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Abstract: We consider the problem of optimization in policy space for reinforcement
learning. While a plethora of methods have been applied to this problem, only a
narrow category of them proved feasible in robotics. We consider the peculiar char-
acteristics of reinforcement learning in robotics, and devise a combination of two
algorithms from the literature of derivative-free optimization. The proposed combi-
nation is well suited for robotics, as it involves both off-line learning in simulation
and on-line learning in the real environment. We demonstrate our approach on a
real-world task, where an Autonomous Underwater Vehicle has to survey a target
area under potentially unknown environment conditions. We start from a given con-
troller, which can perform the task under foreseeable conditions, and make it adaptive
to the actual environment.

Keywords: Reinforcement learning, policy search, derivative-free optimization, robotics,
autonomous underwater vehicles

1. Introduction

Reinforcement Learning (RL) is the learning paradigm in which an agent improves
its behavior on a given task by exploring the environment through trial and error. Its
mathematical formulation consists in the maximization of a reward function, which
measures the agent’s performance. As an optimization problem it is a peculiar one,
because many aspects of the task on which the performance must be optimized are
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unknown to the agent. In particular, the function to be maximized has often no ana-
lytical expression, and must be sampled by acting in the environment. Each function
evaluation costs the agent resources, which is especially critical in robotics. Robotic
agents act in real-world environments, consume power, are subject to wearing and
tearing, and work in real time. This imposes a careful use of trials, favoring on-line
learning to off-line, batch, learning.

Policy gradient methods have largely been used in robotics [17] owing to char-
acteristics that make them particularly suitable. In high-dimensional domains, find-
ing good value function representations is difficult, while structuring the policy may
come naturally from the task. Encoding the policy appropriately, policy search meth-
ods can benefit from previous knowledge. Usually fewer parameters are needed than
with value function approximators, and the methods have strong theoretical founda-
tions. Moreover, policies can be changed gradually, so that the behavior of the robot
can be ensured withing the operation limits. Nonetheless, estimating the gradient is
still a costly procedure, that requires many trials around the current policy. Noisy
environments can make gradient estimation extremely difficult, either affecting the
estimate greatly, or requiring a large number of trials.

While the local aspect of policy-gradient methods is favorable to robots, it is
also a double-edged sword. On the one hand, policy-gradient approaches a local
optimum slowly and smoothly, producing behaviors that don’t deviate sharply from
one another. On the other hand, there’s no guarantee about the presence of global
optima elsewhere. A broader exploration can be performed in simulation, but the so
called reality gap [4, 11], the inevitable difference between the real and simulated
domains, makes learning in simulation more brittle than in the actual environment.

In this paper, we explore direct derivative-free optimization algorithms for policy
search in episodic reinforcement learning. Reinforcement learning imposes particu-
lar constraints on optimization algorithms. For instance, industrial applications are
usually parallelized, while this is not possible for on-line RL. We combine the bene-
fits of local methods for on-line learning, with a global search in simulation to obtain
good starting points. While being able to benefit from all the advantages mentioned
for policy-gradient algorithms, local derivative-free ones do not have the burden to
estimate the gradient, which is particularly relevant with noisy reward functions.
Derivative-free algorithms used in RL so far are pure global optimization algorithms,
for the largest part evolutionary [1, 9]. We chose to combine two different derivative-
free algorithms: a global stochastic search [3], and a line search [16]. The former
allows to identify a policy in whose neighborhood the global optimum is most likely
to be. The latter then refines this policy, going through its neighborhood without at-
tempting to estimate the gradient. Learning in simulation is therefore coarse-grained,
for the environment is only an approximation of the one the agent will really face. A
more refined learning is performed on-line on the actual environment, in a local and
smooth fashion. Different combinations of global and local methods are possible,
and more sophisticated methods can be employed.

We implemented our approach on a real-world problem, where an Autonomous
Underwater Vehicle (AUV) has to survey an area under unpredictable disturbances.
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The AUV is equipped with a controller able to perform the task under normal oper-
ation conditions. When unexpected environment disturbances make it fail, the agent
learns a policy that corrects the given controller. The experiments have been per-
formed on a realistic simulator, taking into account real battery life. The method
introduced in this paper proves to be able to learn a policy to perform the task in a
few tens of trials, taking a time largely within the robot mission duration.

2. Background and notation

In this section we provide the background behind policy search in RL.
A Markov Decision Process is a tuple MDP = 〈S,A,T,ρ〉 where: S is a set of

states, A is a set of actions, T : S×A×S→ [0,1] is the transition function. T (s,a,s′)=
Pr(st+1 = s′|st = s,at = a) is the probability that the current state changes from s to
s′ by executing action a. ρ : S×A×R→ [0,1] is the reward function. ρ(s,a,r) =
Pr(rt+1 = r|st = s,at = a) is the probability to get a reward r from being in state s and
executing action a. In our setting both states and actions are continuous, while time
is discrete.

The behavior of the agent is represented as a function π : S×A→ [0,1] called a
(stationary) policy, where π(s,a) is the probability of selecting action a in state s. A
policy π and an initial state s0 determine a probability distribution dπ over the possible
sequences ω =(〈st ,at ,rt+1〉, t ≥ 0). Given such a sequence, we define the cumulative
discounted reward as

R = ∑
t≥0

γ
trt+1

where 0 < γ≤ 1 is the discount factor. The reward is accumulated by executing a in
s and following π thereafter.

A state is said to be absorbing if once entered cannot be left. An MDP with
absorbing states is said to be episodic. In the rest of this paper we focus on episodic
MDPs, where the duration of the episode is given by the first time step in which an
absorbing state is entered. Therefore, from now on we set γ = 1 and sum over an
unknown finite duration T .

Policies are parametrized through a vector θ. This allows to add structure to the
policy, which is then changed by modifying the parameters. The value of a policy π

is defined, through its parameters, as:

(2) J(θ) =
∫

S
dπ(s)

∫
A

π(s,a)r(s,a)dsda

where r(s,a) is extracted from ρ(s,a, ·).
Policy gradient methods try to estimate the gradient of the function in Equation

2, in order to make an update to the parameters along it:

(3) θi+1 = θi +α∇θJ(θi)
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Direct derivative-free algorithms, on the other hand, perform hill-climbing up-
dates without estimating the gradient. The function our method will maximize, over
a finite horizon and from a single initial state, is:

(4) J(θ) =
T

∑
t=0

∫
S

dπ

t (s)
∫

A
π(s,a)r(s,a)dsda

3. Related work

A large number of policy search methods have been developed in the field, although
only few of them have found successful application in robotics [14]. Most of those
are local algorithms, the vast majority of which is gradient-based. Episodic REIN-
FORCE [26] is one of the earliest gradient-based learning algorithm for episodic RL.
As previously mentioned, gradient-based methods estimate the gradient at a given
policy, and perform an update along its direction according to Equation 3. More
recent policy gradient [22] RL algorithms are G(PO)MDP [2], natural policy gradi-
ent [12], and natural actor-critic [19] methods. All of the mentioned policy gradient
methods differ in how the gradient is estimated. A different approach, based on Ex-
pectation Maximization (EM), has been proposed and applied to several algorithms,
the most recent of which is PoWER [18, 14]. In EM-based methods, the lower bound
on the expected cumulative return is maximized. Another notable local algorithm is
Policy Improvements with Path Integrals (PI2) [23], which belongs to the category of
path integrals method applied to stochastic optimal control.

The algorithm we are going to apply for local search is a line search, as in
gradient-based methods, but the direction used is not the gradient. Therefore, it can
avoid the extremely costly operation of estimating it. Nonetheless, the algorithm is
guaranteed, under appropriate conditions, to converge to the optimal solution.

On the side of global algorithms, a huge range of methods has been employed.
Simulated Annealing [13] and Ant Colony Optimization [6] are well-known global
methods, although the most studied one is the set of evolutionary approaches, in
particular genetic algorithms [8]. Tabu search [7] attempts to escape local minima
by performing temporary worsening moves, and using history to prevent steps that
would lead back to the minimum just left. Last, we mention RLPF [15] and pattern
search [24] belonging to the class of global random optimization algorithms used in
RL. The global algorithm we are going to use is a clustering algorithm similar to
pattern methods, where the search is random and controlled. In our random search,
an initially random point cloud tends to gather around the global optimum, as will be
described in Section 4.1.

4. Derivative-free algorithms

It is well known that extensive useful information is contained in the derivatives of
any function one wishes to optimize. For a variety of reasons, however, there have
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always been many instances where (at least some) derivatives are unavailable or un-
reliable. Nevertheless, under such circumstances it may still be desirable to carry
out optimization. Consequently, a class of nonlinear optimization techniques called
derivative-free methods has been developed in the literature. In the following, we
describe the methods we are going to combine, highlighting the features that make
them suitable for the different learning phases. The first method, a random search,
was developed in the original paper with both a global and a local search. We re-
moved the local part, and substituted it with the line search described in Section 4.2.
This line search fits better with the RL setting, according to the arguments on locality
introduced in Section 1. In the following, the algorithms will be described for min-
imization problems, in order to comply with the literature on optimization. Since in
our RL implementation we maximize the reward (instead of minimizing costs) the
sign of the reward function will simply be inverted.

4.1. Random global serach

Many algorithms have been proposed in the literature to solve unconstrained global
optimization problems [10, 25]. In this paper, however, we are interested to tackle
the particular difficult case of a problem in which:
• the evaluation of the objective function is very expensive;
• the values of the objective function can be affected by the presence of noise;
• the derivatives of the objective function are not available.

The method we use is a version of the Controlled Random Search Algorithm [20]
in which the efficiency is improved by using a weighted centroid and a weighted
reflection [3].

4.1.1. Controlled Random Search Algorithm
Data: a positive integer m≥ n+1, ε > 0

Step 0. Set k = 0 and compute the initial set:

Sk = {θk
1, . . . ,θ

k
m}

where the points θk
i , i = 1, . . . ,m are chosen at random over a box D; evaluate J at

each point θk
i , i = 1, . . . ,m.

Step 1. Determine the points θk
max, θk

min and the values Jk
max, Jk

max such that:

Jk
max = J(θk

max) = max
θ∈Sk

f (θ)

Jk
min = J(θk

min) = min
θ∈Sk

f (θ);

if Jk
max− Jk

min ≤ ε then STOP
Step 2. Choose at random n+1 points θk

i0 ,θ
k
i1 , . . . ,θ

k
in over Sk, where

J(θk
i0)≥ J(θk

i j
), j = 1, . . . ,n;

determine the centroid

ck =
n

∑
j=0

wk
jθ

k
i j
,
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and determine the trial point θ̄k given by

θ̄
k = ck−α

k(θk
i0− ck),

where

wk
j =

ηk
j

∑
n
r=0 ηk

r
, η

k
j =

1
J(θk

i j
)− Jk

min +φk
, α

k = 1−
J(θk

i0)−∑
n
j=0 wk

jJ(θ
k
i j
)

Jk
max− Jk

min +φk
,

and

φ
k = n

(Jk
max− Jk

min)
2

J0
max− J0

min
;

if θ̄k /∈ D go to Step 2; otherwise compute J(θ̄k).
Step 3. If J(θ̄k)≥ Jk

max then take

Sk+1 = Sk;

set k = k+1 and go to Step 2
Step 4. If J(θ̄k)< Jk

max then take

Sk+1 = Sk ∪ {θ̄k} − {θk
max};

set k = k+1 and go to Step 1
The initial population of points is expected to cluster in the region where the

global optimum is most likely to be. In practice, the possibility of locating a global
minimum point rests on the fact that the number of points randomly chosen at the
initial step is not small, and that global minimum points do not have narrow region of
attraction. From this point of view, it appears clearly that the described algorithm is
a heuristic. In this respect, we refer to section 7.2 of Torn and Zilinskas’ book [25],
where it is reported a thorough discussion on why heuristics are necessary and on
how many the heuristics elements in global optimization are.

4.2. Local refinement

Numerical experience seems to indicate that the algorithm described in Section 4.1 is
efficient enough at the global search, while it is not able to perform a sufficiently fast
local minimization when the algorithm has produced an estimate θ̃ “good enough”. A
local refinement procedure seems to be a better way to compute the global minimizer
when a point θ̃ near the global minimum is provided by the global method. In fact
derivative-free local methods have better convergence properties than global ones and
the risk to compute a local minimizer that is not global is unlikely by starting the local
method from θ̃.

In this paper, for the local refinement, we use a direct-search method that is a
line-search version of the coordinate-search algorithm. Direct-search methods are
derivative-free methods that sample the objective function at a finite number of points.
At each iteration, they decide which actions to take solely based on those function
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values, and without any explicit or implicit derivative approximation or model build-
ing [5]. Two particular subclasses of globally convergent direct-search methods are
pattern-search methods and line-search methods. Pattern-search methods present the
distinguishing feature of evaluating the objective function on specified geometric pat-
terns. Line-search methods, on the contrary, draw their inspiration from the gradient-
based minimization methods and perform one dimensional minimization along suit-
able directions. These two classes of methods present different interesting features.
Pattern search methods can accurately sample the objective function in a neighbor-
hood of a point. Hence, they can identify a “good” direction, namely, a direction
along which the objective function decreases significantly. Line search algorithms
can perform large steps along the search directions and, therefore, can exploit to a
large extent the possible goodness of the directions. The algorithm used here com-
bines these approaches in order to determine “good” directions and to perform “sig-
nificant” step lengths along such directions [16].

4.2.1. Coordinate-Search Algorithm With Line-Search Expansions
Data: θ0 ∈ Rn, α̃0

1, . . . , α̃
0
n > 0, σ ∈ (0,1), γ ∈ (0,1), δ > 1, ε > 0

Step 0. Set k = 0
Step 1. If max

i=1,...,n
{α̃k

i } ≤ ε then STOP; set i = 1, yk
1 = θk, xk = θk

Step 2. If J(yk
i + α̃k

i ei)≤ J(yk
i )− γ(α̃k

i )
2 and J(yk

i + α̃k
i ei)< J(xk) then

set αk
i = α̃k

i and xk = yk
i +αk

i ei
while J(yk

i +δαk
i ei)≤ J(yk

i )− γ(δαk
i )

2 and J(yk
i +δαk

i ei)< J(xk)
set αk

i = δαk
i and xk = yk

i +αk
i ei

end while
set α̃

k+1
i = αk

i
else set αk

i = 0 and α̃
k+1
i = σα̃k

i
Step 3. Set yk

i+1 = yk
i +αk

i ei
Step 4. If i < 2n then set i = i+1 and go to Step 2
Step 5. Set θk+1 = xk, k = k+1 and go to Step 1

5. Experimental evaluation

We carried out our experiments on a simulator of the vehicle Girona500 [21]. Girona-
500 is a reconfigurable autonomous underwater vehicle designed for a maximum
operating depth of up to 500 m. The vehicle has passive stability in pitch and roll,
making it suitable for imaging surveys. The most remarkable characteristic of Girona
500 is its capacity to reconfigure for different tasks. On its standard configuration, the
vehicle is equipped with typical navigation sensors (DVL, AHRS, pressure gauge and
USBL) and a basic survey equipment (profiler sonar, side scan sonar, video camera
and sound velocity sensor). In addition to these sensors, almost half the volume of the
lower hull is reserved for mission-specific payload such as a stereo imaging system
or an electric arm for manipulation tasks. The same philosophy has been applied
to the propulsion system. The basic configuration has 4 thrusters, two vertical to
actuate the heave and pitch and two horizontal for the yaw and surge. However, it is
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Fig. 1. The robot Girona500

possible to reconfigure the vehicle to operate with only 3 thrusters (one vertical and
two horizontal) and with up to 8 thrusters to control all the degrees of freedom.

We performed our experiment using the Under Water Simulator (UWSim)1 and
the Robot Operating System (ROS)2.

The robot’s mission is a survey task, in which the agent has to reach a black
box on the bottom of the seabed to take images and compose a mosaic. The target
of the robot is to stay within the distance of 1m from the given point as long as
possible, despite the disturbances in the environment. A current with velocity 0.6m/s
has been simulated at depth higher than 2m, while the target point is 4.8m deep.
Therefore, the agent cannot avoid the current and has to navigate trough it. The
setting is represented in Figure 2. The current is too strong to be fully compensated

Fig. 2. The experimental setting. A strong current pushes the vehicle below 2m depth

by the thrusters, and once entered the robot slowly drifts away from the target point.
We assume the agent is provided with an initial controller, able to perform the task

1http://www.irs.uji.es/uwsim/
2http://www.ros.org

60



under normal operation conditions. In our experiment this was a simple PD controller.
The trajectory produced by the given controller is shown in Figure 3.

Fig. 3. The initial trajectory, produced by the PD controller alone, without learning.

Any robust controller can react to the environment but cannot counteract in ad-
vance unpredictable disturbances. Once the robot has entered the current there is little
to do other then slow down the drifting. Therefore, the trajectory must be modified
before entering the current, foreseeing its effect and counteracting them in advance.
This is only possible by exploring the environment and learning about its character-
istics. It requires to face the same task several times to make use of past experience
to predict actions’ effects. This is the focus of this paper: making a given controller
adaptive and able to perform a task on which it would otherwise fail.

We assume an episodic scenario where the agent is able to return to the initial
location (which is not inside the current) and start again. The battery power of
Girona500 allows for 5 to 6 hours of operation, therefore we allocate for the on-line
learning of behaviors no longer than 1 hour.

The reward function is given by:

J(θ) =
{
−d if d ≥ D
tD−D if d < D

where D is a distance threshold, d is the minimum distance reached from the target,
and tD is the time spent at a distance from the target lower than D. In our experiments,
D = 1m. Both d and tD depend on θ through the policy, as expressed in Equation 4.
Intuitively, the agent tries to maximize the time spent within 1m from the given point,
using the distance as a heuristic when it is far from the target.

The policy computed and optimized is a correction to the given controller, whose
output is velocity. Therefore, the actions are the continuous velocities summed to
the controller’s one. The policy has 18 parameters, and is a linear combination of
position and velocity along the three axes for each component of the action.
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5.1. Results

We first ran the global algorithm with an initial population of 100 samples. This
phase is an off-line learning, and its aim is to provide a good starting point for the
local search. Since, in this paper, we are going to run the second phase in simulation
as well, we account for the discrepancy between the simulator and the actual environ-
ment by having a slightly different current in the two phases. The results are shown in
Figure 4. After a few hundred trials, the algorithm finds a point above the threshold,

Fig. 4. The results of the trials during the initial random search

that is where the agent is able to approach the target point closer than 1m.
We took the best point found in this phase, and used it to initialize the policy

for the local search. In this second phase, the current is the real one, which without
learning produces the trajectory in Figure 3. We limited learning to 150 episodes,
which take about one hour of real time. The policy learned during the first phase,
when applied to the current of the second phase produces the trajectory shown in Fig-
ure 5. It manages to reach the point by staying higher than the current for as long as
possible, and then entering it. Although learned under slightly different environment
conditions, this behavior is already a good one. At this stage the agent is able to get
within 1m from the target, therefore being able to perform the survey task. Local
learning will attempt to maximize the time spent in this area, despite the real current.

The results of the local search are shown in Figure 6. The plot shows the learn-
ing curves from both the initial policy given from the first phase, and from the zero
vector, which corresponds to no correction to the given controller. The local algo-
rithm proved fast enough to reach the desired zone (-1 threshold in the reward) within
the hour allocated for on-line learning. This shows that even with no prior informa-
tion, this version of line search is well suited for Reinforcement Learning. Moreover,
starting from the policy obtained through global learning, it performed better from
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Fig. 5. The trajectory obtained by the first phase of learning, with the current of the real environment.
The current in this picture is different from the one during learning.

Fig. 6. Results of local learning from the initial point determined during the first phase and from the
zero vector, which corresponds to no correction.

the first trials, reaching a even higher reward. The global random search, therefore,
has been able to find a point with a better neighborhood than the natural initial point,
that is when no correction is applied to the given controller.

6. Conclusion

The two algorithms we combined fit well with the paradigm of reinforcement learn-
ing in robotics. Simulators are fundamental tools, which are often used in place of
the real robot for dangerous exploration. Off-line learning, however, cannot alone
achieve adaptivity in unknown environments and go beyond what has been modeled
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in the simulator. We showed how derivative-free line-search algorithms can be effec-
tive in reinforcement learning, and provide an alternative to gradient-based methods
while retaining most of the features that made them so popular in robotics. With the
two-phased learning strategy presented in this paper, we tailored an optimization al-
gorithm for both off and on-line learning, obtaining the best from the global and the
local method. Notably, this provides a very general methodology to wrap a learning
framework around a given controller, increasing its robustness and ability to adapt
the environments, especially under unmodeled circumstances.
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