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Abstract: PANDORA is a EU FP7 project that is developing new computational methods
to make underwater robots Persistently Autonomous, significantly reducing the frequency of
assistance requests. The aim of the project is to extend the range of tasks that can be carried on
autonomously and increase their complexity while reducing the need for operator assistances.
Dynamic adaptation to the change of conditions is very important while addressing autonomy
in the real world and not just in well-known situation. The key of Pandora is the ability to
recognise failure and respond to it, at all levels of abstraction. Under the guidance of major
industrial players, validation tasks of inspection, cleaning and valve turning have been trialled

with partners’ AUVs in Scotland and Spain.

1. INTRODUCTION

Whilst humans and animals perform effortlessly doing
complicated tasks in unknown environments, our human-
built robots are not very good at being similarly in-
dependent. Operating in real environments, they easily
get stuck, often ask for help, and generally succeed only
when attempting simple tasks in well-known situations.
We want autonomous robots to be much better at being
autonomous for a long time (persistent autonomy), and
to be able to carry out more complicated tasks without
getting stuck, lost or confused. Following the Deep Water
Horizon disaster in the BP Macondo oilfield in the Gulf of
Mexico in 2010, Oil Companies are developing improved
ways to cost effectively and safely carry out more frequent
inspection, repair and maintenance tasks on their subsea
infrastructure. This is particularly challenging in deep
water. To date, Autonomous Underwater Vehicles (AUVs)
have been deployed very successfully for various forms of
seabed and water column transit survey. First commercial
units will soon be applied to simple hovering inspection
tasks, with future units expected to address much harder
intervention where contact is made to turn a valve or
replace a component. Because these vehicles reduce or
remove the need for expensive ships, their adoption is
expected to grow over the next 5 to 10 years.

* The research leading to these results has received funding from
the European Union Seventh Framework Programme FP7/20072013
Challenge 2 Cognitive Systems, Interaction, Robotics under grant
agreement No 288273 PANDORA

To be successful commercially, these hovering AUVs must
operate for extended periods (12-48 hours +) without the
continual presence of a surface vessel. They must therefore
demonstrate persistent autonomy in a challenging envi-
ronment. We therefore choose this application focus to
evaluate the projects research, with guidance from BP,
Subsea? and SeeByte Ltd. on the project’s Industrial Ad-
visory Group. Three essential areas have been identified:

e Describing the World
e Directing and Adapting Intentions
e Acting Robustly

We believe that they are core research areas in which sig-
nificant advancements is pivotal for Persistent Autonomy.
This paper is structured as follow: section IT briefly de-
scribes the system architecture and the relations between
different core fields; section III presents the scientific areas
addressed by the Pandora project; section IV presents the
three scenario tasks with a brief presentation of in-water
trials; section V outlines the conclusions.

2. ARCHITECTURE

Figure 1 outlines the computational architecture designed
for development and study of persistent autonomy. Key
is the notion that the robot’s response to change and the
unexpected takes place at one or a number of hierarchi-
cal levels. One of the main features in the PANDORA
architecture is the separation of the software components
needed for an autonomous vehicle mission into multiple
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Fig. 1. PANDORA: Computational architecture to develop
and study persistent autonomy

logical layers, each of them responsible for a specific aspect
of its final behaviour. In order to describe this architec-
ture two logical separations can be made. The first one
discriminates components on the basis of their level of
abstraction from the physical representation of the vehicle.
The second one is based on the role that each compo-
nent has in the mission’s OODA loop (Observe, Orient,
Decide and Act), in terms of producing effects on the
external world (acting), extracting a representation of it
(observing) or setting the goals for the behaviour of the
platform itself (deciding). In the vertical hierarchy the
execution, operational, tactical and strategic layers can be
found. The ezecution layer, at the bottom of the hierarchy,
interacts directly with sensors and actuators, exchanging
feedback data and commands with the upper layers. The
operational layer, instead, supervises different actuators,
fusing data and extracting features from multiple sensors.
The tactical layer supervises the lower layers keeping track
of the vehicle status and adapting the platform behaviour
at task level. Finally the strategic layer sits on top of
this hierarchy and is responsible for high-level decisions,
adapting the overall mission, selecting focus areas and
setting the goals for next tasks. In the second separation
three main areas can be found. The first comprises the
components responsible for describing the world, thus rep-
resenting the internal and external beliefs of the vehicle, its
perception and its internal status. The second is in charge
of acting robustly, thus including the low-level control
schemes and the learning subsystems. The third includes
the components which direct and adapt intentions of the
platform during the execution of a mission.

3. SCIENTIFIC AREAS
3.1 Describing the World

Understanding the surrounding world is essential for a high
level of autonomy, feeding information into the planning
and control systems. In the PANDORA framework, on-
tologies are used as a way for the robot to organise the
knowledge about the world, not just in geometric concepts,
but attaching a semantic label. This opens the possibility
to reason on the ontology, expand the knowledge, and
use this knowledge to make decisions, having a symbolic
abstract representation which can be used by the planning
system. An example of an ontology in the underwater
domain is in Figure 2. It shows relations among classes

(yellow circles) and individual of specific classes (blue
diamonds). Note that in this example there are three
instances of the class Clircle and two instances of the class
RoundPillar. This is due to the probabilistic approach
taken in consideration when building the knowledge base.
Partial information about basic shapes may or may not
lead to a more complex structure, depending on future
views and actions from the AUVs. More detailed work
discussing the need to consider uncertainty can be found
in Maurelli et al. [2013] and Maurelli et al. [2014b]. A
strategy to correctly label world information, linking the
planning system to the classification module can be found
in Maurelli et al. [2014a].

3.2 Directing and Adapting Intentions

Predefined plans are commonly used for AUV mis- sions.
However, when acting in uncertain and unknown un-
derwater environments, with processes and other agents
changing the world in unpredictable ways, and with no-
toriously imprecise and noisy sensors, plans can fail for
several reasons. The work carried out aimed to provide on-
line planning and replanning capabilities. Three possible
reasons for replanning were considered:

e action failure: an action execution reports failure,
using the ROS action feedback;

e change of environment: there is a change in the en-
vironment that invalidates the plan, or new infor-
mation pertinent to mission goals; or

e budget difference: the difference in estimated cost
(time or energy usage) differs from that of real exe-
cution, and the executor calculates that the plan is
invalidated (the real cost was high) or that there is
room to perform extra tasks (the real cost was low).

The planning system represents the brain and the bridge
among the knowledge base fed by sensor data analysis
and reasoning, and the control of the vehicle, which
interact with the environment. More detailed work on
AUV Mission Control via Temporal Planning can be found
in Cashmore et al. [2014] and Cashmore et al. [2013].

3.8 Skill Learning for Persistent Autonomy

The tasks AUVs need to undertake and successfully com-
plete can benefit from applying machine learning algo-
rithms to increase the AUV adaptability. In order to
program intervention tasks in a flexible and intuitive way
the Pandora project has investigated the use of a machine
learning algorithm known as LbD. Rather than analyt-
ically decomposing the problem and manually program-
ming a desired behaviour, the LbD infers the knowledge
from a set of user demonstrations. This kind of algorithms
follow three sequential phases: Demonstration where a
batch of task examples performed by a human pilot are
recorded; Learning, where a model is created by gener-
alizing all the demonstrations; and Reproduction, where
the model is used to accomplish new instantiations of
the learned task. Using such a technique, the framework
becomes easily extensible and any intervention tasks (in-
volving both the AUV and manipulator motions) can
be added effortlessly just from operator demonstrations.
Fig. 3 shows the demonstration phase of the proposed
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Fig. 2. The OWL file built representing a portion of the vehicle knowledge. Blue diamond are the instances of classes
(vellow circles). As it is possible to see, there are three instances of Circle, but only two instances of RoundPillar.
This is normal, because not all the detected circles are then associated with the concept RoundPillar.

Fig. 3. A user performing a demonstration using the
Omega 7 haptic device and the GUI for the Girona
500 AUV

approach. More detailed work on machine learning ap-
proaches for AUVs can be found in Jamali et al. [2015]
and in Ahmadzadeh et al. [2014].

3.4 Robust Control Strategies for Efficient Positioning and
Interaction

The motion control problem for autonomous underwater
vehicles has been an active research field for the past two
decades and continues to pose considerable challenges to
control designers especially when the vehicles are affected
by severe environmental disturbances and exhibit large
model uncertainties. The particular case of the vehicles
used in this work (Girona500 and Nessie) is a clear example
of vehicles that target complex operations and, in the
case of Girona500, dexterous tasks (i.e. manipulation of
underwater equipment such as control valves) while it
might be subject to the influence of strong external distur-
bances caused from ocean currents and waves. Fig. 4 shows
the velocity and pose control schemes adopted in this
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Fig. 4. Girona 500 I-AUV control scheme.

project, along with the thruster allocation module that
maps the controllers output into thruster commands. This
figure shows how the proposed low-level control system
can equally deal with pose, velocity or force requests. More
detailed work on AUV control can be found in Karras et al.
[2013].

4. TEST SCENARIOS

The Pandora project aims to demonstrate the progress in
the above mentioned research areas through the execution
of the following three tasks:

e Autonomous inspection of an underwater structure

e Autonomous location, cleaning and inspection of an
anchor chain

e Autonomous grasping and turning of a valve from a
swimming, undocked vehicle

The following sections will briefly describe how these goals
were achieved.
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4.1 Task A: Autonomous inspection of an underwater
structure

In the inspection scenario, a key area of work is the
interaction among the knowledge base, fed by sensor
data processing, and the planning system. A particular
emphasis is given to the ability to recover from faults in
order to continue the inspection. Fig. 5 shows the relation
among action capabilities and the planning system. In
particular, a diagnostic module has been developed in
order to detect a thruster failure, with a link among
the degrees of freedom of the vehicle and the executable
actions. The vehicle’s behaviour in the inspection task is
described in Fig. 6.

Fig. 7. NessieAUV in the Ocean Frontier, at The Under-
water Centre in Fort William (Scotland).

First preliminary tests happened with the vehicle Nessie
AUV at Ocean Frontier, The Underwater Centre, Fort
William, and in the wave tank of Heriot-Watt University 7.

Fig. 8 shows the RViz representation of the trajectory of
the inspection task. The vehicle is initially given three
inspection points, with probable locations of three pillars
that need to be inspected. The knowledge-driven actions
allows the vehicle to have multiple views of the poten-
tial target from different viewpoints before engaging the
inspection action at the first point. Moving then to the
second point, the multiple-view classification tells the ve-
hicle that the potential target is not of interest, therefore
moving to the third and final point. When engaging the
close inspection of the pillar moving laterally, pointing all
sensors to the target, an injected lateral thruster failure is
triggered. Through the results of the diagnostic system and
the information in the knowledge base, the vehicle realises
that its current action cannot be executed anymore, and
therefore decides to switch inspection pattern, in order to
complete the high-level goal at its best.

4.2 Task B: Autonomous location, cleaning and inspection
of an anchor chain

Maintenance of underwater chains is a costly but necessary
need for off-shore applications.

In performing this task, the Girona 500 AUV is equipped
with a forward-looking imaging sonar and a high-pressure
water jet. Its goal is to locate the correct anchor chain
and traverse it to remove the marine growth using the
water jet. Thereafter it revisits the chain and brings back
complete inspection data for subsequent post processing.
Fig. 11 shows the different steps in the execution of the
task. The work was tested in the CIRS tank (Fig. 10),
with the vehicle successfully able to follow the chain and
to produce a accurate sonar mosaic of the environment
(Fig. 9). More information about the chain cleaning task
can be found in Hurtos et al. [2013] and in Hurtos et al.
[2014)].



Fig. 8. The full path of the robot Nessie AUV in RViz, the ROS visualisation system. Each square of the grid is 1m
long. The recorded path starts on the left, when the robot perform an inspect of the pillar, then moves to inspect
a second location, finding out that it was not of interest, to finally arrive to the third location, recognise a pillar
and perform an inspection. Note that the last inspection follows a different behaviour, due to a fault injected in

the system on a lateral thruster.

Fig. 9. A sonar mosaic of the chain.

4.8 Task C: Autonomous grasping and turning of a valve
from a swimming, undocked vehicle

In this task emphasis was given to external disturbances
and the related challenges. A robot arm is at the front of

Fig. 10. Girona 500 AUV performing a chain inspection
task.

the vehicle and the goal is to successfully locate a panel and
turn a valve positioned on the panel. A selection of valve
heads are exposed, each with a T-bar attached for grasp-
ing. The vehicle needs to identify the state of the valves
(open, close, in-between) from the T bar orientations, and
if appropriate, use the robot arm to grasp the correct valve
and open it. The vehicle does not dock, because there
are no docking bars on the panel. Successful tests were
performed in the CIRS tank, as in Fig. 12. In the Figure,
the panel is positioned in front of the vehicle, with two big
thrusters on the left side, in order to create disturbances
and test the robustness of the algorithms.

5. CONCLUSION

This paper has presented the challenges which the FP7
Project PANDORA has addressed in the last three years,
focusing on persistent autonomy. Current existing au-
tonomous systems require frequent operator intervention.
The focus of Pandora is to enhance the long-term auton-
omy of AUV missions, through increased cognition, at all
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Fig. 12. Girona 500 AUV performing a valve turning task.

the levels of abstraction. Research into several areas like
knowledge representation, navigation, planning, learning
and control have been applied to three different scenarios:
inspection of underwater structures, chain cleaning and
valve turning. Successful tests have been arranged with
both Girona 500 AUV and Nessie AUV, in Girona, Edin-
burgh and Fort William. The vehicles were not only able
to fulfil the task in laboratory conditions, but unexpected
external disturbances and internal failures have been taken
into account. An open sea test is planned at Fort William
to fully validate the inspection scenario in real conditions,
in presence of strong tides and real-world challenges.
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