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Abstract Intervention autonomous underwater vehicles
(I-AUVs) have the potential to open new avenues for the
maintenance and monitoring of offshore subsea facilities
in a cost-effective way. However, this requires challeng-
ing intervention operations to be carried out persistently,
thus minimizing human supervision and ensuring a reliable
vehicle behaviour under unexpected perturbances and fail-
ures. This paper describes a system to perform autonomous
intervention—in particular valve-turning—using the con-
cept of persistent autonomy. To achieve this goal, we build
a framework that integrates different disciplines, involving
mechatronics, localization, control, machine learning and
planning techniques, bearing inmind robustness in the imple-
mentation of all of them. We present experiments in a water
tank, conducted with Girona 500 I-AUV in the context of a
multiple intervention mission. Results show how the vehicle
sets several valve panel configurations throughout the exper-
iment while handling different errors, either spontaneous or
induced. Finally, we report the insights gained fromour expe-
rience and we discuss the main aspects that must be matured
and refined in order to promote the future development of
intervention autonomous vehicles that can operate, persis-
tently, in subsea facilities.
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1 Introduction

Long-term autonomy is a primary goal of ongoing robotics
research. The ability of a robot to operate robustly for an
extended period of time (hours, days or even weeks), with
reduced human supervision and in a real environment, is
still a major challenge for today’s autonomous robots. Real
world operations are hard as the environment is often not
completely known due to its dynamic nature and its inherent
complexities. In addition, sensors used to perceive the envi-
ronment and to self-locate often produce data that are noisy
and incomplete. As a result, the effects of actions taken by
the robot are not deterministic but uncertain. The robot must
therefore have the ability to recognize failures and respond
to them at all levels of abstraction.

These difficulties are further exacerbated when opera-
tions are carried out in marine environments, characterized
by highly dynamic conditions and a physical medium that
heavily restricts sensor capabilities. Due to these complex-
ities, underwater operations have long relied on the use of
remotely operated vehicle (ROVs), which require a dedicated
pilot and an expensive support vessel that increases the over-
all operational cost. To overcome this main issue, research
efforts in the last few decades have pushed towards enhanc-
ing the autonomy of these vehicles through the so-called
autonomous underwater vehicle (AUVs). Free from the limi-
tation of a physical connection to a surface ship, AUVs allow
for extended operations at lower costs, providing stand-alone
platforms that can gather data without human supervision
and avoiding the risks associated with the umbilical cable.
To date, AUVs have been deployed successfully for vari-
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ous forms of seabed (Singh et al. 2004; Caress et al. 2008;
Gracias et al. 2013) and water column (Kunz et al. 2009;
Camilli et al. 2010) transit surveys, on occasions exhibiting
persistent autonomy capabilities in missions that have lasted
many hours and, in the case of glider vehicles, even weeks
or months (Smith et al. 2011; Jones 2012).

However, there is a large number of underwater applica-
tions that go beyond survey capabilities. The maintenance of
permanent observatories, submerged oil wells, cabled sensor
networks, pipes, and the deployment and recovery of ben-
thic stations are just some of them. In general, companies are
seeking improved ways to cost effectively and safely carry
out more frequent inspection, repair and maintenance tasks
on their subsea infrastructures. This is particularly challeng-
ing in deep water and is precisely where the development of
hover-capable AUVs for subsea inspection and intervention
can represent a major technology breakthrough.

Several successful attempts at fully autonomous under-
water interventions have been demonstrated in the last few
years, in the context of the ALIVE (Evans et al. 2003),
SAUVIM (Marani et al. 2009) and TRIDENT (Sanz et al.
2012) research projects. Besides, first commercial units are
on the way to be applied to simple hovering inspection tasks
(SUBSEA7), with future units expected to address much
harder intervention where contact is made to turn a valve
or replace a component. However, despite these first demon-
strations, and in order to be successful commercially, these
intervention AUVs (I-AUVs) must be able to operate for
extended periods without the continual presence of a surface
vessel. Theymust therefore demonstrate persistent autonomy
in a challenging environment.

This is precisely the goal of the Persistent Autonomy
through Learning, Adaptation, Observation and Re-planning
(PANDORA) project (Lane 2014) and the topic of this paper.
PANDORA aims to demonstrate persistent autonomy by
endowing underwater vehicles with advanced capabilities to
describe the environment, act robustly, and adapt their plans
as required over long periods of operation without human
intervention. This requires that long-term missions, involv-
ing a variety of tasks that must be executed under time and
resource constraints, can be planned at a strategic level, with
tactical and operational replanning being performed when
the environment does not behave as expected. This means
that, even when considering a single sub-mission, planning
of the required activities is done in the context of over-
all mission constraints and has impact on the execution of
later tasks in the mission. Research in PANDORA focuses
on three application areas: intervention operations, struc-
ture inspections, and chain mooring inspection and cleaning.
This paper is framed in the first of these scenarios. There-
fore, the work presented in this paper aims to demonstrate
autonomous intervention missions, in particular autonomous
valve-turning, in a persistent way.

We believe that this is a good example of a potential target
application, representative of a relevant field of application—
the offshore oil industry—that would certainly benefit from
such capability. Common operations in the offshore oil pro-
duction facilities involve the actuation of valves in their
subsea structures, either for controlling the flow out of the
wells or providing additional functions (injection of chemi-
cals, pressure relief, well interventions, etc).

Our test scenario is defined as follows. An I-AUV is
deployed in a partially unknown environment, i.e., at the
approximate location of an underwater site where there are
some known intervention panels that should be operated. The
mission to be conducted consists of manipulating several
panel valves to achieve different predefined configurations.
This can include time constraints (e.g., a panel’s valve must
be in a given position at a given time or for a certain amount
of time) and must take into account possible failures (such
as the possibility of a stuck valve, difficulties in perceiving
the panel or unexpected current perturbations). The vehicle
must navigate towards several predefined inspection points
and, using the on-board vision system, find the precise loca-
tion of the panel. Then, it must analyze the panel’s state and
proceed to perform the intervention by autonomously turning
the required valves to achieve the desired configuration. The
accomplishment of the operation is evaluated again using
the perception sensors, and the vehicle’s planning system
decides—according to the achieved state, the set goals, and
the defined constraints—whether to continue with the cur-
rent plan or re-plan accordingly. The vehicle should remain
operating on the site for several hours, performing the actions
that are required along the mission time (checking the state
of a given panel, actuating the necessary valves, transiting
between different panels, etc).

As there are a number of challenges in achieving persistent
autonomy in this scenario, we believe the solutionmust come
also from the combination of a number of core disciplines.
This include, but may not be limited to, mechatronics, image
perception, localization, control, machine learning, and plan-
ning. In this paper, we build on these core technologies and
we seamlessly integrate them, achieving a single system that
embodies the necessary capabilities to perform subsea valve-
turning operations in a persistent way.

We begin in Sect. 2 with a description of the mechatron-
ics elements that compose the system, involving the main
vehicle platform, Girona 500 AUV, as well as other phys-
ical components that have been installed to perform the
mission at hand. Section 3 addresses the localization and
mapping in a partially-known environment. We implement a
visual simultaneous localization andmapping (SLAM) algo-
rithm that detects the panel’s location and incorporates it
within an extendedKalman filter (EKF) framework, enabling
drift-free navigation and real-time localization of the vehicle
with respect to the intervention panel. Section 4 introduces
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Fig. 1 Relations between the technologies involved to complete the
proposed intervention task. Data from the AUV navigation sensors,
camera images and manipulator joint states are sent to the localization
and mapping algorithms in order to estimate the pose and velocities
of the vehicle and the end-effector. These estimates are shared with the
high and low level controllers as well as with the world modeller, which
transforms the received information into symbols used by the planning
system. The planner requests actions to the LbD system and to the AUV
& Arm controllers that are executed by the real actuators

the AUV and manipulator low-level controllers. They pro-
vide an interface to high-level actions (e.g., go to waypoint,
turn valve, etc.) based on position or velocity requests, thus
decoupling these actions from complex vehicle dynamics.
Moreover, these low-level controllers are designed to with-
stand perturbations so that they provide a first layer of
robustness to the system. In Sect. 5 we lay out our approach
to address the autonomous intervention tasks (valve-turning
in our defined scenario). Instead of coding a given behav-
iour, we propose to use a learning by demonstration (LbD)
technique, that extracts the task knowledge from a set of
demonstrations performed by an expert and then generates
the commands required to reproduce the task from the learned
model. The advantage of such an approach is twofold: first,
it increases the flexibility of the system, being easy to recon-
figure it to different types of interventions, and second, it
offers an extra layer of robustness as the task reproduction is
dynamically generated—and therefore adapted—in the event
of external perturbations. A final layer that confers a higher
degree of autonomy and persistency to the system is given
by the planning module, described in Sect. 6. The problem
is modelled as a temporal-metric planning problem, where
several configurations of the panel valves are set as a goal
along the mission time. In order to handle possible failures
during the execution, the implemented planner has the ability
to re-plan when the observed states do not correspond with
the expected ones. The relations between the different mod-
ules of the system detailed in all these sections are shown in
Fig. 1.

In Sect. 7 we provide a compelling experimental sec-
tion, showing results that demonstrate the effectiveness
of the different system modules as well as the perfor-
mance of the whole system in the described test scenario.
We report an experiment that synthesises all the work, in
which Girona 500 I-AUV operates during several hours,
demonstrating persistent autonomy in performing interven-
tion tasks. We analize the accomplishment of the goal valve
positions and how the systemhandles different failures, even-
tual or induced, throughout the mission time. Finally, Sect. 8
reports on the conclusions and lessons learned from this
work. Note that, because this paper draws into several dif-
ferent disciplines, relevant background material and further
state-of-the-art descriptions are provided where necessary
throughout the sections.

2 Mechatronics

A key factor in the pursuit of persistent autonomy is to have
a suitable and reliable vehicle platform from the mechatron-
ics point of view. The whole system will set its foundation
on the mechatronics design and therefore it is important
to choose the adequate vehicle concept, with the required
motion capabilities, sensor suite and complementary equip-
ment to facilitate the mission at hand. In this section we
describe the vehicle that has been used in this work, Girona
500 AUV, as well as the manipulator and end-effector that
have been incorporated to carry out the valve-turning inter-
vention mission.

2.1 Girona 500 intervention-AUV

The Girona 500 AUV (Ribas et al. 2012), shown in Fig. 2,
is a reconfigurable AUV designed to operate at depths up to
500m. The vehicle is composed of an aluminum chassis sup-
porting three torpedo-shaped hulls (0.3m in diameter and 1.5
m in length) and a variable number of thrusters. The typical
thruster configuration, which we used for this work’s experi-
ments, consists in five thrusters providing full controllability
in the surge (x), sway (y), heave (z), and yaw (ψ) DoFs.
The vehicle is naturally stable in roll (Φ) and pitch (θ ) but,
vertical thrusters can be used to increase pitch stability. The
vehicle’s design offers good hydrodynamic performance and
room for equipment while keeping the vehicle compact. The
overall dimensions of the AUV are 1 m height, 1 m width,
1.5 m length, and it weighs under 200 kg. The actual weight
depends on the particular vehicle configuration and payload.

Girona 500’s standard navigation sensor suite includes a
pressure sensor, a doppler velocity log (DVL), an attitude and
heading reference system (AHRS), and a global positioning
system (GPS) to receive fixes while at the surface. The mea-
surements from these sensors are integrated via an extended
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Fig. 2 Girona 500 AUV with the 4 DOFs ECA manipulator equipped
with a custom end-effector

Kalman filter as will be explained in Sect. 3. This default
sensor suite includes also a stereo camera that can be pointed
forward or downward. For the experiments at hand the cam-
era is placed looking forward to detect the intervention panel
using a monocular vision-based algorithm.

2.2 Manipulator

Girona 500 can operate as an I-AUV when a manipulator is
integrated in its payload area. For the panel intervention task,
a 4 rotational DOFs commercial manipulator (ECAARM5E
Micro), shown in Fig. 2, has been used. The manipulator can
control the Cartesian position (x ,y,z) and the roll (Φ) of the
end-effector. Since the manipulator is under-actuated, pitch
and yaw depend on the reached Cartesian position. The
manipulator is rated for 300meters and is one of the few com-
mercial electrical manipulators available today. It maintains
the typical mechanical configuration of ROV manipulators,
which is useful when teleoperating with visual feedback.
However, for autonomous intervention, themanipulator has a
reducedworkspace and low speed, which have to be compen-
sated by a combined control of the AUV and themanipulator.
Also, internal joint sensors do not provide absolute orienta-
tion, and forward kinematics must be done with an accurate
calibration.

2.3 Custom end-effector

In order to correctly detect and operate the T-bar handles
of the panel valve with the 4 DOFs manipulator, a custom
end-effector was designed and built, as shown in Fig. 3. The
main goal of the end-effector is to compensate the small
misalignments in pitch and yaw that cannot be compen-
sated from the manipulator side, due to the reduced DOFs,
as described in the previous section. Also, there are always
some inaccuracies in the calibration or the detection of the

Fig. 3 3D model of the disassembled customized end-effector, in
which three blocks can be distinguished: 1 passive gripper, 2 camera
in-hand and 3 F/T sensor

valves which generate some inherent error in the position
of the end-effector. Therefore, the external part of the end-
effector is a flexibleV-shape structurewhich passively adapts
the end-effector position and orientation to the T-bar valve
handle driving it to the center of the end-effector.

The second goal of this end-effector is to integrate some
sensors to perceive the intervention area from a closer point
of view. A first module contains a small analog camera, in the
center of the passive gripper, to provide visual feedback to a
human operator while performing a teleoperated intrerven-
tion. After the camera module, a force/torque (F/T) sensor
measures the contact forces and torques between themanipu-
lator and the valve. This sensor is used to detect if the contact
with the valve handle has been established, by measuring an
axial force, and also, to measure the torque when rotating the
valve. The forces measured by the sensor must be compen-
sated for the depth of the end-effector, to discount the force
generated by the water pressure in the F/T housing. The com-
plete end-effector is mounted in the 4DOFsmanipulator, and
will rotate according to the manipulator’s roll DOF.

3 Localization and mapping

Anaccurate localization andmapping system is paramount to
achieve long-term autonomy in a semi-structured underwa-
ter environment like an offshore subsea facility or a marine
observatory. This system must facilitate navigation within
the environment as well as localize key elements for con-
ducting the required intervention operations (e.g., a panel to
turn valves, a structure to dock, a canister to collect objects,
etc.). Therefore, a computational mechanism to enable the
vehicle to maintain a geometric description of its environ-
ment and its location is required. This geometric description
will be the basis for a higher-level semantic description used
to plan and execute autonomous actions in real-time.

If a precise map of the area is available, the problem can
be faced in a computationally cheap way using a map-based
localization algorithm. However, this restricts the flexibil-
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ity of the system to operate in dynamic environments as it
does not allow the position of existing objects to be modi-
fied or new ones to be added into the map (Maurelli et al.
2008). Another solution is to localize the AUV relative to a
knownobject, like a panel or a docking station. This approach
requires a priori knowledge of the reference object to apply
a model-based pose estimation technique, that relies on a
list of detected object features (Palmer et al. 2009). Despite
the simplicity and robustness of this method, it does not
provide localization when the object is out of the field of
view, nor a geometric map of the environment that may be
useful for an on-board planner. Moreover, it becomes more
difficult to combine georeferenced data that can be used to
reach the intervention area (i.e., from GPS or ultra short base
line (USBL)) with more accurate relative data (i.e., features
detected on the landmark of interest) used to perform the
intervention.

In this sense, a more complete mechanism are the popu-
lar SLAM algorithms. Several SLAM alternatives have been
proposed in the underwater domain (Newman and Leonard
2003; Ribas et al. 2010; Salvi et al. 2008; Nagappa et al.
2013; Ozog and Eustice 2014). Some of these solutions are
difficult to implement in real-time due to its high compu-
tational cost, mainly because they attempt to address very
broad localization problems in completely unknown envi-
ronments. However, we can exploit the fact that in our target
scenario we do have an a priori knowledge of the interven-
tion objects (i.e., the panel) to overcome that problem. In
this section we present a low-computational cost SLAM sys-
tem designed for real-timeAUVoperation in semi-structured
environments with a priori known objects. The system is
divided in two main modules: an EKF filter able to merge
different sources of navigation data and a vision-based tem-
plate detection algorithm capable to detect and estimate the
position of a known object in the environment.

3.1 EKF localization filter

An EKF is used to estimate the vehicle’s position ([x y z])
with respect to an inertial frame I and the vehicle’s linear
velocity ([u v w]) with respect to the vehicle’s frame V (see
Welch and Bishop 1995 for an introduction to EKF). Vehicle
orientation ([φ θ ψ]) with respect to I and angular velocity
([p q r ]) with respect to V are not estimated but directly
measured by an AHRS. The vehicle attitude is not estimated
for several reasons: (i) we only have one source that provides
absolute attitude information (i.e., an AHRS); (ii) the AHRS
has a high frequency and a small error when properly cal-
ibrated; and (iii) although the attitude was estimated, given
the simplicity of the constant velocity model used in the pre-
diction, its state would be driven almost exclusively by the
measurements from the AHRS.

This filter is also able tomap the pose of several landmarks
in I, thus, working as a SLAM algorithm. Even though the
filter is designed to deal with several landmarks, only one
-the intervention panel- is used for the valve-turning task. A
vision-based system,whichwill be explained later on, identi-
fies the presence of the intervention panel in the environment
and computes its relative position with respect to the vehicle.
This information is introduced in the localization filter as a
landmark and is updated with successive observations.

The information to be estimated by the SLAM algorithm
is stored in the following state vector:

xk = [x y z u v w l1 . . . ln]T (1)

where ([x y z u v w]) is the vehicle position and linear veloc-
ity and (li = [lxi lyi lzi lφi lθi lψi ]) is the pose (position
and orientation) of a landmark in I.

A constant velocity kinematics model is used to deter-
mine how the vehicle state will evolve from time k − 1 to
k. Detected landmarks are expected to be static, which is a
reasonable assumption in the case of an intervention panel.
The predicted state at time k, x−

k follows the equations:

x−
k = f (xk−1, nk−1, uk , t). (2)

x−
k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎣
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⎤
⎦+ R(φkθkψk)

⎛
⎝
⎡
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vk−1

wk−1

⎤
⎦ t +

⎡
⎣
nuk−1

nvk−1

nwk−1

⎤
⎦ t2
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⎞
⎠

uk−1 + nuk−1 t
vk−1 + nvk−1 t
wk−1 + nwk−1 t

l1k−1

. . .

lnk−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3)

where t is the time period, u = [φ θ ψ] is the control
input determining the current vehicle orientation in I and
n = [nu nv nw] is a vector of zero-mean white Gaussian
acceleration noise whose covariance, represented by the sys-
tem noise matrix Q, has been set empirically:

Q =
⎡
⎣

σ 2
nu 0 0
0 σ 2

nv
0

0 0 σ 2
nw

⎤
⎦ (4)

Associated with the state vector xk there is the covariance
matrix Pk . Following standard EKF operations, the covari-
ance of the prediction at time k is obtained as:

P−
k = AkPk−1AT

k + WkQk−1WT
k , (5)

where Ak is the Jacobian matrix of partial derivatives of f
with respect to the state (1) and Wk is the Jacobian matrix of
partial derivatives of f with respect to the process noise n.
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Three linear measurement updates are applied in the filter:
pose, velocity, and landmark updates. Each sensor measure-
ment is modelled as:

zk = Hxk + sk, (6)

where zk is the measurement itself, H is the observation
matrix that relates the state vector with the sensor measure-
ment, and sk is the sensor noise.Updates are applied bymeans
of the following equations:

Kk = P−
k HT (HP−

k HT + R)−1, (7)

xk = x−
k + Kk(zk − Hx−

k ), (8)

Pk = (I − KkH)P−
k , (9)

where Kk is the Kalman gain, R the measurement noise
covariance matrix and I an identity matrix.

Several sensors provide position information, which can
be used to initialize the vehicle position and bound dead-
reckoning errors. A GPS receiver measures vehicle position
in the plane (x, y) while the vehicle is at the surface, a pres-
sure sensor transforms pressure values into depth (z) and a
USBL device measures vehicle position (x, y, z) while sub-
merged. To integrate any of these measurements, three zk
and H equation pairs have been defined for the GPS (10), the
depth sensor (11), and the USBL (12):

zk = [x y], H = [
I2×2 02×1 02×3 02×6n

]
, (10)

zk = [z], H = [
0 0 1 01×3 01×6n

]
, (11)

zk = [x y z], H = [
I3×3 03×3 03×6n

]
, (12)

where Im×m denotes an m ×m identity matrix and 0m×6n is
anm×6n zeromatrix, with n being the number of landmarks.

In the Girona 500 AUV, velocity updates are provided by
a DVL sensor that measures linear velocities with respect to
the sea bottom or the water below the vehicle. These mea-
surements are integrated using:

zk = [u v w], (13)

H = [
03×3 I3×3 03×6n

]
. (14)

When only velocity updates are available, the filter behaves
as a dead-reckoning algorithm that drifts over time. However,
if position updates or landmarks are detected, the localization
filter is able to keep its error bounded.

To identify the valve panel and compute its pose a vision-
based algorithm is used. This algorithm computes the panel
position with respect to V as well as its orientation with
respect to I. This information is introduced in the localization
filter to improve both vehicle and panel localization:

zk = [Lx L y Lz Lφ Lθ Lψ ], (15)

Fig. 4 Set of nodes that take part in the localization and mapping sys-
tem for the Girona 500 I-AUV

H =
[−RotT 03×3 RotT 03×3 . . .

03×3 03×3 03×3 I3×3 . . .

]
, (16)

where [Lx L y Lz] is the relative position of the landmark
with respect to the vehicle, [ Lφ Lθ Lψ ] is the landmark
orientation with respect to the inertial frame and Rot is the
vehicle orientation rotation matrix.

The block diagram in Fig. 4 shows how each navigation
sensor is connected with the localization filter. The state vec-
tor is initialized either with the GPS and pressure sensor
measurements or according to the USBL, in case it is avail-
able and the vehicle is submerged. Linear velocities are set
to zero and no landmarks are present when the filter is initial-
ized. To introduce a new landmark the following procedure
is applied: (i) on the event of a new detected landmark, its
pose in the world is computed by composing its relative pose
with respect to the AUV and the AUV pose contained in the
state vector; (ii) the obtained [lx ly lz lφ lθ lψ ] pose is stored
into a first in first out (FIFO) queue of size 5 and the mean
and standard variation of all the elements in this queue is
computed; (iii) when the standard deviation of all the ele-
ments is below a threshold the landmark is introduced in the
filter extending the state vector and the covariance matrix as
shown in Eqs. (17) and (18).

xk = [xk−1 l̄x l̄y l̄z l̄φ l̄θ l̄ψ ]T , (17)

Pk =

⎡
⎢⎢⎣

Pk−1
Pk−1[0 : 3, 0 : 3] 03×3

03×3 03×3
Pk−1[0 : 3, 0 : 3] 03×3

03×3 03×3

M1 03×3
03×3 M2

⎤
⎥⎥⎦ ,

(18)

where Pk−1[0 : 3, 0 : 3] is the first 3 × 3 submatrix of Pk−1

and M1 and M2 are defined as follows.

M1 = [Rot × L[0 : 3, 0 : 3]
×RotT + Pk−1[0 : 3, 0 : 3]], (19)

M2 = [Rot × L[3 : 6, 3 : 6] × RotT ], (20)

where L is the covariance matrix for the detected landmark.
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3.2 Vision-based template detection algorithm

To compute the position of a known landmark (e.g., the sub-
sea valve panel) we use a vision-based algorithm. The images
gathered by the on-board camera are compared against an a
priori known template and salient features are extracted in
both the camera images and the template. If a sufficient num-
ber of features can bematched across the two representations
it is possible to detect the presence of the landmark as well
as accurately estimate its pose.

In order to extract keypoints in the image we use the ori-
ented FAST and rotated BRIEF (ORB) feature extractor that
relies on features from accelerated segment test (FAST) cor-
ner detection (Rosten and Drummond 2006) and a binary
descriptor vector based on binary robust independent ele-
mentary features (BRIEF) (Calonder et al. 2010). These kind
of features are present on man-made structures like a valve
panel and can be quickly detected.

With this approach, differences between descriptors can
be calculated rapidly, allowing real-time matching of key-
points at higher image frame-rates when compared to other
commonly used feature extractors such as scale invariant fea-
ture transform (SIFT) (Lowe 2004) and speeded-up robust
features (SURF) (Bay et al. 2008).

Figure 5 illustrates the matching procedure between the
a priori known template and an image received from the
camera. A minimum number of keypoints (i.e., 25–40) must
be matched between the template and the camera image to
satisfy the landmark detection requirement. The detected cor-
respondences are used to compute the transformation that
relates the template image to the detected landmark. Then,
using the camera parameters and the known dimensions of

Fig. 5 Steps of the landmark detection: 1 Matching of keypoints
between the template and camera image. 2 Estimation of the panel cor-
ners in the camera image. 3 Estimation of the template’s position and
rotation in the image by using the camera parameters and the known
geometry of the landmark

the landmark (i.e., the panel), the landmark’s pose can be
determined in the camera frame and therefore also in the
vehicle frame V.

Note that the performance of vision-based algorithms
can be significantly degraded in operational scenarios due
to water turbidity. In this situation, the visibility range can
decrease from a fewmeters to less than 10 cm and a template
detection algorithm like the one presented here can fail to
accurately estimate a landmark pose. To overcome this prob-
lem it is possible to replace or combine this visual-based
detector with other detectors that are more resilient to low
visibility conditions. From the filter point of view, this change
is straightforward as the landmark detector is seen as a black
box that provides a relative position between the AUV and
a specific landmark. A widely accepted solution to detect
a target under poor visibility conditions is to equip it with
active beacons.While this solution is outside the scope of this
present paper, two approaches have already been explored
and preliminary results have been obtained with Girona 500
AUV. In the first solution, an acoustic pinger is attached to
the target panel. In order to localize it, a sum of Gaussians
(SoG) filter together with an active localization method are
used to minimize the uncertainty of the beacon position (Val-
licrosa et al. 2014). The second proposed solution, uses a set
of light beacons to localize static or moving objects (Gracias
et al. 2015). Although this method also relies on vision, it has
been shown capable of estimating the pose of a target from
up to 2–3 m in low visibility conditions. Hence, these meth-
ods can be a good solution to complement or substitute the
visual-based detector presented in this article when moving
to real sea scenarios.

4 Control

The motion control problem for autonomous underwater
vehicles has been an active research field for the past two
decades and continues to pose considerable challenges to
control designers especiallywhen the vehicles are affected by
severe environmental disturbances and exhibit large model
uncertainties. The particular case of the vehicle used in this
work (Girona 500 I-AUV) is a clear example of a vehicle that
targets complex operations and dexterous tasks (i.e.,monitor-
ing of underwater structures or manipulation of underwater
equipment such as control valves) while it might be subject
to the influence of strong external disturbances caused from
ocean currents and waves.

The main motion control modes of AUVs are categorized
in: a) velocity and b) pose (position/orientation) tracking con-
trol schemes. The objective of velocity control schemes is to
minimize the error between a commanded velocity setpoint
and the actual velocity of the vehicle. Velocity controllers are
commonly used in teleoperation schemes where the com-
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manded velocity is directly given by the human operator
through a joystick device. On the other hand, the objective of
pose tracking controllers is to minimize the error between a
desired pose setpoint and the actual pose of the vehicle. Pose
controllers are usually employed for way-point reaching and
station keeping missions.

In this section, we address the velocity and pose track-
ing control problems for the Girona 500 I-AUV as well
as the controller for its manipulator. The proposed control
schemes have been fully integrated in its architecture and
were developed in accordance with the control specifica-
tions and requirements induced by the high-level planning
modules and tasks. Both velocity and pose control schemes
were designed based on the dynamicmodel parameters of the
Girona 500 I-AUV model that were obtained via an off-line
identification process detailed in Karras et al. (2013). Their
purpose is twofold: (i) achieve the desired pose or velocity
set-points respectively and (ii) compensate for external dis-
turbances and parametric model uncertainties. Moreover, the
stability of the unactuated degrees of freedom (DoF) (roll) is
secured.

The rest of this section is divided in two parts. First,
the corresponding velocity and pose control schemes are
presented along with the thruster control matrix (TCM)
design that maps the controller’s output (i.e., body forces
and torques) into thrust commands. Second, the controller
implemented for the I-AUV manipulator is described.

4.1 AUV controller

Figure 6 shows the velocity and pose control schemes for the
Girona 500 I-AUValongwith the TCMmodule thatmaps the
controllers output into thruster commands. This figure shows
how the proposed low-level control system can equally deal
with pose, velocity or force requests.

Fig. 6 Girona 500 I-AUV control scheme

4.1.1 Velocity control

The velocity control scheme is based on the already identified
vehicle dynamic model parameters. It tries to compensate
for external disturbances and residual parametric uncertainty
while maintaining the stability of the unactuated roll DoF.

Let ud (t), vd (t), wd (t) and qd (t), rd (t) denote the
desired linear and angular velocities respectively. Then, the
linear and angular velocity errors are defined as:

eu = u − ud , ev = v − vd , ew = w − wd ,

eq = q − qd , er = r − rd (21)

As a result, we design the external forces in the surge (X),
sway (Y ) and heave (Z) as well as the external torques in
pitch (M) and yaw (N ) as:

⎡
⎢⎢⎢⎢⎣

X
Y
Z
M
N

⎤
⎥⎥⎥⎥⎦

= M̂

⎡
⎢⎢⎢⎢⎣

u̇d
v̇d
ẇd

q̇d
ṙd

⎤
⎥⎥⎥⎥⎦

+
(
Ĉ + D̂

)
⎡
⎢⎢⎢⎢⎣

ud
vd
wd

qd
rd

⎤
⎥⎥⎥⎥⎦

+ Ĝ − Kv

⎡
⎢⎢⎢⎢⎣

eu
ev

ew

eq
er

⎤
⎥⎥⎥⎥⎦

(I + Kr Fr )

− KI

∫ t

0

⎡
⎢⎢⎢⎢⎣

eu(τ )

ev(τ )

ew(τ)

eq(τ )

er (τ )

⎤
⎥⎥⎥⎥⎦

dτ. (22)

where Kv , KI , Kr are positive definite gain matrices,
M̂, Ĉ, D̂, Ĝ denote the estimate of the dynamic model of the
underwater vehicle (following the nomenclature established
in Fossen 1994) and Fr is a robustifying term, that compen-
sates for residual parametric uncertainty, given as follows:

Fr =

∥∥∥∥∥∥∥∥∥∥

⎡
⎢⎢⎢⎢⎣

u̇d
v̇d
ẇd

q̇d
ṙd

⎤
⎥⎥⎥⎥⎦

∥∥∥∥∥∥∥∥∥∥

2

+

∥∥∥∥∥∥∥∥∥∥

⎡
⎢⎢⎢⎢⎣

ud
vd
wd

qd
rd

⎤
⎥⎥⎥⎥⎦

∥∥∥∥∥∥∥∥∥∥

2

(23)

4.1.2 Position and orientation tracking control

A smooth pose tracking control scheme is designed based on
the dynamic parameters of the AUV model, compensating
for external disturbances as well as for residual parametric
uncertainty and securing the stability of the unactuated roll
DoF. Let xd , yd , zd , θd , andψd denote the desired way points
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and orientations respectively. Then, the position and orien-
tation errors are defined as follows:

ex = x − xd , ey = y − yd , ez = z − zd ,

eθ = θ − θd , eψ = ψ − ψd (24)

As a result, we design the desired velocities:

⎡
⎣
ud
vd
wd

⎤
⎦ = −Kp J

−1
v

⎡
⎣
ex
ey
ez

⎤
⎦

[
qd
rd

]
= −Ko J

−1
ω

[
eθ

eψ

]
(25)

with positive definite gain matrices Kp, Ko, where the terms
Jv and Jω denote the transformation matrices from linear (u,
v,w) and angular (q, r ) bodyvelocities to position (x ,y,z) and
Euler angle (θ ,ψ) rates respectively.Moreover, we define the
velocity errors eu = u − ud , ev = v − vd , ew = w − wd ,
eq = q − qd and er = r − rd and design the external forces
in the surge, sway and heave as well as the external torques
in pitch and yaw as:

⎡
⎢⎢⎢⎢⎣

X
Y
Z
M
N

⎤
⎥⎥⎥⎥⎦

= M̂
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ẇd

q̇d
ṙd
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(26)

where Kv , KI , Kr are positive definite gain matrices,
M̂, Ĉ, D̂, Ĝ denote the estimate of the dynamic model of
the underwater vehicle and Fr denotes the robustifying term
as described in Eq. 23.

4.1.3 Performance properties

It can be easily verified, following standard elements of Lya-
punov theory, combined with the backstepping technique for
the pose tracking control (see for example Fossen 1994 and
Spooner et al. 2002), that the error performance is given as
follows:

eu, ev, ew, eq , er

∼
⎛
⎜⎝

∥∥∥M̃
∥∥∥2 +

∥∥∥C̃
∥∥∥2 +

∥∥∥D̃
∥∥∥2 +

∥∥∥G̃
∥∥∥2 +

∥∥∥ ˜d(t)
∥∥∥2∞

λmin
(
Kp
)
λmin (KvKr )

⎞
⎟⎠

(27)

and

ex , ey, ez, eθ , eψ

∼
⎛
⎜⎝

∥∥∥M̃
∥∥∥2 +

∥∥∥C̃
∥∥∥2 +

∥∥∥D̃
∥∥∥2 +

∥∥∥G̃
∥∥∥2

λmin
(
Kp
)
λmin (KvKr )

⎞
⎟⎠ (28)

where M̃, C̃, D̃, G̃ denote the residual parametric mod-
elling errors. We can therefore improve the performance
of the controller via increasing the control gains Kp, Kv ,
Kr or alternatively by forcing small parametric errors via
more extensive and well-organized on-line identification
processes.

4.1.4 Thruster allocation design

Both pose and velocity controllers generate as output a force
request (FR) that is merged with other possible FR coming
from high-level controllers. The resulting force (τd ) must be
then generated by the vehicle thrusters. To compute the thrust
(thr ) that each propeller should yield, the combined FR τd
is multiplied by the inverse of the TCM:

thr = τd × TCM−1,

commandi = p1 × thrni + · · · + pn × thr1i + pn+1. (29)

The TCM codifies the amount of force that each thruster
produces per DoF. Then, to compute the command for each
thruster we use a model for the SeaEye MCT1 thrusters in
polynomial form (p1 + · · · + pn+1) that has been found
by comparing issued commands with the generated thrust
measured with a dynamometer. The whole control loop is
executed at 20Hz.

4.2 Manipulator controller

Given that the manipulator is underactuated (see Sect. 2.2),
it is only able to reach a Cartesian position (x, y, z) with a
desired roll (Φ) orientation. This means that pitch (θ ) and
yaw (ψ) can not be specified, being implicitly defined by the
other 4 DoFs.

The manipulator’s low-level controller receives velocity
requests for the end-effector in the Cartesian space. In order
to reach these velocities, it controls the velocity for each joint
(q̇ ∈ R4). To this end, the desired velocity is transformed to
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an increment in theCartesian space (x), and using the pseudo-
inverse Jacobian (J+) of the manipulator, q̇ is obtained as
follows:

q̇ = J+ ẋ . (30)

Furthermore, there is also a pose controller in cascade with
this velocity controller that allows the end-effector to be
moved to a particular position.

5 Learning by demonstration

In order to program the intervention tasks in a flexible and
intuitivewaywe propose to use amachine learning algorithm
known as learning by demonstration (LbD). Rather than
analytically decomposing the problem and manually pro-
gramming a desired behaviour, the LbD infers the knowledge
froma set of user demonstrations. This kind of algorithmcon-
sist of three sequential phases:Demonstration where a batch
of task examples performed by a human pilot are recorded;
Learning, where a model is created by generalizing all the
demonstrations; and Reproduction, where the model is used
to accomplish new instantiations of the learned task. Using
such a technique, the framework becomes easily extensible
and new intervention tasks (involving both the AUV and
manipulator motions) can be added effortlessly just from
operator demonstrations.

Different LbD algorithms have been proposed along the
literature to encode and learn a trajectory. In the work of
Calinon (2010) a humanoid robot learned different human
skills using a representation based on Gaussian mixture
models (GMM). This representation was later extended by
Kruger (2012) using incremental GMM to automatically set
the number of Gaussians to control a robotic arm. Similar
to the GMM, a hidden Markov model (HMM) (Hovland
et al. 1996) has also been used to represent a trajectory.
Both GMM and HMM representations require the use of a
regression algorithm like the Gaussian mixture regression
(GMR) to generate a desired trajectory with an associ-
ated density distribution. A different possibility consists of
using dynamicmovement primitives (DMP) (Hoffmann et al.
2009; Pastor et al. 2009). DMP encapsulates the learned
skill in a superposition of basis motion fields. Unlike GMM
and HMM, DMP uses the learned model to dynamically
generate the commands required to perform the reproduc-
tion of the trajectory. This inherently gives the approach
certain robustness to external perturbations and the capa-
bility to adapt in different domains. DMP has been also
parametrized by Matsubara et al. (2011) and extended by
Kormushev et al. (2011) to include a force associatedwith the
trajectory.

Therefore, given the simplicity of the representation and
its flexibility, DMP is more suitable than GMM or HMM in
the context of this work and has been chosen as the base of
our learning framework.

5.1 Dynamic movement primitives

As introduced before, DMP encapsulates a learned skill as
a superposition of basis motion fields. In this work we have
used and extended the DMP approach proposed by Kormu-
shev et al. (2011). To better understand the DMP encoding,
we can imagine a mass attached to different damped strings.
These strings attract the mass changing their forces through-
out the experiment execution, thus moving the mass along
the desired trajectory (see Fig. 7).

To generate the proper superposition each attractor has
an associated weight which changes along the time defined
by the hi (t) function (31). The weight of each attractor is
represented with Gaussians, whose centers μT

i are equally
distributed in time, and whose variance parameters ΣT

i =
total_t ime/K are set to a constant value inversely propor-
tional to the number of Gaussians (K ).

hi (t) = N (
t;μT

i ,ΣT
i

)
∑K

k=1N
(
t;μT

k ,ΣT
k

) , (31)

Instead of using the real time a decay term is used, to
obtain a time invariant model:

t = ln(s)

α
, (32)

Fig. 7 Top figure shows a set of 2D demonstrated trajectories (black)
and one reproduction (red). In this case, the demonstrated trajectory
must grasp the valve aligning the fore arm of the manipulator with
the valve. Below, the h function is represented. The encoding of the
trajectory using a DMP algorithm has been done using 6 Gaussians
adequately weighted over time (Color figure online)
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where s is a canonical system:

ṡ = s − αs,

and the α value is selected by the user depending on the
duration of the demonstrated task.

The number of attractors (represented by Gaussians) is
preselected by the user, according to the complexity of the
task. The position of the attractor is determined by the
center of the Gaussian (μx

i ) and its stiffness (K P
i ) is rep-

resented by the covariance. The values are learned from
the observed data through least-squares regressions. All the
data from the demonstrations is concatenated in a matrix
Y = [ẍ 1

K P + ẋ K V

K P + x], where x , ẋ and ẍ are the position,
velocity and acceleration recorded at each time instant of
the demonstrations. Also the weights at each time instant are
concatenated to obtain matrix H . With these two matrices,
the linear equation Y = Hμx can be written. The least-
square solution to estimate the attractor center is then given
by μx = H†Y , where H† = (HT H)−1HT is the pseudo-
inverse of H .

The user needs to establish a minimum K P
min , and maxi-

mum K P
max to define the limits of the stiffness and to estimate

the damping as follows:

K P = K P
min + K P

max − K P
min

2
, KV = 2

√
K P . (33)

To take into account variability and correlation along
the movement and among the different demonstrations, the
residual errors of the least-squares estimations are com-
puted in the form of covariance matrices, for each Gaussian
(i ∈ {1, ...K }).

Σ X
i = 1

N

N∑
j=1

(
Y ′
j,i − Ȳi

′) (
Y ′
j,i − Ȳi

′)T
,

∀i ∈ {1, ...K }, (34)

where:

Y ′
j,i = Hj,i

(
Y j − μx

i

)
. (35)

In (34), the Ȳi
′
is the mean of Y ′

i over the N data points.
Lastly, the residual termsof the regressionprocess are used

to estimate the K P
i through the eigen components decompo-

sition.

K P
i = Vi Di V

−1
i , (36)

where:

Di = kPmin +
(
kPmax − kPmin

) λi − λmin

λmax − λmin
. (37)

In (37), theλi and theVi are the concatenated eigenvalues and
eigenvector for the inverse covariance matrix (Σ x

i )−1. The
underlying idea is to determine a stiffnessmatrix proportional
to the inverse of the observed covariance.

Therefore, themodel for a given taskwill be composed by:
the kPi matrices and μx

i centers representing the Gaussians;
hi (t) representing the influence of eachmatrix functions; KV

representing the damping; and α, which is assigned accord-
ing to the duration of the sample. Figure 7 shows a simple
example where the learned data are represented.

Finally, to reproduce the learned skill, the desired accel-
eration is generated with

ˆ̈x =
K∑
i=1

hi (t)
[
K P
i

(
μX
i − x

)
− K v ẋ

]
, (38)

where x and ẋ are the current position and velocity.

5.2 Demonstrations with teleoperation

The teleoperation phase is a key step for the proper function-
ing of the presented framework, as the quality of the learning
will depend on the quality of the acquired demonstrations.
For this reason, the controls used to teleoperate the AUV and
the manipulator must be easy to use by the human operator
that performs the demonstrations.

In our implementation, the whole system (i.e., AUV and
manipulator) is controlled using an Omega 7 haptic device
(Fig. 8). This device provides an intuitive control of 7 DOFs
using only one hand. Furthermore, its force-feedback capa-
bility has been connected with the data measured by the F/T
sensor so that the operator perceives the contact with the
valve handle.

The operator uses a Graphical User Interface (GUI) to see
the vehicle’s cameras as well as a 3D representation of the
AUV, the end-effector, and the target of interest.

Fig. 8 A user performing a demonstration using the Omega 7 haptic
device and the GUI for the Girona 500 AUV
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During the teleoperation process the AUV and the end-
effector trajectories are recorded and stored in a demonstra-
tion file. The main coordinate frame is defined at the target
valve position, butwith the panel’s orientation. Themeasured
valve orientation is only used to adjust the end-effector align-
ment in order to grasp the valve. This allows us to use the
same learned model for any valve in any configuration.

5.3 Learning the DMP trajectory

The LbD loads the set of recorded trajectories and uses them
to generate a model with the previously described formu-
lation (38). The DMP algorithm has been implemented to
control a total of 8 DoFs, 4 DoF to represent the trajectory
of the AUV and 4 DoF for the manipulator. Since DMP uses
an n-dimensional state vector, the number of DoFs to con-
trol does not affect the underlying formulation. However, to
represent the AUV orientation yaw (ψ) and the end-effector
roll (Φ) the reproduction formula (38) has been modified to
properly handle angle values by normalizing the difference
(μX

i − x) between π and −π .

5.3.1 LbD reproducer

The LbD reproducer uses the created model to generate the
AUV and manipulator requested velocities to perform the
task. The requested velocities sent to the manipulator are
obtained by subtracting the AUV requested velocities to the
desired end-effector velocities. To generate these requests
the model needs to know the current pose of the AUV, the
manipulator, and the target valve.

A specific procedure has been added to turn the valve to
a desired orientation while controlling the applied torque to
avoid breaking the valve in case it gets stuck. This procedure
is activated when the F/T sensor detects that the valve is
correctly grasped. The LbD reproducer is forced to keep the
grasping position and applies, at the same time, a force to
keep a constant contact. Finally, when the turn is completed
or aborted, the AUVmoves backward to a safe distance from
the panel.

Tomaintain the grasping position, theDMPhas beenmod-
ified to alter the advance of the time (t) (32) associated to the
reproduction. This time is generated by a canonical system
(ṡ = s − αsi) that accepts as an input (i) an external contin-
uous value ([−1, 1]). In our case, the input value will be set
to 1 if we want the reproduction to take the same time than
the demonstration. However, when the valve is grasped the
input will be set to 0 forcing the AUV and the end-effector
to stop thus maintaining the current position. Note that with
this modification we can also slow down the reproduction or
even follow the trajectory backwards. This could be conve-
nient to roll back the approaching maneuver once it has been

initiated and some unexpected disturbance takes place (e.g.,
the panel is occluded) (Ahmadzadeh et al. 2014).

6 Planning

Planning is a technology explored in Artificial Intelligence
that seeks to organize activities in order to achieve specific
goals over time and under resource constraints (Ghallab et al.
2004). It begins with a domain model describing the actions
available to the planner, and a description of the problem
instance specifying the current state, of both the execu-
tive and its environment, and the goals to be achieved. The
domain model is fixed, while different planning instances
can be constructed in response to changes in the environ-
ment. The planner constructs a plan by organizing instances
of the actions into a partially ordered network of activity that
is causally valid and is predicted to achieve the goals, while
optimizing a cost function.

Planning is needed for strategic problem-solving, giving
structure and purpose to the execution of specific activities.
Planning is essential when actingwith constrained resources;
the consideration of how future goals will be achieved can
place constraints on theways inwhich current tasks should be
best achieved that are not apparent when viewing the current
task in isolation.

Several previous works in AUV control have explored the
use of offline AI Planning. Examples include coordinating
autonomous behaviour in an underwater maintanence vehi-
cle (Cashmore et al. 2013, 2014), generating a coarse plan
to initialise the inspection of an unknown hull (Englot and
Hover 2010) and using a plan-based policy to guide an AUV
for autonomously tracking the boundary of the surface of a
partially submerged harmful algal bloom (Fox et al. 2012).

Because of the need for an agile response to execution con-
ditions, offline methods are not the most robust for mission
planning (Rajan et al. 2007). The Teleo-Reactive Executive
(T-REX), currently deployed on the Dorado-class AUV at
MBARI (McGann et al. 2007), has been proposed as an
architecture to support online planning and plan execution.
In PANDORA, an on-board planner is used to address the
need for agility. In the event of the failure of an action under
execution, the system is able to reformulate the model of the
environment and replan to achieve new goals as they arise.

In PANDORA we consider long-term missions involving
valve-turning and inspection tasks to be carried out in a large
undersea area. The actions available in this PANDORAappli-
cation are shown in Table 1 and an example plan is shown in
Fig. 9. Details about the modelling of these actions and the
structure of the plan are presented in Sect. 6.2.

There might be many valve-turning tasks involved in a
mission, aswell as othermaintenance and inspection tasks, to
be carried out at different locations, interacting with different
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Table 1 The set of action
schemas used in PANDORA

do_hover_fast Fast but inaccurate navigation between waypoints

do_hover_controlled Slow and acccurate navigation between waypoints

turn_valve A manipulation action that turns a valve to a desired angle

observe_inspection_point Observation action

correct_position Localization action following navigation

recalibrate_arm Recalibrates the arm

examine_panel An action to check valve positions after a turn action

0 . 0 0 0 : ( c o r r e c t p o s i t i o n auv wp0) [ 1 0 . 0 0 0 ]
10 . 001 : ( do hove r c on t r o l l e d auv wp0 wp p0 )
[ 3 3 . 5 3 2 ]
43 . 534 : ( tu rn va lve auv wp p0 p0 v0 ) [ 1 2 0 . 0 0 0 ]
163 . 535 : ( c o r r e c t p o s i t i o n auv wp p0 ) [ 1 0 . 0 0 0 ]
173 . 536 : ( tu rn va lve auv wp p0 p0 v1 ) [ 1 2 0 . 0 0 0 ]
293 . 537 : ( c o r r e c t p o s i t i o n auv wp p0 ) [ 1 0 . 0 0 0 ]
293 . 537 : ( r e c a l i b r a t e a rm auv wp0) [ 1 8 0 . 0 0 0 ]
473 . 538 : ( tu rn va lve auv wp p0 p0 v2 ) [ 1 2 0 . 0 0 0 ]
593 . 539 : ( c o r r e c t p o s i t i o n auv wp p0 ) [ 1 0 . 0 0 0 ]
603 . 540 : ( tu rn va lve auv wp p0 p0 v3 ) [ 1 2 0 . 0 0 0 ]

Fig. 9 First part of plan for the three missions, showing the actions for
the first valve-turning mission

structures and with different deadlines. The planner is used
to decide the order in which to attempt these tasks, how the
tasks are to be carried out, and within what resource and time
constraints. For example, when addressing a valve-turning
task as part of a longer mission, planning is used to determine
how much time and resource to commit to the task, and to
coordinate the search for the valve panel while respecting the
duration and energy constraints of the entire mission.

The actions that are relevant to the valve-turning task are
described in Sect. 6.2. In addition to determining how to
achieve the task, the planning system is also responsible for
deciding how to respond to execution-time failures, such as
losing the panel position due to drift in the navigation, or
failing to turn a valve because it is blocked. While a single
valve-turning task could be attempted using a scripted con-
troller, when considered in the context of a longer persistent
mission, planning is required.

6.1 Execution-time planning system

The planning system framework shown in Fig. 10 illustrates
how the planning system is supported by the other compo-
nents required to enable on-line planning. The framework
comprises three parts: sensor data interpretation to enable
the construction of a planning problem instance describing
the mission, the automated construction of a plan from the
domain model and problem instance, and the dispatch of the
planned actions to the controllers. When actions are exe-
cuted by the controllers, errors might be encountered so that
a replan is requested.

The planning domain and problem instances are mod-
elled in the planning domain description language, PDDL2.1

Fig. 10 General overview of the planning system framework. Sensor
data is passed continuously to the planning system, and used to con-
struct models. Actions are dispatched as ROS actions and are carried
out by lower-level controllers. These controllers respond reactively to
immediate events and provide feedback

(Fox and Long 2003). This language allows the definition of
domains and problems with temporal and numeric relation-
ships and constraints. PDDL2.1 is a member of the PDDL
family of languages, and we refer to it throughout as PDDL.
The problem instance is built dynamically, by applying a state
estimation process to the sensor data. An example problem
file is shown in Fig. 11. This construction is performed at the
outset of themission, and then each time a replan is requested.
The problem is then solved using the planner POPF (Coles
et al. 2010), using the anytime planning feature of its OPTIC
variant (Benton et al. 2012). POPF is a temporal metric plan-
ner that is widely used in the AI Planning community and
can cope with many features that are common in applications
(Piacentini et al. 2013; Fox et al. 2011). The plan produced
by POPF includes estimated durations and dispatch times for
each action. During dispatch, these times can be interpreted
with some flexibility depending on deadlines in the plan.
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( d e f i n e ( problem va lv e t a sk )
( : domain va lv e tu rn ing )
( : ob j e c t s

auv − v eh i c l e
wp1 . . . wp20 − waypoint
p1 − panel
v1 − valve )

( : i n i t
( at auv wp1)
( canreach auv wp8 p1 )
( on v1 p1 ) ( va lve b locked v1 )
(= ( va l v e goa l v1 ) 0 .014)
(= ( va l v e s t a t e v1 ) 0 .014)
(= ( va lve goa l comple t ed v1 ) 0)

; ; VALVE TIME WINDOW
( at 1 ( not ( va lve b locked v1 ) ) )
( at 1 ( v a l v e f r e e v1 ) )
( at 1 (= ( va l v e goa l v1 ) 1 . 5 7 ) )
( at 251 ( va lve b locked v1 ) )
( at 251 ( not ( v a l v e f r e e v1 ) ) )
. . .
( connected wp1 wp2)

(= ( d i s tance wp1 wp2) 5 . 072 )
( connected wp2 wp1)

(= ( d i s tance wp2 wp1) 5 . 072 )
. . . )

( : goa l ( and
(>= ( va lve goa l comple t ed v1 ) 5 ) ) ) )

Fig. 11 Partial PDDL problem instance for a valve-turning task. The
problem is built dynamically from the sensed environment and the mis-
sion instructions. The existence of valve panels and the angles of valves
are sensed, while the desired angles for those valves are prescribed. In
this problem there is a valve v1, which must be turned to 1.57 radians
within the first 251 s of the mission

When the plan is passed to the executive for dispatch,
the actions are converted into predefined action-goal mes-
sages, using the ROS actionlib library (WillowGarage 2007).
A controller is responsible for achieving the actionlib goal
and providing feedback. The feedback can be either success,
in which case the executive passes the next action to the con-
troller, or failure, with a request for replanning.

The idea of translating planned actions into control pro-
grams has been previously exploredmany times, for example
(Simmons et al. 1997; Beetz et al. 2012; McGann et al.
2008). In contrast to previous approaches, we use a temporal
planning system, and focus on the coordination of activ-
ity around the deadlines by which tasks must be achieved.
Furthermore, rather than building an in-house plan exe-
cution architecture, we use ROS and open standards. We
also address the problem of updating the knowledge avail-
able to the planner by the use of run-time remodelling and
replanning.

There are four possible reasons for replanning:

1. Action failure: an action execution reports failure, using
the ROS action feedback;

2. Changeof environment: the state estimationprocess iden-
tifies a change in the environment that invalidates the
plan, or new information pertinent to mission goals is
discovered;

3. Budget deficit: the estimated cost (time or energy usage)
differs from that measured during execution, and the
executive calculates that the plan is invalidated (the mea-
sured cost was high).

4. Budget surplus: the estimated cost (time or energy usage)
differs from that measured during execution, and the
executive calculates that there is room to perform extra
tasks (the measured cost was low).

The first three situations initiate a replan request to which
the planner can respond by replanning the current task within
global mission constraints. In situations where the plan is
invalidated by the new state or resource availability, the
planner must construct a new plan to work with the new
conditions. In the last of the four sitiations, if the existing
plan remains valid, the planner is free to leave it unchanged.

Two significant situations are relevant to the valve-turning
task considered in this paper: first, when the precise location
of the valve panel is unknown, the planner will construct
a plan to search for the panel according to its most likely
location and, second, once the valve position is known a plan
is constructed to turn the valve and then to confirm that it is
set to the correct angle. The first plan can lead to a replanning
request being triggered if the valve panel is found during the
search: this is a positive outcome, but requires a new plan
to interact with the valve. The second plan can fail if the
valve-turning action fails to achieve the desired angle and
will lead to a new plan to attempt to interact with the valve
again. If resource constraints prevent a new plan from being
constructed, for the purposes of the current work the planner
simply abandons this task and reverts to a safe state plan.

6.2 Planning-execution interface

An interface has been developed to link the controllers of the
vehicle to the planning module. The significant details of the
actions and their implementations are described below.

6.2.1 Go to waypoint

The planner is used to determine the order in which to visit
the inspection locations when searching for the panel, mini-
mizing the duration and energy cost of the mission. Once a
waypoint position (x, y, z, ψ) is computed, the vehicle can
be asked to move there by one of two possible modes of
motion.

The first mode (which corresponds to the action do_hover
_controlled) moves the AUVholonomically by sendingway-
point requests to the pose controller (see Sect. 4). However,
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if the waypoint to be reached is far from the current posi-
tion of the vehicle, this motion mode might be too slow to
be appropriate. In this case a variation of the line-of-sight
(LOS) pure pursuit guidance algorithm described in Fossen
(2011) may be used. This is the do_hover_fast action. The
orientation error (ψe) between the current pose aof the vehi-
cle nd the desired waypoint is computed (39) and sent to the
pose controller together with the desired depth (zd ).

Δx = xd(t) − x(t),

Δy = yd(t) − y(t),

ψe(t) = atan2(Δy,Δx ). (39)

When, ψe(t) is smaller than a defined error (angle_error ),
the desired surge (ud ) is computed and sent to the velocity
controller following:

ud(t) = min

⎛
⎝

√
Δ2

x + Δ2
y

approach_ f actor
, 1

⎞
⎠ ·

(
1 − | ψe(t) |

angle_error

)
· max_surge, (40)

where angle_error , approach_ f actor and max_surge
are user-defined constants. In our case, they take the follow-
ing values based on our experience: 0.3 rad, 4 and 0.6 m/s,
respectively. It is worth noting that using this second motion
mode, the final position of the vehicle is subject to a larger
error than using the first mode and also, the final orientation
of the AUV, ψ , does not correspond to the desired orienta-
tion, ψd , at the waypoint. The planner determines which of
the holonomic and the LOS motion modes to apply in any
situation. The PDDL representation of these actions is shown
in Fig. 12.

6.2.2 Observe inspection point

When this action is used, the vision-based system described
in Sect. 3.2 must identify whether the inspection panel is
within the field of view of the camera. Thus, the action suc-
ceeds if the panel is identified and fails otherwise. The PDDL
representation is shown in Fig. 13.

6.2.3 Examine panel

The geometry of the panel is known at the point of invocation
of this action. Therefore, the positions of the valveswithin the
panel are also known. A region of interest (RoI) centered at
each valve is extracted. The Hough line transform is used to
detect the orientation of the principal line in this RoI. Outliers
are limited by constraining the length of the lines as well as
possible orientations. This action returns the orientation for

( : durat ive−ac t i on do hove r c on t r o l l e d
: parameters
(? v − v eh i c l e ? from ? to − waypoint )

: durat ion
( = ? durat ion (∗ ( d i s t ance ? from ? to ) 10))

: cond i t i on ( and
( at s t a r t ( at ?v ? from ) )
( at s t a r t ( connected ? from ? to ) ) )

: e f f e c t ( and
( at s t a r t ( not ( at ?v ? from ) ) )
( at end ( at ?v ? to ) ) )

)

( : durat ive−ac t i on do hove r f a s t
: parameters
(? v − v eh i c l e ? from ? to − waypoint )

: durat ion
( = ? durat ion (∗ ( d i s t ance ? from ? to ) 5) )

: cond i t i on ( and
( at s t a r t ( at ?v ? from ) )
( at s t a r t ( connected ? from ? to ) ) )

: e f f e c t ( and
( at s t a r t ( not ( at ?v ? from ) ) )
( at end ( near ?v ? to ) ) )

)

Fig. 12 PDDL representation of the Go to waypoint control. The two
operators require that there is a connection—a collision free path—
between the two waypoints, and have different durations. In addition,
the fast motion moves the vehicle near the destination, requiring the
position to be corrected before continuing with the mission

( : durat ive−ac t i on ob s e r v e i n s p e c t i o n po i n t
: parameters
(? v − v eh i c l e ?wp − waypoint
? ip − i n sp e c t i onpo i n t )

: durat ion ( = ? durat ion 10)
: cond i t i on ( and
( at s t a r t ( at ?v ?wp) )
( at s t a r t ( cansee ?v ?wp ? ip ) ) )

: e f f e c t ( and
( at s t a r t ( not ( cansee ?v ?wp ? ip ) ) )
( at end ( i n c r e a s e ( observed ? ip ) ( obs ? ip ?wp) ) )
( at s t a r t ( not ( at ?v ?wp) ) )
( at end ( near ?v ?wp) ) )

)

Fig. 13 The observe_inspection_point action

each valve or failure if the panel is out of the field of view of
the vehicle.

6.2.4 Turn valve

The controller for turning a valve has been detailed in Sect. 5.
It defines the whole intervention with respect to the valve of
interest. However, the rotation of the valve is not learned by
the LbD algorithm but executed by a simple additional con-
troller. If the task cannot be completed before a timeout or
the rotation controller detects that the valve is blocked (i.e.,
using the Force/Torque sensor) a failure is generated as feed-
back. However, if the task finalizes with a success this is not
sufficient to ensure that the correct valve has been properly
turned. It is the responsibility of the planner to examine the
panel after each intervention to check its current state. It is
also important to note that the turn_valve action, shown in
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( : durat ive−ac t i on turn va lve
: parameters
(? v − v eh i c l e ?wp − waypoint
?p − panel ?a − valve )

: durat ion ( = ? durat ion 120)
: cond i t i on ( and

( at s t a r t ( at ?v ?wp) )
( at s t a r t ( examined ?p ) )
( at s t a r t ( canreach ?v ?wp ?p ) )
( at s t a r t ( on ?a ?p ) )
( at s t a r t

(<= ( man ipu l a t o r c a l i b r a t i on ?v ) 1) )
( at s t a r t ( v a l v e f r e e ?a ) ) )

: e f f e c t ( and
( at s t a r t ( not ( v a l v e f r e e ?a ) ) )
( at end
( a s s i gn ( v a l v e s t a t e ?a ) ( va l v e goa l ?a ) ) )

( at s t a r t ( not ( at ?v ?wp) ) )
( at end ( near ?v ?wp) )
( at end
( i n c r e a s e ( va lve goa l comple t ed ?a ) 1 ) )

( at s t a r t ( not ( examined ?p ) ) )
( at end ( i n c r e a s e

( man ipu l a t o r c a l i b r a t i on ?v ) 1) )
( at end ( va lve b locked ?a ) ) )

)

Fig. 14 PDDL representation of the turn_valve action

Fig. 14, can be aborted by the planner at any time. This allows
the planner to avoid depleting resources on a repeatedly fail-
ing task, beyond the time allowed for the completion of that
task.

6.3 Mission plan execution example

Consider a mission involving three tasks: two valve-turning
tasks (V 1 and V 2) and an inspection task (I ). The valve-
turning tasks are at separate panels, with deadlines t (V 1)
and t (V 2). The inspection task does not have a deadline, and
requires the AUV to visit points around the entire structure.
The vehicle begins themission at the panel to bemanipulated
for valves in V 1.

A plan for this mission is to turn the valves for V 1, per-
form the inspectionmission en-route to the second panel, and
then complete V 2. The timeline for this mission is shown in
Fig. 16. The initial plan for turning the valves for V 1 is shown
in Fig. 9. An example output from the dispatcher during exe-
cution of this mission is shown in Fig. 15.

The first turn_valve action failed to complete (Fig. 15,
line 3–4). This is shown by the red box in Fig. 16. If the

1 . Dispatching ac t i on [ 46 , turn va lve , 8 1 5 . 7 5 9 . . .
2 . Feedback r e c e i v ed [ 46 , ac t i on enabled ]
3 . Feedback r e c e i v ed [ 46 , ac t i on f a i l e d ]
4 . Valve 0 detected as blocked 1 time ( s )
5 . Generating PDDL problem f i l e
6 .Run : timeout 10 run p lanning system popf . . .
7 . Planning complete
8 . Dispatching ac t i on [ 46 , turn va lve , 8 1 5 . 7 5 9 . . .
9 . Action [ 4 6 ] i s 100.476033 second ( s ) l a t e

10 . Feedback r e c e i v ed [ 46 , ac t i on enabled ]
11 . Feedback r e c e i v ed [ 46 , ac t i on f a i l e d ]
12 . Valve 0 detec ted as blocked 2 time ( s )

Fig. 15 Part of the plan dispatch log

Fig. 16 Execution trace with repairs, for part of a mission

action is immediately repeated, then task V 2 can no longer
be completed before t (V 2). The planning system generates
a new plan (Fig. 15, lines 5–7) that can be seen in the second
row (B) of Fig. 16.

The inspection task ismoved later in the timeline, as it does
not have a deadline. The turn_valve action is immediately
retried (Fig. 15, lines 8–10), as can be seen in Fig. 16, and
the new plan still achieves task V 2 before t (V 2).

The turn_valve action fails a second time (Fig. 15, lines
11–12). This time it is not possible to retry the action and
still accomplish task V 2 before t (V 2). The planning system
generates a new plan, shown in the third row (C) of Fig. 16.
The valve-turning tasks are re-ordered and the inspection task
pushed even later. Following this plan will still accomplish
both tasks V 1 and V 2 before their respective deadlines.

From this example it can be seen that, when taken in the
context of a longer mission, the reaction to failure, or to new
discoveries, requires reasoning about how the surrounding
tasks can best be organized in the construction of the current
repair, and how long those tasks might take to complete.
Moreover, the durations of these tasks depend upon the order
in which they are attempted. For example, in Fig. 16 it can
be seen that moving the inspection mission necessitated the
introduction of newmovement actions to go to the site of V 2
and then on to the site of V 1. A planner is an ideal tool for
this reasoning.

7 Experiments and results

In this article we have presented a framework to perform per-
sistent autonomous interventions in a subsea facility with an
underwater vehicle. In order to evaluate it, we have defined
a long-term mission that has been carried out in a water tank
of 16× 8× 5 meters using the Girona 500 I-AUV. A mock-
up panel of 0.8 × 0.5 meters with 4 manipulable valves has
been used to emulate a subsea panel from an offshore facil-
ity. To make the environment more challenging, two Seaeye
MCT1 thrusters able to generate up to 14 Kg of thrust each,
have been placed close to the panel in order to generate water
currents when enabled (see Fig. 17). The experiments were
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Fig. 17 Girona 500 I-AUV in the water tank with the mock-up subsea
panel in the background and the water current system at its left

performed in a completely autonomous mode (i.e., the vehi-
cle ran on its own batteries and all the required processing
was performedwith the on-board computers).However, there
was a connection through an umbilical cable to a base station
for monitoring and safety purposes during the execution of
the mission. The same connection was used for conducting
the demonstrations of the turn valve LbD action.

7.1 Mission definition

One of themain advantages of using a planning system lies in
the simplicity of defining a newmission. In our case, themis-
sion is definedbydescribing the locationof several inspection
points where the panel can be and the desired configurations
for each valve, each configuration corresponding to a speci-
fied time interval (see Fig. 18).

As described previously, the planner decides how best to
act in the event of failure, by replanning the mission from a
revised initial state. A plan is built on the assumption that the
world will behave as expected. However, many things can go
wrong. Some of the issues that can occur are detailed next:

– Turn action failure: Although the control and perception
systems have been programmed to ensure a high degree
of robustness, failure in grasping or turning a valve can
still occur due to strong external perturbations, an incor-
rect manipulator calibration, problems in detection of the

i n sp e c t i on po in t s [ [ −3 .5 , 0 . 0 , 2 . 0 , 3 . 1 4 1 ] ,
[ 3 . 5 , 0 . 0 , 2 . 0 , 0 . 0 ] ]

va lve goa l ang le [ 0 , 12 :00 , 30 , 1 . 5 7 ]
va lve goa l ang le [ 1 , 12 :00 , 30 , −1.57]
va lve goa l ang le [ 0 , 12 :20 , 15 , 0 . 0 ]

Fig. 18 Mission definition. Inspection points contains a list of places
(x, y, z, ψ) in which the panel can be located and valve goal angle
specifies a valve id, a time interval (start time and interval in minutes),
and the desired angle

valve orientation, etc. In those cases, it is the responsi-
bility of the planner to ensure that the accomplishment
of the turn_valve action is checked (by scheduling an
examine_panel action just after). If the valve is not in
the expected position a replan will be triggered, other-
wise, the plan will continue.

– Blocked Valve: A common problem that we might
encounter while operating a subsea panel is that valves
can get stuck because of accumulated biofouling or cor-
rosion. In this situation, the vehicle must avoid applying
an excessive torque as this could result in breaking the
valve. Moreover, the blockage should be recorded thus
acknowledging that the desired configuration will never
be achieved in the current mission. The execution of the
turn_valve action is able to detect this situation thanks
to the F/T sensor and notify it to the planning system.
The task is retried at least once, to avoid false detections,
but if the valve appears again as blocked the executive
will report this problem, the blockage will be recorded in
the knowledge base and will appear in the revised world
model used by the planner.

– Panel not in previously discovered place: Initially, the
vehicle knows possible locations in which the panel can
be but not its actual position. After an inspection proce-
dure, if the panel is discovered, the vehiclemaps the panel
location with respect to its reference frame. Because the
AUV localization can drift when the panel is not in its
field of view, it is possible that between two interventions
estimation of the vehicle position becomes less accurate.
From the AUV point of view this localization issue is
interpreted as a change in the position of the panel. In
this event, the panel location is deleted from the plan-
ner model and the inspection procedure is started again.
For safety reasons, in order to avoid a potential risk of
collision of the vehicle due to the limited space of the
environment, the previous location of the panel is also
removed from the localization filter to avoid large posi-
tion corrections.

– Manipulator calibration problem: As described before,
the calibration of themanipulator encoders can lose accu-
racy along the different interventions. To avoid problems
when turning a valve due to miscalibration, the arm cali-
bration procedure is periodically run during the mission.

Although these are the most probable failures, there are
other circumstances that might not be contemplated here
that can also prevent the defined mission goals from being
achieved. In these cases, the planner will attempt to find
a solution—normally retrying the failed action—or, in the
worst case, aborting the whole mission. Therefore, although
the mission that has been defined contains only the possible
panel locations and the state of each valve in a time period,
it is automatically modified online according to the errors
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(a)

(b)

Fig. 19 Normal planning actions execution to a discover the valve
panel location and b achieve a specific panel configuration

(either spontaneous or induced for the sake of the demon-
stration) that the vehicle faces.

To understand the mission flowwe have grouped the plan-
ning actions into two groups. The first one, Fig. 19a, gathers
the actions executed to discover the panel location and the
second, Fig. 19b, involves the mechanism to turn valves in
a panel until a desired configuration is reached. An example
of the long term mission plan created online by the planning
system is presented in Fig. 20 using the previously intro-
duced blocks. The vehicle starts looking for the panel and
once this is localized it tries to achieve the different valve
configurations defined in the mission plan during the differ-
ent time slots. It is worth noting that while some failures
in the turn_valve action occurred spontaneously during the
mission execution, additional errors were intentionally intro-
duced by moving the panel from its location and manually
blocking and unblocking some valves.

7.2 Results

The results obtained with the proposed framework are sum-
marized here. Because each module (i.e., control, learning,

Fig. 20 Portion of the persistent plan created by the on-board planner
while running the intervention mission

and planning) builds on the previous modules, we follow the
same incremental approach to show the results.

7.2.1 Control results

Even though the performance of the proposed control scheme
is already verified in Sect. 4 following standard elements
of Lyapunov theory, it has been also evaluated in the con-
text of a valve-turning task. In this experiment the LbD
task was guiding the vehicle by means of velocity requests
in (u, v, w, r ) while a second task was sending a pose
request in (θ ) to keep the vehicle’s pitch constant at −2◦.
Moreover, a water current was generated using the two
external thrusters placed at 2.0 meters from the panel and
running at 35% of their power (∼10 kg thrust). Velocity
controller outputs are shown, in blue, in Figs. 21 and 22,
proving that the vehicle accurately follows the desired veloc-
ities demanded by the LbD task (shown in red). Similarly,
Fig. 23 shows the stabilization of the pitch DoF acheived
by the pose controller. The fact that both pose and veloc-
ity are not directly measured from a sensor but estimated
by the filter presented in Sect. 3 provides an smoother
feedback to the controllers thus enhancing their overall per-
formance.

7.2.2 Learning by demonstration results

To evaluate the performance of the LbD algorithm, we com-
pare the task demonstrations performed by a human operator
against the autonomous reproduction of the task. Figure 24
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Fig. 21 Vehicle response when
following the velocity requests
in Surge and Heave generated
by the LbD valve-turning task
(Color figure online)

shows in blue the demonstrated trajectories for both the AUV
and the end-effector. These trajectories have been recorded
while teleoperating the vehicle and the manipulator with
the haptic device to perform a valve grasping. The number
of Gaussians used by the DMP algorithm to describe the
model has been empirically set to 20 to ensure an accurate
trajectory following given the characteristics of the learned
trajectory and the manipulator workspace limitations. K P

min
and K p

max have been also adjusted to obtain KV and K P

values that balance the smoothness of the velocity com-
mands and its stiffness to ensure that the desired trajectory
is followed even in the presence of currents. Once the DMP
model has been computed, we have used it to reproduce the
learned task. Figure 24 shows in red the trajectories of the
autonomous reproduction with a plot for each DoF of the
AUV and the end-effector. We can observe that both trajec-
tories (AUV and end-effector) are most of the time within
the average of all the demonstrations, specially at the end of
each execution, where the trajectory converges to the valve

in order to grasp it and turn it. When reproducing the learned
task in a system without currents, 13 out of 16 reproduc-
tions were successful in turning the valve (success rate of
81%).

Table 2 shows the accuracy of the final position com-
puted as the mean error of all the reproduced trajectories
with respect to the average demonstration trajectory. Toler-
ance values for the end-effector position when grasping the
valve are estimated based on the mechanical design and the
compliance of the gripper.Notice that even though themanip-
ulator has reduced maneuverability and must cope with the
underlying errors of the AUV pose, the accuracy achieved
by the end-effector is high enough to be within the gripper
tolerance and thus succeed to perform the valve-turningmost
of the times.

When testing the LbD task under the effect of currents, the
success rate decreases to 69%mostly due to the perturbation
introduced in the vehicle’s yaw when the I-AUV is close to
the grasping point.
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Fig. 22 Vehicle response when
following the velocity requests
in Sway and Yaw generated by
the LbD valve-turning task
(Color figure online)

7.2.3 Planning results

We ran experiments to test the robustness of the planning
method, and the ability of the planner to coordinate its activ-
ity in the presence of deadlines. In the mission shown in
Fig. 25a, the turn_valve action was executed and returned
failure; the valve was detected as blocked. The planning sys-
tem replanned, and retried the turning action.The secondplan
executed correctly, and both valves were turned before the
deadline. In contrast, in Fig. 25b, the deadline of both valves
is set to be at the same time, but is closer (in time) to the point
at which the initial plan is expected to complete. When the
first valve-turning action fails (for valve_0) there is not
enough time left to turn both valves before the deadline. In
this case the planning system does not retry the failed action,
but instead moves straight to turning valve_1. If it were
the case that turning valve_1 depended on having success-
fully completed the turn action on valve_0, this requirement

would be expressed in the precondition of the relevant action,
and the plannerwould be forced to abandon both actions once
the available time to complete them had become too short.

Table 3 shows fragments of the plans generated during pre-
liminary valve-turning missions. The table shows the PDDL
actions and their corresponding ROS action messages. The
observe PDDL action does not have a corresponding ROS
action, as the visual sensing is continuous and passive. The
observe action merely causes the AUV to wait for several
seconds after orienting itself towards the inspection point—
this aids the visual detection.

In this example, replanning was performed for three rea-
sons: when the panel was discovered, when a turn_valve
action failed, and finally when the panel position was lost
due to drift. In each case the planning system reformulated
the problem, building a new initial state from the sensed data
and mission parameters. In this way, the system was robust
to the failures, and the mission was accomplished.
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Fig. 23 Pose controller stabilizing the pitch angle to −2◦ while the
LbD valve-turning task is under execution (Color figure online)

7.2.4 Long-term experiment results

We have designed a long experiment in which the vehicle
must locate the intervention panel among four different pos-
sible locations and set 16 different panel configurations along
themission time. The vehicle can take up to 15min to achieve
a desired configuration, but every 10min a new configuration
is requested. An extract of the mission definition can be seen
in Fig. 26.

Several errors have been induced along the mission to
observe the response of the system. At the beginning of the
mission valve 2 has been blocked.We havemoved the panel’s
location (by removing it from thewater tank and setting it to a
different place) 3 times, just before configurations 4, 8 and12.
The first time that the panel has beenmoved, valve 2 has been
unblocked, the second time valve 0 has been blocked, and the
last time valve 0 has been unblocked. A small current (below
35 % of thrust power) has been applied during half of the
experiment. However, while the vehicle was attempting the
6th configuration a higher current (60 % of thrusters power)
has been applied.

Table 4 summarizes the main results obtained during the
long execution. 10 out of the 16 panel configurations have
been correctly achieved. From the remaining 6, 4 have been
correctly handled by the planning system, by reporting the
appropriate errors. Configurations 2 and 9 have not been
completed because the valve to be actuated was detected as
blocked. Configuration number 6 has not been accomplished
during its time slot and has been aborted by the planner due to
the difficulties of the vehicle to correctly approach the panel
under the strongwater currents. Configuration 12 has been as
well aborted given that the vehicle had to relocate again the
panel and once it was located, the turn_valve action failed
twice, thus running out of time to perform the corresponding

turns. Besides, due to imprecisions in the vision-based algo-
rithm used by the examine_panel action, the I-AUV has left
two valves at incorrect angles, having determined that they
were at the correct angles, and has therefore reported a false
success. Finally, another failure took place during the panel
localization before configuration number 8. When the panel
wasmoved to a new location, the vehicle was unable to detect
it from any of the predefined inspection points due to the
accumulated drift in the vehicle’s position while looking for
the panel. Then, the planner triggered a new inspection cycle
andwe slightlymoved the panel again to force its appearance
in the camera’s field of view.

In addition to Table 4 that summarizes the mission results,
we have included themain parameters used during the exper-
iment in Table 5.

8 Conclusions and lessons learned

This article has described a multidisciplinary system to tar-
get the challenging task of persistent intervention in a subsea
panel. Four state-of-the-art techniques in the fields of local-
ization, control, machine learning andmission planning have
been combined to operate in the always complex underwater
environment. Although similar techniques have been used
individually in other research contexts, this paper constitutes
a system integration effort towards building a framework
to perform a challenging task in a persistent way, seeking
robustness at all levels. This has led to an experimental
demonstration in which an I-AUV has remained for a few
hours performing autonomous intervention in free-floating
mode, being, to the best of the authors’ knowledge, the first
demonstration of this kind. Thus, we believe that our main
contribution is to report the lessons learned during the devel-
opment of this framework as well as the future areas for
improvement.

As it has been shown throughout the paper, implement-
ing a complex system like the one proposed here requires
each step to be consolidated before building up the next one.
In this sense, we believe that a big part of the encountered
problems are rooted down to the mechatronics, in particular
to the employed manipulator. The fact that the manipulator
is underactuated, has a very limited workspace and does not
provide absolute orientation in the joint sensors, brings in a
number of issues that affect also the rest of the system. The
inclusion of a Recalibrate manipulator action in the plan-
ner has mitigated the calibration problems, but the limited
workspace or the low speed of the manipulator still compli-
cate the intervention task. Unfortunately, current commercial
electrical manipulators for small AUVs are still in their early
days and market options are scarce. In this regard, we envi-
sion that manipulator limitations will be the Achilles heel
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Fig. 24 Trajectory of the AUV
(a) and trajectory of the
end-effector (b) during 2
demonstrations and 1
reproduction. The trajectories
are represented in the valve
frame and each controlled DoF
is shown in one plot. The
demonstrations are depicted in
blue lines and the reproduction
in bold red (Color figure online)

(a)

(b)
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Table 2 Valve grasping accuracy computed as the mean error of the
reproduced trajectories with respect the average of the demonstration
trajectories for each DoF

Accuracy Tolerance

AUV - X (m) 0.021 ± 0.018

AUV - Y (m) 0.025 ± 0.019

AUV - Z (m) 0.056 ± 0.038

AUV - Yaw (rad) 0.016 ± 0.015

End-effector - X (m) 0.018 ± 0.013 0.04

End-effector - Y (m) 0.016 ± 0.013 0.04

End-effector - Z (m) 0.045 ± 0.037 0.08

End-effector - Roll (rad) 0.15 ± 0.045 0.2

Rightmost column shows estimated tolerances of the end-effector to
correctly grasp a valve

Fig. 25 Timeline showing a sequence of planned actions.Green blocks
areGo to waypoint actions, blue boxes are examine_panel actions, and
red boxes are turn_valve actions. The timeline shows a new row where
execution of the first plan fails, and a new plan is constructed. In this
plan, valve_0 was detected as blocked. In a a new plan was constructed,
which included retrying the turn_valve action while in b a new plan
was constructed, in which valve 0 was ignored and only valve 1 was
turned (Color figure online)

of any autonomous underwater intervention system until the
market evolves and better options become available.

Similarly, navigation capabilities are crucial as both the
control and the LbD tasks rely heavily on it. The combina-
tion of a good navigation sensor suite together with a SLAM
system to be able to remain drift-free when the intervention
panel is in the field of view is paramount. A fine-tuning of
all the covariances used in the localization filter as well as a
correct measurement of the transformations between the sen-
sors and the vehicle frame—specially for the camera—was
capital to obtain accurate results in this aspect.With that said,
it is also worth noting that the water tank in which the exper-
iments were performed was not the best environment for the

Table 3 Fragments of two PDDL plans produced during a valve-
turning mission

PDDL action ROS action message

0.000: (observe_inspection_point
auv wp1 ip3) [10.000]

–

10.001: (correct_position auv wp1)
[10.000]

Go to waypoint

20.002: (do_hover_fast auv wp1
wp2) [35.848]

Go to waypoint

55.851: (correct_position auv wp2)
[10.000]

Go to waypoint

65.852: (observe_inspection_point
auv wp2 ip4) [10.000]

–

75.853: (correct_position auv wp2)
[10.000]

Go to waypoint

85.854: (do_hover_controlled auv
wp2 wp23) [16.710]

Go to waypoint

. . . . . .

423.199: (do_hover_fast auv wp2
wp36) [10.726]

Go to waypoint

433.926: (correct_position auv
wp36) [10.000]

Go to waypoint

443.927:
(observe_inspection_point auv
wp36 ip9) [10.000]

–

0.000: (turn_valve auv wp1 p0 v1)
[100.000]

Turn valve

100.001: (correct_position auv
wp1) [10.000]

Go to waypoint

110.002: (turn_valve auv wp1 p0
v3) [100.000]

Turn valve

210.003: (correct_position auv
wp1) [10.000]

Go to waypoint

220.004: (turn_valve auv wp1 p1
v2) [100.000]

Turn valve

. . . . . .

1310.002: (correct_position auv
wp1) [10.000]

Go to waypoint

1311.003: (turn_valve auv wp1 02
v4) [100.000]

Turn valve

The first plan fragment shows the beginning and end of an inspection
mission, searching for the valve panel. The second fragment shows the
plan to correct the valves, once the panel has been found. The expected
dispatch time in seconds for the actions (the first number) is relative to
the start of the current plan

navigation sensors (i.e., compass and DVL) due to the pres-
ence of concrete walls that can induce magnetic disturbances
and undesired acoustic artifacts.

An equally important factor for the system’s success is
having a well adjusted controller. The time spent to identify
the vehicle’s dynamic model as well as to adjust the velocity
and the pose controllers has been one of our best investments.
Initially, we designed a robust model-based velocity control
scheme for all actuated degrees of freedom of the vehi-
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i n sp e c t i on po in t s [ [ −3 .5 , −1.5 , 2 . 0 , 3 . 1 416 ] ,
[ 3 . 5 , 1 . 5 , 2 . 0 , 0 . 0 ] ,
[ −3.5 , 1 . 5 , 2 . 0 , 3 . 1 416 ] ,
[ 3 . 5 , −1.5 , 2 . 0 , 0 . 0 ] ]

% Conf igurat ion 1
va lve goa l ang le [ 0 , 12 :00 , 15 , 1 . 5 7 ]
% Conf igurat ion 2
va lve goa l ang le [ 2 , 12 :10 , 15 , 1 . 5 7 ]
% Conf igurat ion 3
va lve goa l ang le [ 0 , 12 :20 , 15 , 0 . 0 ]
. . .
% Conf igurat ion 16
va lve goa l ang le [ 1 , 14 :30 , 15 , 0 . 0 ]
va lve goa l ang le [ 3 , 14 :30 , 15 , 0 . 0 ]

Fig. 26 Long term mission goals definition

Table 4 Long term intervention experiment summary

Mission time 2 h 37 min

Attempted configurations 16

Achieved configurations 10

Failed configurations 6

. . . due to valve blocked 2

. . . due to timeout 2

. . . due to false positive 2

Attempted Turn valve actions 33

. . . action sucess rate 72 %

Table 5 Parameters summary

Sensors parameters

DVL std.: 0.002 m/s wrt. bottom and 0.02 m/s wrt.
water

AHRS std.: 0.02 rad (without magnetic perturbations)

Depth sensor std.: 0.1 m

Camera parameters: Monocular color 1024 × 768p × 4 fps,
field of view in water 70◦

User parameters

Navigation filter noise matrix: Q = [I3×3] × 0.02

Identified model parameters: see Karras et al. (2013)

LbD Number of gaussians: 11

LbD Stiffness and damping: K P
min = 0.5, K P

max = 2.5

Planner: POPF Coles et al. (2010)

Planning time: 10 s

cle (surge, sway, heave, pitch and yaw). However, because
small movements along the vehicle’s Y axis produced large
movements at the end-effector when the manipulator was
extended, we decided to apply the same scheme of the veloc-
ity controller and create a pose controller that improves pitch
stability. Hence, in the execution of the Turn valve action,
the velocity controller is employed to realize the velocity
requests dictated by the LbD task while the pose controller
is employed to have a stable pitch, which is a key factor to
perform successful manipulation interventions.

On the other hand, although we have only targeted valve-
turning operations, it is worth underlying that the use of a
LbD technique allows us to easily reuse the framework for
other applications. In this way, future missions comprising
different types of interventions (e.g., press a switch, plug
a connector, place an object inside a canister, etc.) can be
easily implemented, only requiring newdemonstrations from
an expert operator. However, it would be useful to explore
further techniques to aid in the automatic determination of
the proper number of Gaussians required to encode a task as
well as the more suitable stiffness and damping parameters.

The use of a planning system has proved essential both
in planning and replanning complex valve-turning missions
with deadlines. The ability to replan online allows us to
envisage a different operation paradigm where the vehicle
prioritizes goals and coordinates its behaviour autonomously.
Furthermore, it is possible to consider taking advantage of the
existing bidirectional acoustic modem technologies to allow
new goals and mission specifications to be injected during
long-term operations.

Overall, we believe that the implemented framework and
the experimental scenario presented in this work contribute
toward pushing the envelope of persistent autonomy into a
new level where missions are more complex and failures
more likely, going beyond simple survey capabilities. The
positive results encourage the use, in a short-term future,
of autonomous robots operating in subsea facilities, per-
forming interventions with reduced costs than teleoperated
vehicles. However, there are still fundamental requirements
to be addressed such as leveling the capabilities of underwa-
ter electrical manipulator’s with those of their above-water
counterparts. Likewise, there is also room for improvement
in each of the integrated disciplines, refining automatisms
and adding redundancy mechanisms to enhance robustness
in case of unexpected failures that could compromise the
operation and/or the safety of the system.
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