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Abstract

Muscle-actuated control is a research topic of interest spanning different fields, in
particular biomechanics, robotics and graphics. This type of control is particularly
challenging because models are often overactuated, and dynamics are delayed and
non-linear. It is however a very well tested and tuned actuation model that has
undergone millions of years of evolution and that involves interesting properties
exploiting passive forces of muscle-tendon units and efficient energy storage and
release. To facilitate research on muscle-actuated simulation, we release a 3D
musculoskeletal simulation of an ostrich based on the MuJoCo simulator. Ostriches
are one of the fastest bipeds on earth and are therefore an excellent model for
studying muscle-actuated bipedal locomotion. The model is based on CT scans and
dissections used to gather actual muscle data such as insertion sites, lengths and
pennation angles. Along with this model, we also provide a set of reinforcement
learning tasks, including reference motion tracking and a reaching task with the
neck. The reference motion data are based on motion capture clips of various
behaviors which we pre-processed and adapted to our model. This paper describes
how the model was built and iteratively improved using the tasks. We evaluate the
accuracy of the muscle actuation patterns by comparing them to experimentally
collected electromyographic data from locomoting birds. We believe that this work
can be a useful bridge between the biomechanics, reinforcement learning, graphics
and robotics communities, by providing a fast and easy to use simulation.

Figure 1: The models, tasks and data are available at https://github.com/vittorione94/
ostrichrl and visualizations at https://sites.google.com/view/ostrichrl.
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1 Introduction and related work

Actuation means generating forces in order to create movement. In nature, movement in vertebrates
is produced by contracting muscles which pull on skeletal bones, creating torques at the joints.
Similarly, robots use motors, but motors and muscles have very different properties. A review of
several different actuation methods is given by Peng & van de Panne (2017).

Understanding muscles is of interest in many different fields. From a biological point of view, we
would like to understand how animals solve complex locomotor tasks. Muscles are also relevant
in computer graphics to obtain accurate skin deformations in virtual characters and to obtain more
natural-looking gaits for films and video games (Angles et al., 2019; Abdrashitov et al., 2021; Modi
et al., 2021). In robotics, with the exception of soft robots, muscles have been studied relatively little
despite their interesting energetic properties and the sophisticated movements they enable (Wang et al.,
2021; Cotton et al., 2012). In sports medicine musculoskeletal simulations are used to understand
sports injuries (Bulat et al., 2019).

Biomechanics is the study of how biological systems produce motion. Biological motion is affected
by many factors such as the musculoskeletal geometry, internal states of the muscles, and force-
length-velocity curves (discussed below). Understanding how complex biological systems such as
humans and other animals use their muscles to move is quite challenging. Obtaining data from living
animals is difficult and not neutral to animal welfare. To overcome this problem, biomechanics
researchers often use computer-based simulations combined with numerical optimization to estimate
how muscles are used.

However, most of the research that uses optimization techniques does not leverage the new available
tools from machine learning, in particular those based on the reinforcement learning (RL) framework
(Sutton & Barto, 2018). These tools have proven to be a valuable alternative to traditional optimization
techniques to solve complex tasks in continuous and high-dimensional state and action spaces
(Lillicrap et al., 2015; Fujimoto et al., 2018). The NeurIPS conference has been hosting recurrent
competitions to bridge this gap 2, where the goal was to make a musculoskeletal human model
walk. The challenge used the OpenSim (Delp et al., 2007; Seth et al., 2018) simulator. However,
as documented in many of the solutions (Pavlov et al., 2018; Zhou et al., 2019; Akimov, 2019;
Kolesnikov & Khrulkov, 2020), the engine was too slow to properly use traditional deep RL methods,
which often require millions or billions of samples to find good solutions. Moreover, the model used
in the latest challenge was in many ways quite simplistic, actuating only the legs with 22 muscles in
total and removing the arms.

Some innovative research has used deep RL to solve complex locomotion tasks such as playing
basketball (Liu & Hodgins, 2018), performing athletic jumps (Yin et al., 2021), boxing and fencing
(Won et al., 2021). These studies used motion capture data for a rich reward signal during training
(Merel et al., 2017; Hasenclever et al., 2020; Merel et al., 2018).

Wang et al. (2012) was one of the first studies in the graphics community to use biological actuators.
Geijtenbeek et al. (2013) used evolution-based algorithms to control muscular bipeds and also
optimized muscle routing. Jiang et al. (2019) tried to bridge torque-actuated models and muscle
dynamics, using neural networks to map muscle activations from torque commands and achieved
natural looking gaits using torque actuators. Lee et al. (2018) used volumetric muscles and trajectory
optimization for juggling. Lee et al. (2019) combined RL and motion capture clips to control a
human musculoskeletal model solving a variety of tasks from walking to weight lifting. Simulating
musculoskeletal animal models is not common outside the field of biomechanics. Most of the efforts
are focused on humans because of available resources in anatomical atlases and interest from the
entertainment industry and sports. Available full-body animal musculoskeletal models include, for
example the chimpanzee (Sellers et al., 2013) and dog (Stark et al., 2021). Moreover, for human
models, researchers tend to have access to much higher quality motion capture data than for animals,
but animal research often have superior empirical measurements of physiological function.

Here we present a new ostrich musculoskeletal model that uses a fast physics engine with reinforce-
ment learning tasks. To the best of our knowledge, we are the first to apply RL to such a realistic

2https://www.crowdai.org/challenges/nips-2017-learning-to-run
https://www.crowdai.org/challenges/nips-2018-ai-for-prosthetics-challenge
https://www.aicrowd.com/challenges/neurips-2019-learning-to-move-walk-around
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Figure 2: The workflow used to build the ostrich model. Various sources of data were blended
together for the modeling part, and tasks helped in fine-tuning muscle strength and joint limits.

animal model, solving locomotion tasks. The main differences from prior human simulations are
obviously the anatomy of the model but also the RL architecture; e.g. Lee et al. (2019) separated
muscle coordination from trajectory mimicking through two different networks with privileged
information and an intermediate PD controller. Ostriches are interesting to study because they are
fast, economical bipedal runners (Alexander et al., 1979). With our new computational tools, which
we release along with this paper, we hope to open new opportunities for researchers interested in
accurate and fast muscle simulation provided by MuJoCo combined with RL.

First, we describe how we built the model by assembling various types of data and how we used
MuJoCo’s muscle model. Then, we detail the various tasks that we designed. The results from one of
those tasks in particular are then used to evaluate the accuracy of the muscle excitation patterns by
comparing against empirical electromyography data. Finally, we briefly explain how the similarity
between the Cassie robot and ostriches allowed us to adapt our motion capture tracking pipeline to a
simulated model of Cassie.

2 Model

2.1 Anatomical data acquisition

Building an anatomically accurate 3D musculoskeletal model required gathering data from real
ostriches. In this subsection, we discuss how we collected the anatomical data necessary for our
model.

Computed tomography scanning We first acquired multiple Computed tomography (CT) scans
of a 96.5kg adult male ostrich specimen, donated by a local farm. The CT scans were then segmented
(separating the bone from the rest of the x-ray slices) in Mimics (Materialise, Inc.; Leuven, Belgium)
software to obtain 3D models (polygonal meshes) for each bone from the ribcage to the head,
including the wings. These 3D geometries were important for two reasons: firstly they provided an
accurate representation of the geometry of the bones, vital for defining muscle attachment points;
and secondly they allowed inference of the inertia of body segments. To obtain the inertia of body
segments we followed the steps provided in Hutchinson et al. (2007); the idea is to wrap the skeleton
parts within meshes representing flesh and assume constant density (usually water density is used),
from there, volumes, masses and the inertia tensors can be computed.

Muscle dissection Next, we performed a dissection in order to gather data for muscles of the neck
and rib cage for our final model, this data is needed to correctly model muscles peak forces and lengths.
Wings are not actuated in our model because air friction is not considered in our simulations and
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Figure 3: The skeleton of the model follows a tree structure of bodies and joints. The muscle routing
is defined using way points, shown in green on the left. The joints are shown in light blue in the
middle. The wrapping geometries are shown in blue on the right (some wrapping geometries have
been omitted for clarity).

wings are mostly used when turning at high velocity. Dissection is important to properly understand
muscle routing, where the muscles start (origin) and where they end (insertion). During the dissection,
we used anatomical descriptions from Böhmer et al. (2019); Tsuihiji (2005, 2007) to identify the
different muscles. We also acquired muscle-specific data: muscle mass, pennation angle, tendon
length and muscle fiber lengths, used when simulating the muscle-tendon dynamics, as explained
below.

2.2 Physics simulators

Here we discuss two computer modelling and simulation software packages commonly used by
the biomechanics and reinforcement learning communities. The first one is OpenSim (Delp et al.,
2007; Seth et al., 2018), an open-sourced engine that provides benchmarked physics-based muscle
simulations. It is relevant to our study not only for its popularity but also because the legs of our
ostrich model were originally modelled with this engine (Hutchinson et al., 2015), as we can see
in figure 2. The same model was also used to run some tracking (inverse) simulations to estimate
the forces, activations and mechanical work of the muscles involved in solving locomotion tasks
(Rankin et al., 2016). OpenSim is quite slow in simulating each time step, as documented in previous
competitions in NeurIPS that used it to simulate muscle dynamics (Kolesnikov & Khrulkov, 2020).
The second simulator, MuJoCo (Todorov et al., 2012) is an open-source engine that is used in multiple
RL domains such as dm_control (Tassa et al., 2020) and Gym (Brockman et al., 2016) because it
provides fast and accurate rigid body dynamics. Specifically, tendon routing in OpenSim uses an
iterative algorithm, while MuJoCo’s tendon routing is closed-form, and therefore much faster. In a
comparison made by Ikkala & Hämäläinen (2020), when calculating the average run time over 97
forward simulations MuJoCo is roughly 600 times faster than OpenSim.

Both software packages define their models in a hierarchical tree structure. Muscles attach to at
least two bones, using two sites at the ends, respectively called the origin and the insertion. The
muscle geometry can be more elaborate than just the origin and insertion sites; other sites called way
points and wrapping geometries can also be specified. Way points are sites the muscle must pass
through, which are useful to maintain an anatomically realistic 3D path for the muscles. Wrapping
geometries are useful to prevent muscles from penetrating the bones, and are geometric primitives
such as spheres or cylinders.

After converting the OpenSim leg model to MuJoCo’s format, we completed the ostrich model by
adding the ribcage, wings, neck and head geometries. We then actuated the neck by adding the
muscles, matching the routing from the dissection; we also changed the feet morphology from being
completely flat to match a more realistic pose. In our final model, each leg contains 7 hinge joints: 3
for the hip, 2 for the knee, 1 for the ankle, and 1 for the metatarsophalangeal (mtp), while the neck
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Figure 4: Score on the run forward and foraging tasks. Values are averaged over 5 seeds and smoothed
with a sliding window of size 3.

contains 34 hinge joints; 2 for each pair of vertebrae, as can be seen in the middle image in figure
3. These 48 joints are actuated by 121 muscles, making this model very challenging to control. In
comparison, the OpenSim model used for the NeurIPS 2019: Learn to Move - Walk Around challenge
had only 22 muscles.

The muscle dynamics are explained in detail in the Appendix A. After converting the OpenSim model
to MuJoCo, we found that fine tuning the muscle lengths was necessary to improve stability. To find
the new muscle ranges, we randomized the model joint angles in their limits a large number of times
and recorded the global minimum and maximum lengths for each muscle.

3 Tasks

The musculoskeletal model described above has been implemented using the MuJoCo physics engine
(Todorov et al., 2012) which is used in a number of popular control domains for reinforcement
learning research, in particular dm_control (Tassa et al., 2020) and OpenAI Gym (Brockman et al.,
2016). Most of these domains use simplistic models, often inspired by animal morphologies, made
up of basic geometric bodies such as capsules, and torque-controlled multiaxial joints. While such
models are fast and fairly easy to control, they do not provide a realistic basis for studying animal
movement. On the other hand, simulations used in biomechanics typically model animals more
accurately (Sellers et al., 2013; Hutchinson et al., 2015; Stark et al., 2021) but are slow and often used
in conjunction with relatively simple control techniques from the trajectory optimisation repertoire
(e.g., direct collocation while minimising the sum of squared muscle activations).

While the previous sections described the proposed musculoskeletal ostrich model, this section
describes a set of tasks implemented with dm_control (Tassa et al., 2020) that we used repeatedly
throughout this work to test the model. These tasks could be used by other researchers for their own
research. For example, new biomechanical data can be produced from the simulated behaviours,
while RL algorithms can be tested on this unique and challenging set of environments.

We focused on two types of tasks in particular: locomotion and neck control. We found these to be
particularly useful when designing the model because they used the two main groups of muscles
present in the model. To obtain the policies we used the TD4 agent, a mixture of TD3 (Fujimoto et al.,
2018), with its pair of critics, delayed actor training and target action noise, and D4PG (Barth-Maron
et al., 2018), with its distributional value function (Bellemare et al., 2017) and n-step returns. We also
found that Ornstein Uhlenbeck exploration noise (Lillicrap et al., 2015) was significantly better than
Gaussian noise, probably due to the importance of correlated excitation when controlling muscles.
We chose to use the Tonic deep RL library (Pardo, 2020), because it provided us with this state of
the art agent and the flexibility we needed to quickly try, evaluate and visualize experiments while
allowing custom dm_control tasks to be used. Details about the training hyperparameters and the
experiments can be found in the Appendix and the policies obtained with the different tasks can be
visualized on the website 3.

3https://sites.google.com/view/ostrichrl
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Figure 5: Visualization of the mocap prediction process. Left: the original incomplete data. Right:
the complete data after predicting the missing markers with a bidirectional LSTM. Segments are
drawn between pairs of existing markers.

3.1 Run forward

The first task we experimented with had a simple “move forward” objective. It was constrained to a
vertical planar space, used torque-actuated joints, and the neck was kept rigidly attached to the thorax
of the model. The goal was to ensure that the underlying model and simulation structure was working
as expected before adding muscles. The obtained gait was similar to the one obtained when training
on the 2D walker tasks from dm_control and Gym.

After adding muscles to the legs, we quickly found that the torque-actuated planar agent was not able to
find satisfactory gaits anymore. Even after trying a large number of hyperparameter values, we noticed
that the same gait was repeatedly emerging: the toes were completely (unrealistically) plantarflexed
and the ankles remained straight in an unnatural way. This gait was deemed unsatisfactory because it
was not optimal in terms of maximum possible speed but also because was obviously unnatural.

3.2 Motion capture tracking

A typical solution to better constrain the space of policies is to engineer a more sophisticated reward
function. Reference motion tracking is a particularly well-suited option that has been used with
motion capture data in numerous studies to produce natural-looking movements (Liu et al., 2010;
Peng et al., 2018; Chentanez et al., 2018; Bergamin et al., 2019; Merel et al., 2018; Peng et al., 2019;
Hasenclever et al., 2020). However, producing motion capture data of ostriches performing various
movements was outside of the scope of this paper. Instead, as a proof of concept we started with
reference motion data that we labelled by hand, frame by frame, using videos of running ostriches
found online. The task was still planar and the quality of the results produced encouraged us to
continue further in this direction.

3.2.1 Motion capture data

To move the simulated ostrich to a 3D space and to use more diverse behaviours, we started searching
for proper motion capture data. We did not find any open source database but after contacting the
authors of Jindrich et al. (2007), we obtained the data originally used to study joint kinematics of
ostriches performing cutting maneuvers. The provided dataset was composed of 82 clips, recorded at
240 Hz, containing the 3D coordinates of 14 markers distributed as follows: 2 on the breasts, 1 on the
spine, 2 on the hips, 2 on the knees, 2 on the ankles, 2 on the mtps, 2 on the toes and 1 on the head.

We selected the largest part of the clips where at least 10 markers were simultaneously present for at
least 1 second, typically disregarding the beginning and the end of the clips when the ostrich was
not in the field of view of the cameras. This selection left 35 clips. However, even in those clips, we
found that a large number of markers were periodically missing, probably due to feathers and limbs
occluding them from the cameras. To overcome this issue, we used a bidirectional LSTM trained in a
similar way as a denoising autoencoder. With a probability 0.1, we randomly masked some markers
and asked the model to predict their value given the context of a segment of 100 steps from the same
clip.We then used this model to predict the actual missing markers. Since the model was trained and
then used on the same, relatively small dataset, we anticipated some overfitting issues, but playing
the clips with the predicted markers in place of the missing ones gave surprisingly good results (see
Figure 5). The denoising is discussed in more details in the Appendix D.

After rescaling the marker coordinates to match the size of our model, the next step was to transform
the set of marker coordinates to joint positions. Fortunately, enough markers were present over the
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different parts of the ostrich body to limit the space of solutions, except for the neck where only one
marker was present on the head. We used gradient descent with the mean Euclidean distance between
the reference markers and the ones produced by joint poses on two sets of parameters simultaneously.
The first set described where to attach the markers on the body parts and is shared across all the clips.
This was needed because we did not have the exact location of the markers used during the motion
capture acquisition and how they would translate to locations with respect to the bones. The second
set of parameters described the joint values at every keyframe. To reduce the space of solutions for
the neck shape, we added a regularisation term, encouraging the neck to follow an S shape. We first
tried to use a finite difference approximation of the gradient but found this approach to be too slow to
be practical. We then decided to implement the kinematics function in a differentiable way, mapping
joint values to body locations to create marker locations. This function was implemented using
differentiable operations from the TensorFlow library (Abadi et al., 2016). We found this approach to
be particularly fast thanks to the possibility to simultaneously optimise for all the steps across all the
clips using the batch dimension.

3.2.2 Single clip tracking

During training, an initial time-step is uniformly sampled, the model is initialised in the pose
corresponding to this step and a small amount of Gaussian noise is added to help diversify experiences.
Since the control frequency used in our experiments was 40 Hz, the task used every sixth data points
of motion capture data (240 Hz) during tracking. Also, to allow the policy to perform time-dependent
behaviours and to deal with finite horizons, we provided the remaining number of steps in the clip
to the observations following Pardo et al. (2018). Every clip was tracked by a different policy but
using more mocap data could allow the creation of a reusable controller (Merel et al., 2018; Peng
et al., 2019; Hasenclever et al., 2020). After tuning a number of task and agent hyperparameters, we
managed to get very satisfactory results in most clips.

The tracking reward is defined as a product of the quantity exp (−wpep − wrer) measuring how
much a body part’s location and orientation match the reference. Given a body part with center
of mass coordinates p and orientation matrix of inertia R, and the corresponding references p̄
and R̄, we use the Euclidean distance ep = ‖p̄ − p‖ and the angle of the difference rotation
er = arccos ((tr(R̄RT )− 1)/2). The weights wp and wr control the wideness of the Gaussians,
accounting for the different magnitudes and importance. The reward is bounded in (0, 1] and the
multiplicative nature ensures that if one of the component is too far from the reference the entire
reward decays to 0.

3.2.3 Cyclic running clip tracking

Considering that the unconstrained running task did not give satisfactory results, we decided to
recreate a task with similar conditions but using mocap tracking. We therefore created a completely
cyclic mocap clip from the middle section of one of the clips, that we repeated several times and
smoothed to remove discrepancies at the boundaries. Similarly to the results obtained with the
previous task, we found the tracking to be very satisfactory. A great advantage of this task is that it
helped us produce simulated biomechanical data for a cyclic gait that could be directly compared to
muscle excitations and lengths measured on living birds (see Section 4).

3.3 Neck control

The neck is composed of 17 vertebrae, allowing a large range of shapes to be produced. To reach a
head position and orientation, an infinite number of solutions exist and when running, the weight
and pose of the neck should influence balance and vision to a great extent. Controlling the neck with
muscles that cross multiple vertebrae requires a very sophisticated policy.

To tune the neck part of the model, we found that full-body mocap tracking was not ideal due to the
large number of moving pieces and the fact that the reference poses of the neck were artificial. We
therefore created another task whose objective was to reach random targets with the beak. To sample
feasible target locations, we used rejection sampling. Points were repeatedly sampled in a sphere
centered at the base of the neck with a radius slightly smaller than the length of the neck, and rejected
when inside a second smaller sphere roughly representing the torso of the ostrich. For this task, only
the ribcage, the neck and the head were used and the ribcage was kept fixed in space. While efficient
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Figure 6: Comparison with experimental EMG data from emus. The first red vertical line indicates
that the right foot was in contact with the ground (start of stance phase); the second one is when the
foot leaves the ground (start of swing phase). EMG data from Cuff et al. (2019) are on top. Muscle
excitations (ours) are below.

policies were easily obtained, initially neck shapes were very irregular, with many unnatural, abrupt
changes. To reduce this phenomenon, we increased the stiffness of the neck joints until satisfactory
smoothness was obtained. For the joint limits, we initially used values from Dzemski & Christian
(2007) but then realized that the limits had to be increased to allow tighter neck curves which ostriches
can perform.

4 Electromyography comparison

To demonstrate the realism of the proposed simulation, we chose to compare the muscle excitations
outputted by a policy trained on the cyclic mocap tracking task, to Electromyography (EMG) data.
One one side, EMG measures electrical activity in muscles, in response to a stimulation from
motoneurons and on the other side, raw actions produced by a policy are used by MuJoCo to produce
muscle activations A.

Collecting EMG data in animals is challenging, because their skin might be too thick for electrodes
and surgery might be needed to implant them directly into the muscles. Since, no EMG data of
ostriches have been collected yet, we decided to perform comparisons with data from emus, close
relatives of ostriches. The EMG data were originally acquired by Cuff et al. (2019) to study muscle
recruitment patterns across different avian species in order to understand neuromuscular control from
an evolutionary point of view. Their results showed that walking/running birds generally use their
hindlimb muscles in very similar ways, so emu EMG data are justifiable for comparisons with ostrich
simulations.

To compare the data, following standard conventions in locomotion research, we divide the gait into
two phases: stance (the foot is on the ground) and swing (the foot is off the ground). Once we divide
the gait into these phases, we scale the timing accordingly between the two studies (e.g., the two
birds might be moving at different speeds).

As show in the figure 6, we find broadly similar excitation patterns, except for the GL (Gastrocnemius
Lateralis) which had an extra burst of swing phase excitation in these simulations; not usually found
in any extant birds (Cuff et al., 2019). The ITC (Iliotrochantericus Caudalis) also had simulated
excitation throughout more of the swing phase than in the EMG data; reminiscent of findings for
simulated ostriches using the OpenSim model in Rankin et al. (2016). There are many more muscles
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Figure 7: Ostrich and Cassie markers comparison, and poses from a motion capture clip.

than actual degrees of freedom in the legs, so there are many possible solutions (excitation patterns)
that are able to match the kinematic data. Moreover, we do not penalize actions in our reward signal,
so it is expected to see more excitations than in experimental data.

5 Compatibility with Cassie

Cassie is a bipedal robot that was produced by Agility Robotics and extensive work has been done
on it using trajectory optimization (Reher et al., 2019; Li et al., 2020; Apgar et al., 2018) and
reinforcement learning (Xie et al., 2018, 2020; Li et al., 2021). Its morphology is very similar to
that of ostrich legs with short thighs, however, since Cassie’s joints are actuated by electric motors,
they are each limited to one degree of freedom. To create multiple degrees of freedom, multiple
joints have to be added in series and an offset is required between them for mechanical reasons. This
is a major difference between ball joints allowed by musculoskeletal bodies and traditional robots.
Furthermore, Cassie couples the knee and ankle joints together. However, the similarity with the
ostrich morphology seemed sufficient to try applying the mocap tracking to this robot. This provides
an interesting opportunity to compare muscle and torque actuation with two different models of real
world bodies with roughly similar morphologies.

We took the MuJoCo model of Cassie, provided by the Oregon State University Dynamic Robotics
Laboratory 4. The model had to be tuned to increase its stability and some constraints to the model had
to be added to ensure that parts were correctly attached. These constraints were equality constraints
to ensure that the rods on the back of the legs are always in contact. To satisfy these constraints
we used MuJoCo’s Jacobian function when performing the gradient descent (Buss, 2004). We then
used the previously described mocap generation pipeline to obtain robot poses that corresponded to
the mocap clips, excluding the neck. Surprisingly, the morphology of Cassie is sufficiently close to
the one of an ostrich to allow the clips to be tracked accurately. This provides a set of interesting
behaviors feasible with the Cassie robot, including more natural gaits than the one usually found in
the literature and demos using this robot.

6 Conclusion

We presented a novel musculoskeletal ostrich model that we hope will be useful to researchers in the
fields of reinforcement learning, neuroscience, biomechanics and computer graphics. There are still
some future questions we can answer using our ostrich model. Firstly, we did not explore mechanical
or metabolic efficiency. Animals including humans are very power-efficient when solving certain
tasks, yet in our reward signal we did not have a penalty term for muscle usage and it is unclear
how to insert it into the equation. The best approach might be to model directly fatigue (Potvin &
Fuglevand, 2017) in the muscle simulation so that through time the muscle force output will decrease.
Furthermore, obtaining satisfactory results without using motion capture would be desirable to obtain
movement predictions produced in a broader set of situations such as terrain adaptation.

4https://github.com/osudrl/cassie-mujoco-sim
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Figure 8: contraction dynamics

A Muscle dynamics

Difference between excitation and activation In biomechanics and neuroscience, researchers
separate the excitation and activation signals. Neural excitation by the nervous system can be
described as the discharge sequence of the efferent fibres. Neural excitation u is coupled with
contraction via an intermediate state called activation a (Zajac, 1989). This intermediate state
converts an electrochemical signal to mechanical force output. In MuJoCo, this conversion is
modelled as a first-order nonlinear filter whose input is the control signal:

∂a

∂t
=

(u− a)

τ(u, a)

where τ is defined as:

τ(u, a) =

{
τa(0.5 + 1.5a) u > a

τd/(0.5 + 1.5a) u ≤ a

τa, τd are time constants for activation and deactivation, equal by default to 10ms and 40ms,
respectively.

Contraction dynamics The contraction dynamics are implemented using the Hill-type model as
shown in figure 8. This mechanical model computes the total force generated by a muscle by adding
together the active contractile and passive properties of muscles. The contractile element models the
muscle contraction force scaled by the activation signal a. The passive properties are modeled like
springs: if we stretch a muscle it will generate a passive force to go back to its rest position.

The active contraction dynamics can be summarized by the formula:

f(l, l̇, a) = a · fl(l) · fv(l̇) + fp(l)

The functions fl, fp and fv are plotted in figure 8. These functions are built into MuJoCo, capturing
the contraction dynamics for basic purposes, and have been validated by the biomechanics community
for some conditions (Millard et al., 2013).

All muscle-related quantities in MuJoCo are scaled by the muscle-tendon actuator’s resting length;
the advantage of this representation is that all muscles behave similarly. MuJoCo does not allow
specification of the muscle resting length L0 and tendon slack length LT directly (in contrast to
OpenSim); this is due to the fact that MuJoCo does not include a stateful elastic component in the
muscle model. This is a major compromise in MuJoCo when compared to OpenSim, that allows it to
run faster. Instead, the actuator length range LR needs to be specified, which is the minimum and
maximum of the sum of muscle and tendon lengths, along with a range R in units of L0. In other
words, the actuator length range LR defines the interval of values that the actuator is allowed to use
during the simulation and the range R is a percentage expressing how much the actuator (here simply
called “muscle”) can shorten or extend.
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At model compile time, MuJoCo solves these two equations where the unknowns are the muscle rest
length L0 and tendon length LT :

(LRmin − LT )/L0 = Rmin

(LRmax − LT )/L0 = Rmax

B Task details

Here we describe the various components of the tasks.

Table 1: Run forward task
Initialization upright pose with random perturbation added to the legs, root rotation and height
Observation head, pelvis and feet heights, joint positions (except x) and velocities, muscle

activations, forces, lengths and velocities, horizontal velocity of the center of mass
Reward forward velocity
Termination head and pelvis height below threshold and the torso angle

Table 2: Mocap tracking task
Initialization start at a random time step in the clip, with minimum number of steps (20) + small

random perturbation
Observation pelvis and feet heights, joint positions and velocities, muscle activations, forces,

lengths and velocities, and the clip remaining time
Reward product of Gaussian kernels measuring the similarity with the reference
Termination when the reward drops below a threshold or when the end of the clip is reached

(finite horizon)

Table 3: Foraging task
Model ribcage and neck, ribcage fixed in space
Initialization start with the neck pose from the previous episode, random target position in

feasible area
Observations joint positions and velocities, muscle activations, forces, lengths and velocities,

the beak and target positions, the vector from the beak to the target
Reward negative euclidean distance between the beak and the target
Termination when the distance is below a threshold
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C Hyperparameters

Here we describe the hyperparameters used in the experiments.

Table 4: Task parameters
Position weight 0.2
Rotation weight 0.1
Reward threshold 0.01
Initialization pose noise 0.02 (Gaussian scale)

Table 5: Training parameters
Model MLP with 2x256 hidden units and ReLU
Distributional Atoms 51
Replay buffer size 1e6
Batch size 100
Steps before batches 5e4
Steps between batches 50
Number of batches 50
n-step return 1
Discount factor 0.99
Learning rate 1e-4
TD3 action noise scale 0.25
Exploration Ornstein-Uhlenbeck
Action noise scale 0.25
Warm up random steps 1e4
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D Motion capture data completion

Here we provide a visualization of the amount of missing data in the original mocap and representation
of the model we used to predict the missing data.

Figure 9: Binary mask showing the available data in black for 4 clips. The red lines indicate the
intervals we used.

Figure 10: Bidirectional LSTM used to predict missing markers.
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E Mocap tracking results

Figure 11: Average episode length for all the clips. As agents perform better at tracking, the episodes
last longer. Values are averaged over 5 seeds and smoothed with a sliding window of size 3.
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