorithm 1.

Algorithm 1 Task and Exploration component learning
1: Inputs:

movement parameter space:X
2: Initialize:

PIDF←Π0

UIDF← 1
3: repeat

. Following Eq. (3)
4: SIDF← PIDF × UIDF

. Sample movement parameter vector
5: xt ∼ SIDF

. Trial execution on the robot
6: trial outcome, θpuck, Lpuck = EXECUTE TRIAL(xt )
7: if trial outcome = failed then
8: ΣP

k [xt ] += 1
. Following Eqs. (1) and (2), respectively

9: PIDF −=N (xt ,covΣ
P
k )

10: UIDF = GPR(xt)
11: else
12: ΣP

k [xt ]−= 1
. Following Eqs. (1) and (2), respectively

13: PIDF +=N (xt ,covI)
14: θx,Lx, UIDF = GPR(xt ,θpuck,Lpuck)

15: until stopping conditions
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4.3 Learned Task Model Evaluation

In order to evaluate the performance during the testing
phase, it is necessary for the angle θ(x) and distance L(x)
task models to be invertible. Given the target coordinates
(desired trial outcome), a single appropriate movement pa-
rameter vector x̂ defining the swing action that passes the
puck to the target needs to be generated. It is difficult to
generate exactly one unique parameter vector which pre-
cisely realises both the desired coordinate values θd and Ld .
Therefore, the one which approximates them both best and
is feasible for robot execution is selected.

This is achieved by taking the parameter vector which
minimises the pairwise squared distance of the coordinate
pair within the combined model parameter space, as in (4).
Additional constraint on the parameter vector is that its cor-
responding PIDF value has to be below a certain threshold ε

to avoid penalised movements.
In our numerical approach, this is done iteratively over

the whole parameter space, and takes a couple of milisec-
onds to run. Alternatively, obtaining the optimal parameter
vector could be achieved using any standard optimisation
algorithm. More importance can be given to a specific coor-
dinate by adjusting the weighing factor δ .

x̂= argmin
x

(√
(1−δ )(θ(x)−θd)2 +δ (L(x)−Ld)2

)
subject to: pp(x)< ε

(4)

4.4 Task Transfer

After the task model is learned, if we were to repeat the
approach in a different environment, the algorithm would
still generate the same trials, both successful and failed. The
new environment can be considered as a different task as
long as the parameter space stays the same, but the trial out-
comes values change. This is possible due to the fact that
the proposed approach does not take into account the actual
puck position values when generating subsequent trials, but
rather the binary feedback whether the trial was successful
or failed. To reiterate, only the successful trials contribute
to forming the task models as they actually move the puck,
while the failed trials are inherent to the robot’s physical
structure. Therefore, we can separate the failed and success-
ful trials, and execute only the latter in the new environment
in order to retrain the task models. This significantly reduces
the amount of trials needed to learn the skill in a new en-
vironment, because usually while exploring the parameter
space the majority of the trials executed are failed. Experi-
mental validation of the task transfer capability of the pro-
posed approach is presented in Section 6.3.

5 Simulation Experiments and Analysis

In order to present and analyse in detail the performance of
the proposed approach on a simple task, we introduce the
MuJoCo ReacherOneShot environment and evaluate the ap-
proach in simulation. We introduce two variants of the en-
vironment, with a 2-DOF agent consisting of 2 equal links,
and a 5-DOF agent consisting of 5 equal links in a kinematic
chain structure, as depicted in Fig. 4. The environment con-
sists of an agent acting in a wall-constrained area, with the
initial configuration of the agent and the puck location above
it fixed. This environment is a physical simulation where the
contacts between each of the components are taken into ac-
count, as well as the floor friction. Contact between the puck
and the agent makes the puck move in a certain direction,
while the collision between the agent and the wall stops the
simulation experiment and the trial is classified as failed.

The agent learns through trial and error how to hit the
puck so it moves to a certain location. The hitting action
is parameterised, with each parameter representing the dis-
placement of a certain joint w.r.t. the initial position, and is
executed in a fixed time interval. During the training phase,
the agent has no defined goal to which it needs to optimise,
but just performs active exploration of the parameter space
to gather most informative samples for its task model. We
have chosen this task as it is difficult to model the physics
of the contacts, in order to estimate the angle at which the
puck will move. Moreover, the walls on the side act as an
environmental constraint to which the agent must adapt.

5-
lin

k
ag

en
t

2-
lin

k
ag

en
t

(a) Initial pose (b) Training phase (c) Testing range

Fig. 4 The MuJoCo ReacherOneShot-2link (top row) and
ReacherOneShot-5link (bottom row) environments used for sim-
ulation. The links are shown in different colours for clarity, the walls
are black and the puck the agent needs to hit is blue. Column (a) shows
the initial position, (b) a training trial (no targets given) and (c) the
testing phase with the testing area and sample targets in green.
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(a) Trial 10 (b) Trial 20 (c) Trial 30 (d) Trial 40 (e) Trial 50 (f) Trial 70

Fig. 5 Comparison of the sample selection progress for both the proposed informed approach (top row) and the random counterpart (bottom row),
up to the 70th trial on a 10x10 parameter space. The

⊗
symbols represent failed trials while© are the successful trials. The grid colours represent

the probability of selecting a particular point, with green being 0 and yellow 1. For the random approach the probabilities are not applicable as all
points are equally probable to be sampled.

5.1 Experiment with 2-link Agent

In order to properly visualise all the components of the pro-
posed framework to be able to analyse them, we introduce
a 2-link agent with only two parameters defining the action.
The range of base-link joint ( joint 0) is ±π

2 , while for the
inter-link joint ( joint 1), the range is±π radians. The action
execution timeframe is kept constant, thus the speed depends
on the displacements.

To demonstrate the efficacy of the proposed informed
search approach, we compare and analyse its trial selection
process to random trial sampling. We show this on a crude
discretisation where each joint parameter can take one of 10
equally spaced values within its limits, producing the pa-
rameter space of 100 elements. Figure 5 shows side-by-side
the trial selection progress up to the 70th trial, for both the
proposed informed approach and the random counterpart. In
the beginning both approaches start similarly. Very quickly,
the proposed informed approach appears to search in a more
organised way, finding the ‘useful region’ of the parame-
ter space that contains successful trials and focuses its fur-
ther sampling there, instead of the regions which produce
the failed trials. After 50 trials we can see that the distribu-
tion of the points is significantly different for the two ap-
proaches even in this simple low-dimensional example. The
number of sampled successful trials with the proposed in-
formed approach is 16, as opposed to 11 obtained by the
random approach, while the remaining are failed which do
not contribute to the task models. This behaviour is provided
by the PIDF which penalises regions likely to lead to failed
trials, and the sampling in the useful region is promoted by
the UIDF which seeks samples that will improve the task
model. We note that the highest concentration of the failed

trials from the informed approach is actually in the border
zones, around the useful region and at the joint limits. These
regions are in fact most ambiguous and thus most interest-
ing to explore. After the 70th trial, the informed approach
already sampled all the points that lead to successful trials,
and the next ones to be sampled are on the border of the
useful region as they are most likely to produce further suc-
cessful trials. Conversely, the random approach would need
at least 6 more samples to cover the whole useful region.

We further analyse the proposed approach by discussing
the role of the hyperparameters and their influence on the
performance. For this purpose, the two joint angle ranges
are discretised with the resolution of 150 equally spaced val-
ues, which creates a much more complex parameter space of
22500 combinations, over which the task models need to be
defined. This finer discretisation makes the search more dif-
ficult and emphasises the benefits of the informed search ap-
proach. To analyse the task model performance as the learn-
ing progresses, after each trial we evaluate the current task
models on the test set. This is only possible in simulation,
because testing on a real robot is intricate and time consum-
ing. We perform the evaluation on 140 test target positions,
with 20 values of the angle ranging from -65 to 30 degrees
with 5 degree increments, and 7 values of the distance start-
ing from 5 to 35 distance units from the origin, as shown in
Fig. 4c. The test error is defined as the Euclidean distance
between the desired test target position, and the final rest-
ing position of the object the agent hits when executing the
motion provided by the model. For the test positions which
are complicated to reach and the learned task model cannot
find the proper inverse solution, we label their outcomes as
failed, exclude them from the average error calculation and
present them separately. Figure 6 features plots showing the
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(b) Models with lowest number of failed test cases

Fig. 6 Performance of the top performing hyperparameters on the test set after each trial, for 150 trials. The models that are better at lowering the
Euclidean error are shown in (a) while those minimising the number of failed cases are shown in (b), for both the informed and random approach.
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(a) Angle model (b) Distance model (c) Selection IDF (d) Test error heatmap

Fig. 7 Comparison of the informed (top row) and random (bottom row) approach with the 2-link simulated agent at trial 50. The hyperparameters
used are: RQ kernel with σ2

l = 0.01 and cov = 5. Column (a) shows the learned angle task models, (b) distance models, (c) SIDF used to generate
trials, where

⊗
represent failed trials and © successful ones, with the colourmap indicating the probability of selecting the next trial. Column

(d) shows the performance on 140 test target positions with the colourmap indicating the Euclidean error for each of the test cases. The mean
error (excluding unreachable positions) is indicated on the colourbar for both approaches. Notice that for the random approach there are 12 more
unreachable positions marked in dark blue.

influence of different hyperparameter values, where PIDF
covariance coefficients (cov), kernel functions (kernel) and
the kernel’s lengthscale (σ2

l ) parameter are compared. The
top plots show the mean Euclidean error, middle plots the
error’s standard deviation over the test set positions and the
lower ones show the number of failed trials. The PIDF co-
variance values tested are 2, 5, 10 and 20 and they corre-
spond to the width of the Gaussians representing failed trials

in the PIDF. Making the covariance smaller (wider Gaus-
sian) leads to faster migration of the trial selection to the
regions of the parameter space leading to successful trials.
This hyperparameter does not affect the random approach as
the random approach does not take into account the PIDF.
Regarding the kernel type and its lengthscale hyperparam-
eter, this affects the task model for both the proposed in-
formed approach and the random trial generation. Smaller
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lengthscales imply that the influence of the training point
on other points drops significantly as they are farther away
from it, and thus the uncertainty about the model predictions
for these other points raises quicker than with larger length-
scales. The actual effect is that the UIDF produces much
narrower cones around trial points for small lengthscale val-
ues, which promotes sampling other points in the vicinity of
the successful trials. In order to define the best performing
model, we need to take into account the metrics presented
in the plots in Fig. 6. Thus, models which do not produce
failed tests and also have the minimal Euclidean error are
required. Based on this criteria, both informed models from
Fig. 6b, showed superior performance. However, for visual-
isation purposes, in Fig. 7 we show the learned task mod-
els and the final selection function of the best performing
informed model together with its random counterpart from
Fig. 6a at trial 50, having the same hyperparameters (RQ
kernel with σ2

l = 0.01 and cov = 5). Moreover, in the same
figure we present the evaluation of these models on 140 test
target positions in the form of a heatmap together with the
error mean. The failed test cases are shown in dark blue.

In Figure 7 we can see how the SIDF was shaped by the
penalisation function and the model uncertainty. The PIDF
influenced the trial sampling to move away from the regions
leading to failed trials, and focus on the region where the in-
formative samples are, similarly to the previous experiment
shown in Fig. 5. Furthermore, we can again see that most of
the failed trials are in fact at the border between the failed
and successful trial regions, as well as at the joint limits,
which are the areas that need to be explored thoroughly.

Regarding the learned task models, we can see a clear
distinction in the angle model that defines whether the puck
will travel to the left (positive angle) or to the right (nega-
tive angle) and joint 0 influences this the most. The other,
joint 1 mostly influences the intensity of the angle, i.e. how
far will the puck move. This is possible because the joint
space has a continuous nature which implies that the sam-
ples which are close in the parameter space produce sim-
ilar performance. In the case of the learned angle model,
it is easy to see the difference between what the informed
and random approaches learned. While for the informed ap-
proach it is clear that the positive values of the joint 0 pa-
rameter lead to the positive angle values, within the random
approach this relationship does not hold.

5.2 Experiment with 5-link Agent

We further evaluate the performance of the proposed ap-
proach on a more complex task by using a 5-link agent as
depicted in Fig. 4. The parameter space is 5 dimensional,
discretised with 7 values per parameter dimension. The ac-
tion execution speed, base-link and inter-link joint ranges
are as described in the previous section. Even though the

discretisation is crude as mentioned in Sec. 3, we show the
task is learned efficiently and shows good empirical perfor-
mance. We evaluate the performance of the proposed in-
formed search w.r.t. a random sampling approach. We also
add an ablative comparison with the case where the PIDF
is not included in the exploration component, but just the
UIDF. UIDF uses the GPR model’s variance which can be
considered proportional to the entropy measure, as the en-
tropy of a Gaussian is calculated as a 1

2 ln(2πeσ2), where the
log preserves the monotonicity and the variance is always
positive. In addition to this, we evaluate the performance of a
modified version of the state-of-the art BO method presented
in (Englert and Toussaint, 2016). Our problem formulation
does not provide an objective function evaluations needed
in BO, because the movement parameters are not model pa-
rameters which influence the final model performance. In-
stead of the model performance, we provide the decrease
in model uncertainty as a measure of performance which is
dependent on the movement parameter selection. This set-
ting is then in line with our problem formulation and rep-
resents a good method for comparison. In Fig. 8a we show
the mean (solid line) and standard deviation (shaded area)
of the test performance error as well as number of failed test
trials, based on several top performing hyperparameters. Be-
low, in Fig. 8b, we show the heatmaps with errors for each
test target position, at trials 30, 50, 100 and 300.

First significant observation, which was not obvious in
the 2-link example, is that the random approach needs to
sample almost 40 trials before obtaining a partially useful
task model, while the informed approach needs less than 5
trials. It is important to emphasise that the parameter space
contains 75 = 16807 elements, which could cause inferior
performance of the random approach. Secondly, we can
see from the graph that even after 300 trials the informed
approach demonstrates a declining trend in the test error
mean and standard deviation, while the random approach
stagnates. The uncertainty-only-based exploration approach
finds a simple well-performing task model after only few
trials, even slightly outperforming the informed approach.
However, this approach is unstable and very sensitive to hy-
perparameter choice. This can be explained by UIDF being
hardware-agnostic and not taking into account failed trials,
but purely exploring the parameter space. The modified BO
approach (Englert and Toussaint, 2016), as expected, shows
good and consistent performance. Also, it can be seen that
it is not sensitive to hyperparameter change as the variance
in performance for different settings is low. Unilke with our
proposed approach, at the end of the learning phase when
testing the models, there are still some test target positions
which are not reachable by this model. By adding this new
experiment, we compared to a method that enforces the fea-
sibility of the parameters as a constraint in the cost func-
tion. As opposed to having an explicit constraint selecting
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Fig. 8 Performance of various hyperparameters on the test set after each trial, for 300 trials. In (a) the plots show the mean and the standard
deviation of the test Euclidean error, averaged over the 5 best performing models of the (orange) informed approach ( cov = 5, RQ kernel with
σ2

l = 0.01; cov = 10, RQ kernel with σ2
l = 0.001; cov = 10, SE kernel with σ2

l = 0.001; cov = 20, RQ kernel with σ2
l = 0.001; cov = 20, SE

kernel with σ2
l = 0.01), (green) random approach runs over 5 different seeds, top 3 performing (red) UIDF-only exploration approaches ( all using

RQ kernel with σ2
l = 0.01, σ2

l = 0.001 and σ2
l = 0.001) and (blue) the modified BO approach from (Englert and Toussaint, 2016) (showing all

combinations of RQ and SE kernels with σ2
l values: 0.01, 0.001, 0.0001). The heatmaps in (b) show actual test errors for each of the 140 test

positions at trials 30, 50, 100 and 300, using the best performing instance of each of the models. The legend colormap show the average values for
each approach.
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only successful trial parameters, our proposed approach im-
plements a soft (probabilistic) constraint through the PIDF,
which still allows sampling of failed trials occasionally. This
allows us to obtain datapoints at the borders of the feasible
regions which are useful for the task model.

6 Robot Experiment and Analysis

To evaluate our proposed approach on a physical system
we consider the problem of autonomously learning the ice-
hockey puck-passing task with a bimanual robot 1. We use
robot DE NIRO (Design Engineering Natural Interaction
RObot), shown in Fig. 1. It is a research platform for bi-
manual manipulation and mobile wheeled navigation, de-
veloped in our lab. The upper part is a modified Baxter robot
from Rethink Robotics which is mounted on a mobile base
via the extensible scissor-lift, allowing it to change the total
height from 170 to 205 cm. The sensorised head includes
a Microsoft Kinect 2.0 RGB-D camera with controllable
pitch, used for object detection. DE NIRO learns to hit an
ice hockey puck with a standard ice hockey stick, on a hard-
wood floor and pass it to a desired target position. We are us-
ing a right-handed stick which is 165 cm long and consists
of two parts: the hollow metal stick shaft and the curved
wooden blade fitted at the lower end. The standard (blue)
puck weighs approximately 170 g. To enable the robot to
use this stick, we have equipped its end-effectors with cus-
tom passive joints for attaching the stick. A universal joint
is mounted on the left hand, while the spherical joint is in-
stalled on the right (refer to Fig. 1). This configuration in-
hibits the undesired idle roll rotation around the longitudi-
nal stick axis, while allowing good blade-orientation con-
trol. The connection points on the stick are fixed, restricting
the hands from sliding along it. This imposes kinematic con-
straints on the movement such that the relative displacement
of the two hands along either axis cannot be greater than the
distance between the fixture points along the stick. Due to
the right-handed design of the ice hockey stick, the initial
position of the puck is shifted to the right side of the robot
and placed approximately 20 cm in front of the blade. We
monitor the movement effect on the puck using the head-
mounted Kinect camera pointing downwards at a 45 degree
angle. A simple object-tracking algorithm is applied to the
rectified RGB camera image in order to extract the position
of the puck and the target. For calculating the polar coor-
dinates of the puck, the mapping from pixel coordinates to
the floor coordinates w.r.t. the robot is done by applying the
perspective transformation obtained via homography. All el-
ements are interconnected using ROS (Quigley et al, 2009).

1 The video of the experiments is available at https://sites.
google.com/view/informedsearch

6.1 Experiment Description

The puck-passing motion that the robot performs consists of
a swing movement, making the contact with the puck and
transferring the necessary impulse to move the puck to a
certain location. The robot learns this through trial and er-
ror without any target positions provided during the training
phase, just by exploring different swing movements in an in-
formed way and recording their outcomes. The trajectory is
generated by passing the chosen parameters (displacements)
that define the goal position, to the built-in position con-
troller implemented in the Baxter robot’s API.

During the training phase, the generated swing move-
ment can either be feasible or not for the robot to execute.
If feasible, the generated swing movement can potentially
hit the puck which then slides it from the puck’s fixed ini-
tial position to some final position which is encoded via po-
lar coordinates θ and L, as shown in Fig. 1. Such a trial is
considered successful and contributes to the task models. If
the swing misses the puck, the trial is failed. Other cases in
which a trial is considered failed are defined in Sec. 4.2.

During the testing phase, the robot is presented with tar-
get positions that the puck needs to achieve, in order to eval-
uate the task model performance. The target is visually per-
ceived as a green circle which is placed on the floor by the
user (Fig. 1). Having received the target coordinates (θd and
Ld), the robot needs to apply a proper swing action (x̂) that
passes the puck to the target.

Each trial consists of a potential swing movement which
is encoded using a set of movement parameters. We pro-
pose a set of 6 movement parameters which are empirically
chosen and sufficient to describe a swing. The movement
parameters represent the amount of relative displacement
with respect to the initial arm configurations. The displace-
ments considered are along the x and y axes of the robot
coordinate frame (task space) for the left (lx, ly) and right
(rx,ry) hands, the joint rotation angle of the left wrist (w),
and the overall speed coefficient (s) which defines how fast
the entire swing movement is executed. The rest of the joints
are not controlled directly. In this way the swing movement
is parameterised and can be executed as a one-shot action.
In the proposed setup, the parameters take discrete values
from a predefined fixed set, equally spaced within the robot’s
workspace limits. The initial configuration of the robot arms
and the ranges of the movement parameter values are as-
signed empirically. Even though the approach could be ex-
tended to autonomously detect the limits for the parameters,
it is done manually in order to reduce the possibility of dam-
aging the robot while exploring the edges of the parameter
space. This implicitly reduces the number of learning trials,
especially the failed ones. However, this parameter defini-
tion does not lead to any loss of generality of the framework
and preserves the difficulty of the challenge. Although the

https://sites.google.com/view/informedsearch
https://sites.google.com/view/informedsearch
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Fig. 9 An example of a successful trial executed during the training phase. The blue arrow points to the puck.

robot’s kinematic model is implicitly used for the movement
execution, via the inverse kinematics in the position con-
troller, this information is not used within our framework.
The discretisation resolution of the parameter values inside
the range is due to the numerical approach to obtaining the
task models whose domain is the whole movement param-
eter space. The assigned parameter value sets are (in me-
ters): lx = {−0.3,−0.2,−0.1, 0, 0.1}, ly = {−0.1,−0.05, 0,
0.05, 0.1}, rx = {0, 0.042, 0.085, 0.128, 0.17}, ry = {−0.1,
0.05, 0.2, 0.35, 0.5}, w = {−0.97,−0.696,−0.422,−0.148,
0.126, 0.4} and s = {0.5, 0.625, 0.75, 0.875, 1.0}. This pro-
duces a parameter space of size 6× 55 = 18750. The GPR
generalises well despite the crude discretisation. The pa-
rameter values are considered normalized as they are in the
range [−1,1].

The training phase consisted of 100 trials of which 24
were successful and contributed to the task models. The rest
of the failed trials did not contribute to the task model explic-
itly, rather implicitly, through the exploration component.
The stopping criterion is when the model’s average uncer-
tainty drops below 10% and the last 5 updates do not lead to
more than 0.5% improvement each. Further trials and uncer-
tainty reduction would not make sense as it depends on the
inherent task uncertainty which is hard to quantify. This task
uncertainty is affected by the system’s hardware repeatabil-
ity and noise in the trial outcome amongst others. Figure 10.
shows the uncertainty decrease over the sampling progress,
and this can be interpreted as a learning curve showing how
our task model decreases its uncertainty about its predic-

Fig. 10 Plot showing the decrease of GPR models’ uncertainty with
the number of trial evaluations.

(a) Angle model (b) Distance model

Fig. 11 GPR task models learned during training based on successful
trial data; Learned task model for the (a) angle and (b) distance.

tions. The overall training time including resetting is ap-
proximately 45 min. Figures 11a and 11b show the angle
and distance models learned based on the datasamples from
24 successful trials. For visualisation purposes we slice the
model and display it along two of the six dimensions. We
visualise rx and w, while the remaining parameters are fixed
with values: lx = −0.3, ly = 0.1, ry = 0.35 and s = 1.0,
which is equivalent to a backward motion of the left hand
and a full speed swing. The angle model in Fig. 11a shows
how the wrist rotation angle greatly affects the final angle
of the puck, for this particular swing configuration. This is
in line with how professional hockey players manipulate the
puck by rotating their wrist. The right hand displacement
along the robot’s x-axis does not contribute as much. The
distance model in Fig. 11b shows more complex dependen-
cies, where the right hand displacement has a high positive
correlation with the final puck distance for positive wrist an-
gles. As the wrist angle value decreases, so does the influ-
ence of rx. The range of motions that the puck achieves after
training are from 0 to 25 degrees for the angle, and the dis-
tance from 50 to 350 cm.

As a side note, one option could be to prune all the failed
trials in simulation and perform only the successful ones
on the robot. However, this would require having a precise
kinematic model of the robot including the hockey stick and
the passive joints which is not straightforward to model.
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(a) Best hit example (e = 4.5 cm)

(b) Worst hit example (e = 75 cm)

Fig. 12 View from the Kinect camera during the testing phase. The
error e is the measured Euclidean distance between the puck and the
target position, during the (a) best and (b) worst hit cases.

6.2 Experiment Results and Discussion

The essential interest here is to evaluate the main contribu-
tions: the informed search approach, and its application to
efficient task transfer. The hypothesis is that the proposed
approach needs significantly less trials to learn a confident
and generalisable task models, because the trials generated
in this manner are the most explanatory for the model.

To quantitatively assess the task model performance of
our approach, we analyse the test execution accuracy, i.e. the
ability to reach previously unseen targets 2. During testing,
the robot is presented with a target position (green circle as
in Fig. 1) and required to generate appropriate movement
parameters for a swing action that will pass the puck to the
target. We evaluate the accuracy using 28 different target
positions, placed in the mechanically feasible range with 4
increments of the angle {0,10,15,20}, and 7 of the distance
{100,120,150,175,200,250,300}. These coordinates have
not necessarily been reached during training. For specific
target coordinates, the model is inverted to give an appropri-
ate and unique movement parameter vector, as described in
Sec 4.3. The final repeatability is the one achievable by the
robot hardware (±5 cm) and is consistent.

2 The code and experiment data will be made available on the
project website upon publication.

Table 1 Performance comparison of the achieved accuracy in Eu-
clidean distance between the puck and the target, averaged over 28 test
target positions.

Movement Generation Method Mean STD
[cm] [cm]

”Original” environment
(blue puck, hardwood floor)

Informed Search 29.48 16.33
Random Search 64.18 45.72
Inexperienced Volunteers 32.16 27.82
Experienced Volunteers 22.96 18.07

New environments

”Original” model (blue puck, marble floor) 66.18 50.75
Re-trained model (blue puck, marble floor) 43.73 37.08
”Original” model (red puck, marble floor) 63.4 41.85
Re-trained model (red puck, marble floor) 38.32 31.05

Firstly, we compare the results of our approach to those
of a model learned from randomly generated trials. We gen-
erated 100 random points in the movement parameter space
which were evaluated on the robot and used to create the
GPR task models. We produced 5 such random models with
different initial seeds, verified their performance on the test
target set and averaged the results (see Table 1). As shown,
our model is on average twice as accurate and more impor-
tantly, almost three times more confident, based on the stan-
dard deviation, than the models produced by random search.
This demonstrates that the informed search selects training
points which provide the model with better generalisation
capabilities. We did not consider the grid search approach,
as it is not feasible to evaluate all 18750 movement parame-
ter combinations. Regarding the performance in the related
work, in Daniel et al (2013) the puck is sent to a target zone
of 40 cm in width, while in Chebotar et al (2017) there are
only three fixed 25 cm-wide goals, in which the execution
is deemed as successful. From the results, our method on
average achieves better accuracy over 28 previously unseen
target positions.

Secondly, we compare our approach to human-level per-
formance. We asked 10 volunteers who had no previous ice
hockey experience and 4 members of the college ice hockey
club to participate, under the same settings as the robotic
counterpart. The volunteers were placed at the same fixed
position as the robot to maintain equal distance from the test
targets, and the puck had the same starting position. No ad-
ditional guidance was given regarding the stance, but they
were shown in which regions of the stick they should place
their grip in order to be comparable with the robot. The vol-
unteers had 24 practice shots to get accustomed to the stick,
puck and the surface. After, they were presented with the
same test target positions, and their averaged results are pre-
sented in Table 1. We have to emphasise that such a compari-
son is not straightforward to analyse: this task is difficult for
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Fig. 13 Heatmaps showing the Euclidean distance error (in cm) over
the test target positions, for tests in the upper part of Table 1.

a human as it requires repeatability in the arm control and
hand-eye coordination; although the inexperienced subjects
have not practiced hockey previously, through their lifetime
they have developed a good general notion of the phys-
ical rules and limb control. The inexperienced volunteers
achieve slightly worse accuracy, yet the variance among the
subjects is high, which could be attributed to their various
skillsets that are more or less akin to ice hockey. Experi-
enced volunteers performed better than the robot and this
can be explained with their domain knowledge. Even with
a small sample size the within-group variance is low. By
observing the heatmaps of these tests (Fig. 13) we can see
the performance on each of the 28 test target position in-
dividually, averaged over all the candidates. It is noticeable
that the human volunteers are more confident with targets
that are closer, and to some extent the random approach as
well. For the informed approach no such obvious pattern has
emerged.

From qualitative observations we deduce that the in-
experienced volunteers also need less time to acquire the
basic skill level necessary to perform this task efficiently.
This includes adjusting their grip and swing technique after
a couple of trials, so it resembles that of experienced vol-
unteers. We also note that several inexperienced volunteers
who showed good performance, discovered that sliding the
puck in the blade on the ground improves the accuracy. This
technique was employed by all experienced volunteers and
was also learned by the robot.

6.3 Task Transfer

We demonstrate the task transfer aspect of the proposed
framework by re-learning the task model for different en-
vironments. In this experiment we consider a task new, if
it has a significantly different environment model, such as
the object shape or weight and the floor friction. The main
idea is that the trials generated are intrinsic to the robot

hardware and are independent of the environment. Conse-
quently, if the robot is placed on a different surface and
given a ball instead of the puck, it would still generate the
same trial movements. However, if the stick or other parts of
the robot’s kinematic chain change significantly, this might
not hold anymore. In that case, the training phase would
have to be done from scratch as different kinematics gen-
erate different failed trial cases which need to be accounted
for. Thus, if the kinematics are the same we just need to
replicate the successful trials, and gather datapoints for the
new environment-specific task model. Therefore the robot
can adapt and perform the task in a new environment by
executing only the set of 24 movement parameter vectors
that generated successful trials in the ”original” training ses-
sion (standard puck on hardwood floor), not all 100 trials.
The successful trials are independent of the environment
and provide samples for the GPR task models. After execut-
ing the 24 trials and obtaining the trial outcomes, the actual
model update is done in batch with the 24 datapoints, so the
learning happens instantaneously.

The new environments we consider are the marble floor
which has a higher friction coefficient than the hardwood
floor, and a wooden puck (red puck) which is lighter than
the standard puck (approx. 80 g). The experimental setup for
the task transfer is presented in Fig. 14. Successful trials are
executed by the robot on the new surface, using both pucks.
Two new task models are learned, evaluated on the test target
set, and the results are shown in Table 1. As a benchmark,
we show results of directly transferring the model learned in
the ”original” environment. The decrease in accuracy can be
explained due to the higher friction and thus decreased sen-
sitivity, where changes in the movement parameters have a
lower impact on the puck position. Therefore, not all test
positions could be achieved. However, we see that using the
blue puck as in the ”original” setup, on the new floor per-
forms worse than the lighter (red) puck, which can be ex-

(a) Blue puck (b) Red puck

Fig. 14 Task transfer experimental setup on the marble floor, using
the (a) standard ice-hockey puck made from vulcanised rubber (blue),
and (b) a lighter puck made of wood (red).
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plained by the fact that a lighter puck on a higher-friction
(marble) floor acts as an equivalent to a heavier puck on
a lower-friction (hardwood) floor. Even though completely
new task models are learned after only 24 trials, the average
accuracy is still in line with the literature examples and out-
performs the random case by more than 20 cm on average.

7 Conclusion and Future Directions

We have presented a probabilistic framework for learning
the robot’s task and exploration models based solely on its
sensory data, by means of informed search in the move-
ment parameter space. The presented approach is validated
in simulation and on a physical robot doing bimanual ma-
nipulation of an ice hockey stick in order to pass the puck
to target positions. We compared our informed trial genera-
tion approach with random trial generation, as well as two
more approaches in simulation, and showed superior perfor-
mance of our proposed approach. In the robotic experiment,
the robot learns the task from scratch in approximately 45
minutes with an accuracy comparable to human-level per-
formance and superior to similar experiments in the litera-
ture. Additionally, through our framework we demonstrated
that the agent is capable of re-learning the task models in
different new environments in significantly less time.

Future directions of the research include exploring the
applicability of this approach to sequential tasks through the
informed search in the policy or DMP parameter space. In
particular with the emphasis on adapting the approach to
continuous movement parameter spaces.
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