
On-line Learning to Recover from Thruster Failures
on Autonomous Underwater Vehicles

Matteo Leonetti, Seyed Reza Ahmadzadeh, Petar Kormushev
Department of Advanced Robotics

Istituto Italiano di Tecnologia
via Morego 30, 16163 Genova

Email: {matteo.leonetti, reza.ahmadzadeh, petar.kormushev}@iit.it

Abstract—We propose a method for computing on-line the
controller of an Autonomous Underwater Vehicle under thruster
failures. The method is general and can be applied to both
redundant and under-actuated AUVs, as it does not rely on
the modification of the thruster control matrix. We define an
optimization problem on a specific class of functions, in order to
compute the optimal control law that achieves the target without
using the faulty thruster. The method is framed within model-
based policy search for reinforcement learning, and we study its
applicability on the model of the AUV Girona500. We performed
experiments with policies of increasing complexity, testing the
on-line feasibility of the approach as the optimization problem
becomes more complex.

I. INTRODUCTION

Autonomous Underwater Vehicles (AUVs) have to deal
with long missions in unknown environments. The risk of
damage is of severe concern, owing to many factors, among
which: extreme pressure, corrosive effects of sea water, the risk
of damage due to waves while on the surface, and collisions
during launch or later. Improving the reliability of the robot
is therefore critical, especially for autonomous vehicles. The
European project PANDORA (Persistent Autonomy through
learNing, aDaptation, Observation, and Re-plAnning) [9], [13]
is concerned with the creation of AUVs able to react to
unexpected conditions, and cope with extreme uncertainty. For
a PANDORA AUV, being able to reach a safe location even
in case of a thruster failure is crucial.

Fault-tolerant control is the field related to identification
and reaction to faults and failures [2]. A fault is defined as
a temporary malfunctioning of a component, which deviates
from its correct behavior. A failure is defined as the permanent
loss of a component’s functionality. We consider the case
of thruster failures, on AUVs where thrusters are the only
actuators (as opposed to AUVs where the attitude is determined
by control surfaces). Methods for fault-tolerant control can be
divided into passive and active ones [11]. Passive methods
treat faults as sources of system uncertainty, and design a
controller for the worst possible scenario. Those approaches
do not rely on fault detection, as the resulting controller is
passively resilient to all the faults considered at design-time.
Active methods, on the other hand, are less conservative, and
react to faults only when necessary. Once a fault is detected,
a controller can be either selected from a set of pre-defined
controllers, or computed on-line. While active methods can
yield better performance than passive ones, since they are not
designed for the worst possible scenario but adapt to the actual

situation, their effectiveness relies heavily on the reliability of
the fault detector. Our method belongs to the category of active
fault-tolerant control, because we compute a controller on-line.
Since we restrict the possible faults to thruster failures, the
dependency on failure detection is less critical, as this problem
has been extensively considered in the literature and has several
effective solutions [3]. Most fault-tolerant control methods for
thruster failure take advantage of redundancy and follow a
desired trajectory by reallocating the force commands on the
working thrusters [1], [12], [15], [19]. While the problem
in case of redundancy has been extensively considered, if a
broken thruster makes the AUV under-actuated the literature
is lacking in unifying approaches [14].

We propose a generic method, which can be used in case
of both redundant and under-actuated AUVs, for computing
a controller to navigate to a target location under thruster
failures. We demonstrate it on the model of Girona500 [17].
Girona500 is a reconfigurable AUV equipped with typical
navigation sensors (DVL, AHRS, pressure gauge and USBL)
and basic survey equipment (profiler sonar, side scan sonar,
video camera and sound velocity sensor). The layout we used
has 5 thrusters (Figure 1): two vertical to actuate the heave,
one lateral for the sway, and two horizontal for the yaw and
surge.

Fig. 1. The Girona500 AUV.



II. METHOD DESCRIPTION

We frame our method in the context of model-based
policy search for reinforcement learning [18]. This framework
comprises a dynamic model of the vehicle, a parametrized
representation for the control law, the definition of a cost
function, and an optimization algorithm.

A. Dynamic Model

A model of the environment is learned and continually
updated through an on-line identification algorithm [5]. We
employ a standard dynamic model [4], where the AUV is
represented as a rigid body subject to external forces and
torques:

M v̇ + C (v)v+D (v)v + g (η) = τ
η̇ = J (η)v
τ = Bu

in which: M is the mass matrix; C is the Coriolis matrix; D, is
the drag matrix; g(n) is the hydrostatic restoring force vector;
J (η) is the Jacobian matrix transforming the velocities from
the body-fixed to the earth-fixed frame; η = [x y z φ θ ψ]

T is
the pose (position and orientation) vector; v= [u v w p q r]

T

is the body velocity vector; τ is the force/torque vector; u is
the input vector and B is the thruster control matrix. When
the AUV is redundant most methods act on the matrix B, to
obtain the required forces on the vehicle by reallocating the
command on the functioning thrusters. The simplest way to
modify B is deleting the columns correspondent to the faulty
thrusters. We propose a different approach, and compute a new
command function u to reach a given target without modifying
B. Therefore, this approach is feasible also in under-actuated
vehicles.

B. Policy representation

The control law (function u in Section II-A) is represented
as a function π(x|θ) (called policy) of the observations, de-
pending on a parameter vector θ. The policy representation is
critical in reinforcement learning, and is one of the degrees
of freedom of this approach, which allow for great flexibility.
The policy representation determines the hypothesis set for
learning, that is the search space of the learning algorithm.

In this work the policy is represented with a linear function
approximator, that is a function of the form

u(x) = π(x|θ) = θTφ(x)

where the functions φi(x) are called basis functions, or
features, and may be stochastic. We use the Fourier basis
functions [8] φi = cos(πci·x). The coefficients in ci are
such that cij ∈ {0, . . . ,n}, and determine the order of the
approximation and the correlation between the observation
variables. If only one coefficient, say cik 6= 0, is non zero
and cij = 0 for j 6= k, then the variables are considered
independent. Different choices are possible for the observation
vector x, and a few will be discussed in Section III

C. Cost function

The performance of the vehicle is measured through a cost
function:

J(θ) =

T∑
t=0

ct(ηt)

∣∣∣∣∣
π(x|θ)

where ct is the immediate cost, and depends on the current
state, which in turn is determined by the policy and its
parameters. The aim of the agent is to tune the policy’s
parameters in order to minimize the cumulative cost J over a
horizon T . In policy search over a finite horizon, the particular
path followed by the agent in the state space can be ignored,
and the optimization treated with black-box methods over θ.
It is more common, in reinforcement learning, tu assume a
Markovian system, and learn a value function over the state
space, to the aim of minimizing the expected cost from each
state. In policy search, on the other hand, we minimize the cost
by modifying the whole policy (not state by state) through the
parameter vector θ. This provides a representational advantage,
since value functions become quickly intractable as the number
of state variables increases. On the other hand, it usually comes
at the cost of a higher number of training samples necessary
for learning. Therefore, we employ a model-based approach,
where trials are performed on the model and not directly by the
vehicle. For AUVs this is not a practical limitations, as their
dynamics has been modeled accurately. The cost function is
the other degree of freedom of our approach. Many different
definitions of the imeddiate costs are possible. Secondary
objectives can be added, such as velocity error (as will be
shown in the following) or energy consumption.

The optimization algorithm we use is a global derivative-
free algorithm introduced by Leonetti et al. [10], which has
also been used for system identification [6]. The algorithm is
a modification of the algorithm by Price [16], and combines
a global controlled stochastic search and a deterministic local
search. Since it is a global algorithm, it is particularly suitable
for decision problems created on the fly and solved on-line,
without the possibility to engineer a good initial solution. In
the following, we shall refer to this algorithm as Modified
Price (MP). As a baseline, we also provide results with the
well-known Simulated Annealing [7]. The particular algorithm
used is not critical for the method, as long as it is fast enough
to be used on-line.

D. On-line procedure

When a thruster is deemed faulty, a function J is created
to represents the cost of a path to the target location. The
optimization algorithm is then used to compute the minimal
policy, in the given policy parametrization, that takes the AUV
as close as possible to the target location using only the work-
ing thrusters. The function π computed substitutes the AUV’s
controller that would work under normal operating conditions.
It is also possible to use the target location as a waypoint, by
adding to J a secondary optimization objective (appropriately
weighed) to reach the point with a given velocity.

III. EXPERIMENTS

We performed our experiments on the dynamic model of
Girona500, whose parameters have been identified. We limited



the trials to the horizontal plane, where we supposed the left-
hand surge thruster to be broken. Therefore, the AUV can
navigate only with the right-hand surge thruster and the sway
one. We used the following definition of the immediate cost:

ct(〈pt, vt〉) =
{
‖ pt − gp ‖ if t < T
w ‖ vt − gv ‖ if t = T

(1)

where the observation xt = 〈pt, vt〉 is composed by position
and velocity at time t, gp is the goal location, gv is the goal
velocity and w weighs the velocity objective with respect to the
positional one. For all our experiments we use T = 60s, since
all the target destinations are reachable in 60 seconds. For the
policy, we start with constant values (a Fourier expansion of
order zero) and then increase the order of the representation.
We are interesting in assessing how complex the representation
can be for the method to be applicable on-line.

A. Constant Policy

In order to test the presented optimization algorithms, we
define a desired position in the vicinity of the robot, and a
target velocity of 〈0, 0〉. In the first experiment a constant
policy vector is considered, which means applying a constant
voltage function on the undamaged thrusters to move the
AUV towards the desired target position. We repeated the
optimizing process 50 times for each optimization algorithm.
The trajectories resulting by the application of the optimum
constant policies computed by the two algorithms can be seen
in Figure 2. The figure shows that the solutions found by the
two optimization algorithms are very similar. The acquired

Fig. 2. Trajectories and orientation with constant policies.

velocity profiles can be seen in the Fig. 3. The resulting
velocity profiles are also very similar in both cases. Since
both algorithms are stochastic, the results may converge to
different solutions in different runs. In Table I we report the
mean, median, standard deviation, and interquartile range for
the distributions of the values of the optimal policies over
the 50 experiments, together with the number of iterations to
compute them. In addition, the box plot of the statistical results
is depicted in Figure 4. The central mark is the median, the
edges of the box are the 25th and 75th percentiles, the whiskers

Fig. 3. Velocities with constant policies.

TABLE I. PERFORMANCE OF THE TWO OPTIMIZATION ALGORITHMS
WITH CONSTANT POLICIES. FCNVAL REPRESENTS THE BEST VALUE

FOUND FOR THE OBJECTIVE FUNCTION AND NUMITER IS THE NUMBER OF
ITERATIONS.

Modified Price Simulated Annealing
numIter fcnVal numIter fcnVal

mean 139 772.25 399 798.32
median 132 766.97 373 776.04
std 41 24.23 135 55.19
iqr 45 1.78 139 25.63

extend to the most extreme data points not considered outliers,
and outliers are plotted individually. As it can be seen from the

Fig. 4. Comparing the optimization algoriths with constant policies values
over 50 experiments.

results, it takes longer for Simulated Annealing to achieve the
same quality of the solutions as for Modified Price. Generally,
a constant policy can get the AUV close enough to the target
but has little control on the velocity. In order to have the
velocity close to a target as a secondary objective we need
a more flexible control law.



B. Time-dependent Policy

In this experiment we employ an order 3 approximator
using the Fourier bases, as explained in Section II-B. The
policy is dependent on time only, and has 8 parameters
to optimize. On the one hand, the target velocity of 〈0, 0〉
becomes more relevant here, as the control law can be more
flexible than the constant policy we previously used. On the
other hand, while the optimization was only on 2 parameters
in the previous experiments (a constant command per working
thruster), it depends on four times more variables here. We
repeated the optimizing process 50 times for each optimization
algorithm.

As can be seen in Figure. 5 the acquired trajectories from
both algorithms are similar. The velocity profiles, however,
are different. As it is shown in Figure. 6, the final part of
the velocity profiles acquired by the Modified Price algorithm
converges to the target velocity more closely than Simulated
Annealing. In Table II we report the mean, median, standard

Fig. 5. Trajectories and orientations with time-dependant policies.

Fig. 6. Velocities with time-dependant policies.

deviation, and interquartile range for the distributions of the

TABLE II. PERFORMANCE OF THE OPTIMIZATION ALGORITHMS WITH
TIME-DEPENDANT POLICIES. FCNVAL REPRESENTS THE BEST VALUE

FOUND FOR THE OBJECTIVE FUNCTION AND NUMITER IS THE NUMBER OF
ITERATIONS.

Modified Price Simulated Annealing
numIter fcnVal numIter fcnVal

mean 1609 412.2 496 435.24
median 984 384.31 421 406.18
std 1822 56.1 248 86.75
iqr 841 115.48 351 70.65

values of the optimal policies over the 50 experiments for the
time-dependent policy experiment, together with the number
of iterations to compute them. In addition, the box plot of the
statistical results is depicted in Figure 7.

Fig. 7. Comparison of the optimization algorithms with the time-dependant
policy representation over 50 experiments.

C. State-dependent Policy

In the last experiment on policy complexity, we increase
the representation to include position, orientation and velocities
in the observations. An order-3 Fourier policy with 5 state
variables (two variables for position and velocity, plus one
for orientation), produces an optimization problem with 18
variables, which is considered quite significant for policy-
search methods. The robustness provided by the reactivity to
more information is traded with computational complexity. We
repeated the optimization process 50 times for each optimiza-
tion algorithm.

As can be seen in Figure. 8 the acquired trajectories from
both algorithms are similar. The velocity profiles, however, are
different again. As it is shown in Figure. 9, the final part of
the velocity profiles acquired by the Modified Price algorithm
converges to the target velocity more closely than Simulated
Annealing. In Table III we report the mean, median, standard
deviation, and interquartile range for the distributions of the
values of the optimal policies over the 50 experiments for the
state-dependent policy experiment, together with the number
of iterations to compute them. In addition, the box plot of the
statistical results is depicted in Figure 10.



Fig. 8. Trajectories with state-dependant policies.

Fig. 9. Velocities with state-dependant policies.

D. Point-to-Point Navigation

In the previous experiments we focused on the complexity
of the policy and the corresponding accuracy in reaching a
target position and velocities. In this experiment we show that
the feasibility of the approach, with a time-dependent order-3
Fourier policy, which is also valid for other target locations. We
generate a grid of target points with coordinates in [−10, 10]
at 1 meter distance with respect to each other, and null target
velocity. We show some of the generated trajectories in Figure
11. The AUV was able to reach each point at a distance of

TABLE III. PERFORMANCE OF THE TWO OPTIMIZATION ALGORITHMS
USING STATE-DEPENDANT POLICIES. FCNVAL REPRESENTS THE BEST
VALUE FOUND FOR THE OBJECTIVE FUNCTION AND NUMITER IS THE

NUMBER OF ITERATIONS.

Modified Price Simulated Annealing
numIter fcnVal numIter fcnVal

mean 5287 217.6 511 265.89
median 4214 219.5 456 254.01
std 2658 8.5 240 39.05
iqr 1947 14.7 222 16.67

Fig. 10. Comparison of the optimization algorithms with the state-dependant
policy representation over 50 experiments.

less then 0.2m and stop there, since the target velocity was the
null vector.

Fig. 11. The result trajectories for the point-to-point navigation experiment.

E. Navigating Through Waypoints

Point to point navigation is the most common when the
objective of the AUV is just to reach a safe location, and
possibly float to the surface. The presented method, however,
can also be used to follow a trajectory with waypoints. We
generate two trajectories to reach a point 50m far, one on a
straight line and the other one on an arc of circumference.
Along each trajectory, we generate a waypoint every 5m. We
iteratively pose the problem of reaching the next waypoint
from the current state (position and velocity), with a target
velocity pointing towards the subsequent waypoint and norm
equal to 0.7, the highest linear velocity for Girona500. The
trajectories and the orientation of the AUV are shown in
Figure 12. The AUV learns to proceed laterally, using the
forward thruster to control the orientation. Sometimes the AUV
happens to turn around, but it is always able to recover towards
the next waypoint.



Fig. 12. The desired and result trajectories in the case that the AUV navigates
through waypoints. The blue trajectory is the desired and the red is the acquired
trajectory).

F. Computational Cost

For the feasibility of the presented method we need to
assure that the optimization of the policy can be performed
on-board in a short time. Figure 13 shows the quality of the
solution (distance from the target) computed over time for a
waypoint 5m away. The plot is averaged over 20 runs. We used
an Intel core 2 Duo P8700 processor, where the optimization
ran on a single thread. It took 12 seconds to find a solution able
to take the AUV only 0.5m from the target. The autonomous
vehicle can stop the optimization process at any time after this
point, having guaranteed a solution good enough to reach the
target.

Fig. 13. Computational cost of the learning method to find the (global)
optimum solution.

IV. ACKNOWLEDGMENTS

This work was supported by the EU funded project PAN-
DORA: Persistent Autonomy through learNing, aDaptation,
Observation and ReplAnning”, FP7-288273, 2012-2014.

REFERENCES

[1] A. Alessandri, M. Caccia, and G. Veruggio, “Fault detection of actuator
faults in unmanned underwater vehicles,” Control Engineering Practice,
vol. 7, no. 3, pp. 357–368, 1999.

[2] G. Antonelli, “A survey of fault detection/tolerance strategies for auvs
and rovs,” in Fault diagnosis and fault tolerance for mechatronic
systems: Recent advances. Springer, 2003, pp. 109–127.

[3] ——, Underwater Robots: Motion and Force Control of Vehicle-
Manipulator Systems (Springer Tracts in Advanced Robotics).
Springer-Verlag New York, Inc., 2006.

[4] T. Fossen, “Guidance and control of ocean vehicles,” Wiley, New York,
1994.

[5] G. Karras, S. Loizou, and K. Kyriakopoulos, “Towards semi-
autonomous operation of under-actuated underwater vehicles: sensor
fusion, on-line identification and visual servo control,” Autonomous
Robots, pp. 67–86, 2011.

[6] G. C. Karras, C. P. Bechlioulis, M. Leonetti, N. Palomeras, P. Kormu-
shev, K. J. Kyriakopoulos, and D. G. Caldwell, “On-line identification
of autonomous underwater vehicles through global derivative-free op-
timization,” in Proc. IEEE/RSJ Intl Conf. on Intelligent Robots and
Systems (IROS), 2013.

[7] S. Kirkpatrick, D. G. Jr., and M. P. Vecchi, “Optimization by simulated
annealing,” science, vol. 220, no. 4598, pp. 671–680, 1983.

[8] G. Konidaris, S. Osentoski, and P. S. Thomas, “Value function approx-
imation in reinforcement learning using the fourier basis,” in AAAI,
2011.

[9] D. M. Lane, F. Maurelli, P. Kormushev, M. Carreras, M. Fox, and
K. Kyriakopoulos, “Persistent autonomy: the challenges of the PAN-
DORA project,” Proceedings of IFAC MCMC, 2012.

[10] M. Leonetti, P. Kormushev, and S. Sagratella, “Combining local and
global direct derivative-free optimization for reinforcement learning,”
Cybernetics and Information Technologies, vol. 12, no. 3, pp. 53–65,
2012.

[11] M. Mahmoud, J. Jiang, and Y. Zhang, Active fault tolerant control
systems: stochastic analysis and synthesis. Springer, 2003, vol. 287.

[12] E. Omerdic and G. Roberts, “Thruster fault diagnosis and accommoda-
tion for open-frame underwater vehicles,” Control Engineering Practice,
vol. 12, no. 12, pp. 1575–1598, 2004.

[13] PANDORA, “Persistent autonomy through learning, adaptation,
observation, and re-planning,” 2012. [Online]. Available:
http://www.persistentautonomy.com

[14] D. Perrault and M. Nahon, “Fault-tolerant control of an autonomous
underwater vehicle,” in OCEANS’98 Conference Proceedings, vol. 2.
IEEE, 1998, pp. 820–824.

[15] T. K. Podder, G. Antonelli, and N. Sarkar, “Fault tolerant control of an
autonomous underwater vehicle under thruster redundancy: Simulations
and experiments,” in Robotics and Automation, 2000. Proceedings.
ICRA’00. IEEE International Conference on, vol. 2. IEEE, 2000, pp.
1251–1256.

[16] W. Price, “Global optimization by controlled random search,” Journal
of Optimization Theory and Applications, vol. 40, no. 3, pp. 333–348,
1983.

[17] D. Ribas, N. Palomeras, P. Ridao, M. Carreras, and A. Mallios, “Girona
500 auv: From survey to intervention,” Mechatronics, IEEE/ASME
Transactions on, vol. 17, no. 1, pp. 46–53, 2012.

[18] R. Sutton and A. Barto, Reinforcement Learning: An Introduction. MIT
Press, 1998.

[19] K. C. Yang, J. Yuh, and S. K. Choi, “Experimental study of fault-tolerant
system design for underwater robots,” in Robotics and Automation,
1998. Proceedings. 1998 IEEE International Conference on, vol. 2.
IEEE, 1998, pp. 1051–1056.


