
Probability Redistribution using Time Hopping for
Reinforcement Learning

Petar S. Kormushev, Fangyan Dong, and Kaoru Hirota
Department of Computational Intelligence and Systems Science

Tokyo Institute of Technology
Yokohama, Japan

Email: {petar, tou, hirota}@hrt.dis.titech.ac.jp

Abstract—A method for using the Time Hopping technique
as a tool for probability redistribution is proposed. Applied to
reinforcement learning in a simulation, it is able to re-shape the
state probability distribution of the underlying Markov decision
process as desired. This is achieved by modifying the target
selection strategy of Time Hopping appropriately. Experiments
with a robot maze reinforcement learning problem show that the
method improves the exploration efficiency by re-shaping the
state probability distribution to an almost uniform distribution.

Index Terms—Reinforcement learning, Markov decision pro-
cess, probability redistribution, simulation, discrete time systems.

I. INTRODUCTION

Reinforcement learning (RL) algorithms [21] address the
problem of learning to select optimal actions when limited
feedback (usually in the form of a scalar reinforcement func-
tion) from the environment is available. Many different action
selection methods exist for Reinforcement Learning [8], and a
variety of successful practical applications have been reported
[9]. One main reason for the popularity of RL is that it is very
similar to the natural way of learning to perceive and act by
trial and error [25].

General RL algorithms like Q-learning [24], SARSA and
TD(λ) [20] have been proved to converge to the globally
optimal solution (under certain assumptions) [6][24]. They are
very flexible, in the sense that they do not require a model
of the environment and have been shown to be effective in
solving a variety of RL tasks. This flexibility, however, comes
at a certain cost: these RL algorithms require extremely long
training to cope with large state space problems [23]. Even for
a relatively simple control task such as the cart-pole balancing
problem on a limited-length track, tens of thousands of steps
are necessary [7][4].

Many different approaches have been proposed for speeding
up the RL process. One possible technique is to use function
approximation [19], in order to reduce the effect of the “curse
of dimensionality”. Unfortunately, using function approxima-
tion creates instability problems when used with off-policy
learning [3].

Significant speed-up can be achieved when a demonstration
of the goal task is available [15][5] , as in Apprenticeship

This work was supported in part by the Japanese Ministry of Education,
Culture, Sports, Science and Technology (MEXT).

Learning [14]. Although there is a risk of running dangerous
exploration policies in the real world [2], successful imple-
mentation of apprenticeship learning for aerobatic helicopter
flight exists [1].

A state-of-the-art RL algorithm for efficient state space
exploration is E3 [10]. It uses active exploration policy to
visit states whose transition dynamics are still inaccurately
modeled. Because of this, running E3 directly in the real world
might lead to a dangerous exploration behavior.

Instead of using value-iteration-based RL algorithms, some
researchers have focused on completely different algorithms,
the so-called policy search RL algorithms [16]. Examples
include the Natural Actor-Critic architecture [17], as well
as the Policy Gradient RL algorithm [18], which has been
applied successfully to robot control [11]. An alternative
way to represent states and actions also exists, known as
Relational Reinforcement Learning [22], which generalizes RL
by relationally representing states and actions.

Instead of executing RL algorithms in the real world,
simulations are commonly used. This approach has two main
advantages: speed and safety. Depending on its complexity,
a simulation can run many times faster than a real-world
experiment. Also, the time needed to set up and maintain
a simulation experiment is often less compared to a real-
world experiment. The second advantage, safety, is also very
important, especially if the RL agent is a very expensive
equipment (e.g. a fragile robot), or a dangerous one (e.g. a
chemical plant).

Whether the full potential of computer simulations has been
utilized for RL, however, is an open question. A new trend in
RL suggests that this might not be the case. For example, two
techniques have been proposed recently to better utilize the
potential of computer simulations for RL: Time Manipulation
[12] and Time Hopping [13]. They share the concept of using
the simulation time as a tool for speeding up the learning
process.

The first technique, called Time Manipulation, suggests
that doing backward time manipulations inside a simulation
can significantly speed up the learning process and improve
the state space exploration. Applied to failure-avoidance RL
problems, such as the cart-pole balancing problem, Time
Manipulation has been shown to increase the speed of con-
vergence by 260% [12].



The second technique, called Time Hopping, can be ap-
plied successfully to continuous optimization problems. Unlike
the Time Manipulation technique, which can only perform
backward time manipulations, the Time Hopping technique
can make arbitrary “hops” between states and traverse rapidly
throughout the entire state space. It has been shown to acceler-
ate the learning process more than 7 times on some problems
[13]. Time Hopping possesses mechanisms to trigger time
manipulation events, to make prediction about possible future
rewards, and to select promising time hopping targets.

This paper focuses on the second technique: Time Hopping.
The original concept of Time Hopping is to use the simulation
time as a tool for speeding up the learning process. This paper
proposes a new concept: of using Time Hopping as a tool for
probability redistribution, i.e. re-shaping the state probability
distribution as desired. It can be achieved by changing the
Time Hopping target selection strategy appropriately, as ex-
plained in Section II.

In order to evaluate the proposed approach, experiments
with a robot maze RL problem are conducted. The task is for
the robot to find the shortest path from the start to the goal
inside the maze without hitting the walls. The experiments
show that probability redistribution allows for more efficient
learning by doing more purposeful exploration during the
training.

The following Section II makes a brief overview of the
Time Hopping technique and outlines the way it can be used
for probability redistribution. Section III proposes a concrete
method to implement probability redistribution by modify-
ing a component of the Time Hopping technique. Section
IV presents the results from experimental evaluation of the
proposed probability redistribution method on a robot maze
RL problem.

II. PROBABILITY REDISTRIBUTION USING TIME HOPPING

A. Overview of Time Hopping

Time Hopping is an algorithmic technique which allows
maintaining higher learning rate in a simulation environment
by hopping to appropriately selected states [13]. For example,
let us consider a formal definition of a RL problem, given
by the Markov Decision Process (MDP) on Fig. 1. Each
state transition has a probability associated with it. State 1
represents situations of the environment that are very common
and learned quickly. The frequency with which state 1 is being
visited is the highest of all. As the state number increases, the
probability of being in the corresponding state becomes lower.
State 4 represents the rarest situations and therefore the most
unlikely to be well explored and learned.

When applied to such a MDP, Time Hopping creates “short-
cuts in time” by making hops (direct state transitions) between
very distant states inside the MDP. Hopping to low-probability
states makes them easier to be learned, while at the same
time it helps to avoid unnecessary repetition of already well-
explored states [13]. The process is completely transparent for
the underlying RL algorithm.

Fig. 1. An example of a MDP with uneven state probability distribution. Time
Hopping can create “shortcuts in time” (shown with dashed lines) between
otherwise distant states, i.e. states connected by a very low-probability path.
This allows even the lowest probability state 4 to be learned easily.

B. Probability Redistribution using Time Hopping

The proposed method for using the Time Hoping technique
for probability redistribution is to provide “shortcuts in time”
to such low-probability states, making them easier to learn,
while at the same time avoiding unnecessary repetition of
already well-explored states. This is done by externally manip-
ulating the computer simulation in a way which is completely
transparent for the RL algorithm, as demonstrated in Section
III.

The “shortcuts in time” are created by direct hops between
distant states of the MDP. Depending on how it is used, Time
Hopping can change the state probability distribution to, for
example, an almost uniform distribution. In this way all the
states can be visited (and therefore, learned) almost equally
well. Fig. 2 shows what would be the effect of Time Hopping
when applied to the same MDP from Fig. 1.

Fig. 2. Time Hopping can change the state probability distribution to an
almost uniform distribution. The 4 states shown correspond to the same 4
states from Fig. 1.

The remaining question is how to efficiently implement
probability redistribution using Time Hopping for RL prob-
lems. Section III offers a possible answer to this question.

III. IMPLEMENTATION OF PROBABILITY REDISTRIBUTION

This section proposes a concrete method to implement
probability redistribution by modifying a component of the
Time Hopping technique.



A. Components of Time Hopping

When applied to a conventional RL algorithm, the Time
Hopping technique consists of 3 components:

1) Hopping trigger – decides when the hopping starts;
2) Target selection – decides where does it hop to;
3) Hopping – performs the actual hopping.

The flowchart on Fig. 3 shows how these 3 components of
Time Hopping are connected and how they interact with the
RL algorithm.

When the Time Hopping trigger is activated, a target state
and time are selected by the target selection component. After
that, hopping can be performed. It includes setting the RL
agent and the simulation environment to the proper state, while
at the same time preserving all the acquired knowledge by the
agent.

Fig. 3. Time Hopping technique applied to a conventional RL algorithm.
The lower group (marked with a dashed line) contains the conventional RL
algorithm main loop, into which the Time Hopping components (the upper
group) are integrated.

The proposed implementation of probability redistribution
is based on modifying the target selection component of Time
Hopping. Many relevant properties of the already explored
states can be considered, such as probability, visit frequency,
level of exploration, connectivity to other states (number of
state transitions), etc. In this particular implementation, we use
the visit frequency of states to implement a “Least explored
first” target selection policy. By maintaining the number of
times each explored state was visited, it is easy to keep all
states sorted by it and select hopping targets among states
with low visit frequency. This way the exploration can be
purposefully redirected to less explored areas of the state space
which, in effect, equalizes the state probability distribution.
Table I lists the proposed implementation for each component.
The “Gamma pruning” and the “Basic hopping” components
are implemented as described in [13].

In the proposed implementation, Q-learning [24] is used as
the underlying off-policy RL algorithm, in order to guarantee
the convergence (as explained in [13]).

TABLE I
PROPOSED IMPLEMENTATION OF EACH TIME HOPPING COMPONENT FOR

PROBABILITY REDISTRIBUTION.

Component name Proposed implementation
1 Hopping trigger “Gamma pruning”
2 Target selection “Least explored first”
3 Hopping “Basic hopping”

IV. EVALUATION OF PROBABILITY REDISTRIBUTION

This section presents the results from experimental evalu-
ation of the proposed probability redistribution method on a
robot maze RL problem. The goal of the experiment is to use
probability redistribution to achieve more efficient learning by
doing more purposeful exploration during the training.

(a) the robot entered the second room (b) the robot is at the door to the third
room

(c) the robot found the goal (d) the learned optimal solution

Fig. 4. The robot maze RL problem. The robot (smaller square) starts from
the upper-left corner and is trying to reach the goal in the lower-left corner
(bigger square). There are four “rooms” in the maze, with narrow “doors”
between them, which reduces the probability of moving from one room to
another.

A. The robot maze RL problem

The task is for the robot to find the shortest path from
the start to the goal inside the maze without hitting the
walls, as shown on Fig. 4. There are four “rooms” in the
maze, with narrow “doors” between them, which reduces the
probability of moving from one room to another. The four
rooms resemble the 4-state MDP from Fig. 1, except that this
time the probability of moving from one state to another is
very small on both directions. The state space is partitioned
in 10000 discrete states. The robot has 4 different actions -



moving up, down, left, and right. The conventional Q-learning
algorithm needs around 80000 steps of training to find the
goal. Selected moments of one such training is shown on
Fig. 4. Using exactly the same settings, when probability
redistribution is enabled using the Time Hopping technique,
only around 17000 steps are enough to find the goal. This
means that probability redistribution improves the efficiency
of learning almost 5 times. The mentioned results are averaged
results of 10 trials. Fig. 5 shows selected moments of the
training when probability redistribution is enabled.

(a) started exploration from the first
room

(b) hopping easily many times to and
from the second room

(c) entered the third room before com-
pletely exploring the second one

(d) found the goal

Fig. 5. The robot maze RL problem with probability redistribution enabled.
The straight lines show the hopping transitions which were done by the Time
Hopping technique. These direct hopping transitions between distant states
do not have to obey the physics laws of the simulation, which explains why
some of them cross the walls of the maze.

In order to compare the state probability distribution with
and without Time Hopping, we use the state visit frequency
(number of times each state was visited per trial). Fig. 6 shows
the comparison of the two corresponding experiments from
Fig. 4 and Fig. 5 based on the state visit frequency. The exper-
imental results confirm the expected effect of Time Hopping,
as they follow closely the theoretically predicted effect from
Fig. 2. Using probability redistribution, we achieved almost
uniform state probability distribution. Also, the total number
of visits when probability redistribution is used is significantly
smaller than without probability redistribution. This is due
to the improved exploration efficiency from reducing the
redundant exploration, which also leads to reduced execution
time.

Fig. 6. A comparison of the state visit frequency with and without probability
redistribution. All the explored states are sorted in decreasing visit frequency.
This figure reflects the state at the time of reaching the goal by each algorithm.

V. CONCLUSION

A method for using the Time Hopping technique as a
tool for probability redistribution is proposed. Applied to
Reinforcement Learning in a simulation, it is able to re-shape
the state probability distribution of the underlying MDP as
desired. This is achieved by modifying the target selection
strategy of Time Hopping appropriately.

The conducted experiments with a robot maze RL problem
show that probability redistribution allows for more efficient
learning by doing more purposeful exploration during the
training. This is a very important advantage of the proposed
approach, especially when the simulation involved is computa-
tionally expensive. In this case, probability redistribution using
Time Hopping can save computational time by reducing the
number of simulation steps in favor of Time Hopping steps
and redirecting the exploration where it is most needed.

It is important to note that the proposed method does not
directly change the transitions probabilities of the underlying
MDP. Instead, the Time Hopping technique creates virtual
“shortcuts in time”, thus making direct hops between distant
states of the MDP. These hops are not part of the original
MDP and they do not follow the physics laws of the simulation
involved. These hopping transitions are the key to achieving
state probability redistribution. They redirect the exploration
to parts of the state space where further exploration is most
desired.

The fact that the original MDP transitions probabilities are
preserved intact means that the proposed method is transparent
for the MDP and the simulation implementations. Therefore,
it could be integrated seamlessly into other simulation-based
RL problem solvers which also use MDP to model the state
transitions.

REFERENCES

[1] P. Abbeel, A. Coates, M. Quigley, and A. Y. Ng. An application of
reinforcement learning to aerobatic helicopter flight. In In Advances
in Neural Information Processing Systems 19, volume 19. MIT Press,
2007.

[2] P. Abbeel and A. Y. Ng. Exploration and apprenticeship learning in
reinforcement learning. In Proceedings 21st International Conference
on Machine Learning, pages 1–8. ICML, 2005.



[3] S. T. Anton and A. Schwartz. Issues in using function approximation
for reinforcement learning. In Proceedings of the Fourth Connectionist
Models Summer School. Erlbaum, 1993.

[4] R. S. Bapi, B. D’Cruz, and G. Bugmann. Neuro-resistive grid approach
to trainable controllers: A pole balancing example. Neural Computing
and Applications, 5:33–44, 1997.

[5] A. Coates, P. Abbeel, and A. Y. Ng. Learning for control from multiple
demonstrations. In ICML ’08: Proceedings of the 25th international
conference on Machine learning, pages 144–151, New York, NY, USA,
2008. ACM.

[6] P. Dayan and T. J. Sejnowski. Td() converges with probability 1.
Machine Learning, 14, No. 3:295–301, 1994.

[7] S. Geva and J. Sitte. The cart-pole experiment as a benchmark for
trainable controllers. Technical report, Australia, 1993.

[8] M. Humphrys. Action Selection methods using Reinforcement Learning.
PhD thesis, University of Cambridge, June 1997.

[9] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement
learning: A survey. Journal of Artificial Intelligence Research, 4:237–
285, 1996.

[10] M. Kearns and S. Singh. Near-optimal reinforcement learning in poly-
nomial time. In Machine Learning, pages 260–268. Morgan Kaufmann,
1998.

[11] N. Kohl and P. Stone. Policy gradient reinforcement learning for fast
quadrupedal locomotion. In Proceedings of the IEEE International
Conference on Robotics and Automation, pages 2619–2624, 2004.

[12] P. Kormushev, K. Nomoto, F. Dong, and K. Hirota. Time manipulation
technique for speeding up reinforcement learning in simulations. Inter-
national Journal of Cybernetics and Information Technologies, 8, No.
1:12–24, 2008.

[13] P. Kormushev, K. Nomoto, F. Dong, and K. Hirota. Time hopping
technique for faster reinforcement learning in simulations. IEEE
Transactions on Systems, Man and Cybernetics part B, submitted in
January, 2009.

[14] A. Ng. Reinforcement learning and apprenticeship learning for robotic
control. Lecture Notes in Computer Science, 4264:29–31, 2006.

[15] P. Pastor, H. Hoffmann, T. Asfour, and S. Schaal. learning and
generalization of motor skills by learning from demonstration. In
international conference on robotics and automation (icra2009), 2009.

[16] L. Peshkin. Reinforcement Learning by Policy Search. PhD thesis, MIT,
November 2001.

[17] J. Peters and S. Schaal. Natural actor-critic. Neurocomput., 71(7-
9):1180–1190, 2008.

[18] J. Peters, S. Vijayakumar, and S. Schaal. Reinforcement Learning for
Humanoid Robotics. In Humanoids2003, 3rd IEEE-RAS International
Conference on Humanoid Robots, Karlsruhe, 2003.

[19] D. Precup, R. S. Sutton, and S. Dasgupta. Off-policy temporal-difference
learning with function approximation. In Proceedings 18th International
Conf. on Machine Learning, pages 417–424. Morgan Kaufmann, San
Francisco, CA, 2001.

[20] R. S. Sutton. Learning to predict by the methods of temporal differences.
Machine Learning, 3:9–44, 1988.

[21] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction.
MIT Press, 1998.

[22] P. Tadepalli, R. Givan, and K. Driessens. Relational reinforcement
learning: An overview. In Proceedings of the ICML-2004 Workshop
on Relational Reinforcement Learning, pages 1–9, 2004.

[23] S. Thrun. Efficient exploration in reinforcement learning. Technical
Report CMU-CS-92-102, Computer Science Department, Pittsburgh, PA,
1992.

[24] C. J. C. H. Watkins and P. Dayan. Technical note: q-learning. Mach.
Learn., 8(3-4):279–292, 1992.

[25] S. D. Whitehead and D. H. Ballard. Learning to perceive and act by
trial and error. Mach. Learn., 7(1):45–83, 1991.


	Introduction
	Probability Redistribution using Time Hopping
	Overview of Time Hopping
	Probability Redistribution using Time Hopping

	Implementation of probability redistribution
	Components of Time Hopping

	Evaluation of probability redistribution
	The robot maze RL problem

	Conclusion
	References

