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Abstract—A summary of the state-of-the-art reinforcement
learning in robotics is given, in terms of both algorithms and
policy representations. Numerous challenges faced by the policy
representation in robotics are identified. Two recent examples for
application of reinforcement learning to robots are described:
pancake flipping task and bipedal walking energy minimiza-
tion task. In both examples, a state-of-the-art Expectation-
Maximization-based reinforcement learning algorithm is used,
but different policy representations are proposed and evaluated
for each task. The two proposed policy representations offer
viable solutions to four rarely-addressed challenges in policy
representations: correlations, adaptability, multi-resolution, and
globality. Both the successes and the practical difficulties encoun-
tered in these examples are discussed.

I. INTRODUCTION

It has been a long-recognized fact that robots need more
than a fixed repertoire of skills - they need the ability to learn
new tasks. Over the years, many approaches for teaching new
skill to robots have been proposed and implemented. Currently,
there are at least four well-established types of approaches:
direct programming, kinesthetic teaching, imitation learning,
and reinforcement learning. All of these approaches are being
actively used, and each one has its own advantages and
disadvantages, and is preferred in certain environments.

For example, direct programming 1is still being actively
used in industrial settings, where the environment is well-
structured and is crucial to control precisely the movement
of the robot. Kinesthetic teaching, i.e. manually moving the
robot and recording its motion, usually works only for smaller,
lightweight robots, or robots driven by gravity-compensation
controllers [1]. In these cases, it is possible to directly guide
the robot’s end-effector through the task, record and replay its
motion, assuming that neither the task nor the objects change.
Imitation learning provides more adaptability to changes,
and has been successfully applied many times for learning
movement tasks on robots, for which the human teacher can
demonstrate a successful execution [2]-[4].

Reinforcement learning (RL, [5]) may not be the most
widespread machine learning approach, but it has created a
well-defined niche for its application in robotics [6]—[10]. The
main motivation for using reinforcement learning to teach
robots new skills is that it offers three previously missing
abilities:

« to learn new tasks which even the human teacher cannot

physically demonstrate (e.g. jump three meters high, lift
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heavy weights, move very fast, etc.);

¢ to learn to achieve optimization goals of difficult prob-
lems which have no analytic formulation or no known
closed form solution, when even the human teacher
does not know which the optimum is, by using only a
known cost function (e.g. minimize the used energy for
performing a task, or find the fastest gait, etc.);

e to learn to adapt a skill to a new, previously unseen
version of a task (e.g. learning to walk from flat ground
to slope, learning to generalize a task to new previously
unseen parameter values, etc.). Some imitation learning
approaches can also do this, but in a much more restricted
way (e.g. by adjusting parameters of a learned model,
without being able to change the model itself).

In the following Section II, we present an overview of the
most important recent RL algorithms that are being success-
fully applied in robotics. Then, in Section III we identify
numerous challenges posed by robotics on the RL policy
representation. To illustrate some of these challenges, and to
propose some example solutions to them, in two consecutive
Sections V and VI we give two representative examples for
real-world application of RL in robotics. Both of them are
based on the same RL algorithm, but each faces different
policy representation problems and therefore requires different
solutions. Finally, in Section VII we conclude with a brief peek
into the future of robotics, revealing in particular the potential
wider need for RL.

II. STATE-OF-THE-ART REINFORCEMENT
LEARNING ALGORITHMS IN ROBOTICS

Robot systems are naturally of high-dimensionality, having
many degrees of freedom (DoF), continuous states and actions,
and high noise. Because of this, traditional RL approaches
based on MDP/POMDP/discretized state and action spaces
have problems scaling up to work in robotics, because they
suffer severely from the curse of dimensionality. The first
partial successes in applying RL to robotics came with the
function approximation techniques, but the real “renaissance”
came with the policy-search RL methods.

In policy-search RL, instead of working in the huge
state/action spaces, a smaller policy space is used, which
contains all possible policies representable with a certain
choice of policy parameterization. Thus, the dimensionality
is drastically reduced, and the convergence speed is increased.



Until recently, policy-gradient algorithms (such as Episodic
Natural Actor-Critic eNAC [11] and Episodic REINFORCE
[12]) have been a well-established approach for implementing
policy-search RL [8]. Unfortunately, policy-gradient algo-
rithms have certain shortcomings, such as high sensitivity to
the learning rate and the exploratory variance.

To avoid such problems, Kober et al proposed in [13]
an episodic RL algorithm called POWER (Policy learning
by Weighting Exploration with the Returns). It is based on
Expectation-Maximization algorithm (EM) and has one major
advantage over policy-gradient-based approaches: it does not
require a learning rate parameter. This is desirable because
tuning a learning rate is usually difficult to do for control prob-
lems but critical for achieving good performance of policy-
gradient algorithms. POWER also demonstrates superior per-
formance in tasks learned directly on a real robot, by applying
importance sampling technique to reuse efficiently previous
experience.

Another state-of-the-art policy-search RL algorithm, called
PI"2 (Policy Improvement with Path Integrals), was proposed
by Theodorou et al in [14], for learning parameterized control
policies based on the framework of stochastic optimal con-
trol with path integrals. They derived update equations for
learning which avoid numerical instabilities because neither
matrix inversions nor gradient learning rates are required. The
approach demonstrates significant performance improvements
over gradient-based policy learning and scalability to high-
dimensional control problems, such as control of a quadruped
robot dog.

III. CHALLENGES FOR THE POLICY
REPRESENTATION IN ROBOTICS

Only having a good policy-search RL algorithm is not
enough for solving real-world problems in robotics. Before
any given RL algorithm can be applied to learn a task on a
robot, an appropriate policy representation (also called policy
encoding) needs to be devised. This is important, because the
choice of policy representation determines what in principle
can be learned by the RL algorithm (i.e. the policy search
space), analogous to the way a hypothesis model determines
what kind of data a regression method can fit well. In addition,
the policy representation can have significant influence on the
RL algorithm itself, e.g. it can help or impede the convergence,
or influence the variance of the generated policies.

However, creating a good policy representation is not a
trivial problem, due to a number of serious challenges, posed
by the high requirements from a robotic system, such as:

o smoothness - the policy representation needs to encode
smooth, continuous trajectories, without sudden acceler-
ations or jerks, in order to be safe for the robot itself, and
also to reduce its energy consumption;

o safety - the policy should be safe not only for the
robot (in terms of joint limits, torque limits, work space
restrictions, obstacles, etc.), but also for the people around
1t;

o gradual exploration - the representation should allow
gradual, incremental exploration, so that the policy does
not suddenly change by a lot; e.g. in state-action based
policies, changing the policy action at only a single state
could cause a sudden dramatic change in the overall
behavior of the system when following this new branch
of the policy, which is not desirable neither for the robot,
nor for the people around it;

o scalability - to be able to scale up to high dimensions,
and for more complex tasks; e.g. a typical humanoid robot
nowadays has well above 50 DoF;

e compactness - despite the high-DoF of robots, the policy
should use very compact encoding, e.g. it is impossible to
directly use all points on a trajectory as policy parameters;

e adaptability - the policy parameterization should be
adaptable to the complexity and fidelity of the task, e.g.
lifting weights vs. micro-surgery;

o multi-resolution - different parts of the policy parameter-
ization should allow different resolution/precision;

o prior/bias - the policy parameterization should work
without prior knowledge about the solution being sought,
and without restricting unnecessarily the search scope for
possible solutions (i.e. unbiasedness);

e regularization - the policy should allow to incorporate
regularization to guide the exploration towards desired
types of policies;

o autonomy - this is also called time-independence, and the
idea is that the policy should not depend on precise time
or position, in order to cope with unforeseen perturba-
tions;

o embodiment-agnostic - the representation should not de-
pend on any particular embodiment of the robot, e.g.
joint-trajectory based policies cannot be transferred to
another robot easily;

e invariance - the policy should be an invariant represen-
tation of the task (e.g. rotation-invariant, scale-invariant,
position-invariant, etc.);

e correlations - the policy should encapsulate correlations
between the control variables (e.g. actuator control sig-
nals), similar to the motor synergies found in animals;

o globality - the representation should help the RL algo-
rithm to avoid local minima.

A good policy representation should provide solutions to all
of these challenges. However, it is not easy to come up with
such a policy representation that satisfies all of them. In fact,
the existing state-of-the-art policy representations in robotics
cover only subsets of these requirements, as highlighted in the
next section.

IV. STATE-OF-THE-ART POLICY
REPRESENTATIONS IN ROBOTICS

Traditionally, explicit time-dependent approaches such as
cubic splines or higher-order polynomials were used as policy
representations. These, however, are not autonomous, in the
sense that they cannot cope easily with perturbations (unex-
pected changes in the environment). Currently, there are a



number of efficient state-of-the-art representations available
to address this and many of the other challenges mentioned
earlier. We give three examples of such policy representations
below:

e Guenter et al explored in [15] the use of Gaussian
Mixture Model (GMM) and Gaussian Mixture Regression
(GMR) to respectively encode compactly a skill and reproduce
a generalized version of it. The model was initially learned by
demonstration through Expectation-Maximization techniques.
RL was then used to move the Gaussian centers in order to al-
ter the reproduced trajectory by regression. It was successfully
applied to the imitation of constrained reaching movements,
where the learned movement was refined in simulation to avoid
an obstacle that was not present during the demonstration
attempts.

e Kober and Peters explored in [16] the use of Dynamic
Movement Primitives (DMP) [17] as a compact representation
of a movement. The DMP framework was originally proposed
by Ijspeert et al [18], and further extended in [17], [19]. In
DMP, a set of attractors is used to reach a target, whose
influence is smoothly switched along the movement. The set
of attractors is first learned by imitation, and a proportional-
derivative controller is used to move sequentially towards the
sequence of targets. RL is then used to explore the effect
of changing the position of these attractors. The proposed
approach was demonstrated with pendulum swing-up and ball-
in-a-cup tasks [20].

e Pardo et al proposed in [21] a framework to learn coordi-
nation for simple rest-to-rest movements, by taking inspiration
of the motor coordination, joint synergies, and the importance
of coupling in motor control [22]-[24]. The authors suggested
to start from a basic representation of the movement by con-
sidering point-to-point movements driven by a proportional-
derivative controller, where each variable encoding the task is
decoupled. They then extended the possibilities of movement
by encapsulating coordination information in the representa-
tion. RL was then used to learn how to efficiently coordinate
the set of variables which were originally decoupled.

Although these policy representations work reasonably well
for specific tasks, neither one of them manages to address
all of the challenges listed in the previous section, but only
a different subset. In particular, the challenges of correla-
tions, adaptability, multi-resolution, and globality are rarely
addressed by the existing policy representations.

In the following two sections we give two concrete examples
of tasks that pose such rarely-addressed challenges for the
policy representation, and we propose some possible solutions
to them. The two examples are: pancake flipping task and
bipedal walking energy minimization task. In both examples,
the same EM-based RL algorithm is used (PoWER), but
different policy representations are devised to address the
specific challenges in the task at hand. Videos of the two
presented robot experiments are available online at [25].

V. EXAMPLE A: PANCAKE FLIPPING TASK

This example addresses mainly the correlations, compact-
ness, and smoothness challenges described in Section III. We
present an approach allowing a robot to acquire new motor
skills by learning the couplings across motor control variables.
The demonstrated skill is first encoded in a compact form
through a modified version of DMP which encapsulates cor-
relation information. RL is then used to modulate the mixture
of dynamical systems initialized from the user’s demonstration
via weighted least-squares regression. The approach is evalu-
ated on a torque-controlled 7-DoF Barrett WAM robotic arm.
More implementation details can be found in [26].

A. Task description

The goal of the pancake flipping task is to first toss a
pancake in the air, so that it rotates 180 degrees, and then
to catch it with the frying pan. Due to the complex dynamics
of the task, it is unfeasible to try learning it directly with
tabula rasa RL. Instead, a person presents a demonstration of
the task first via kinesthetic teaching, which is then used to
initialize the RL policy. The experimental setup is shown in
Fig. 1.

The pancake flipping task is difficult to learn from mul-
tiple demonstrations because of the high variability of the
task execution, even when the same person is providing the
demonstrations. Extracting the task constraints by observing
multiple demonstrations is not appropriate in this case for two
reasons:

o when considering such skillful movements, extracting the
regularities and correlations from multiple observations
would take too long, as consistency in the skill execution
would appear only after the user has mastered the skill;

o the generalization process may smooth important accel-
eration peaks and sharp turns in the motion. Therefore,
in such highly dynamic skillful tasks, early trials have
shown that it was more appropriate to select a single
successful demonstration (among a small series of trials)
to initialize the learning process.

A noticeable problem with all of the existing policy repre-
sentations is the lack of any coupling between the different
variables. To address this problem, we propose an approach
which builds upon the works above by taking into considera-
tion the efficiency of DMP to encode a skill with a reduced
number of states, and by extending the approach to take into
consideration local coupling information across the different
variables.

B. Proposed compact encoding with coupling

The proposed approach represents a movement as a superpo-
sition of basis force fields, where the model is initialized from
weighted least-squares regression of demonstrated trajectories.
RL is then used to adapt and improve the encoded skill
by learning optimal values for the policy parameters. The
proposed policy parameterization allows the RL algorithm to
learn the coupling across the different motor control variables.



Fig. 1. Experimental setup for the pancake flipping task. A torque-controlled
7-DoF Barrett WAM robot learns to flip pancakes in the air and catch them
with a real frying pan attached to its end-effector. Artificial pancakes with
passive reflective markers are used to evaluate the performance of the learned
policy.
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Fig. 2. Visualization of a real-world pancake flipping rollout (trial) performed
by the robot. The pancake (in yellow) was successfully tossed and caught with
the frying pan, and it rotated 180 degrees (for better visibility of the pancake’s
trajectory, the frying pan is not displayed here). The trajectory of the end-
effector is displayed with black dots, and its orientation (represented by the
normal vector) with blue arrows. The normal vectors perpendicular to the
pancake are shown with black arrows.

A demonstration consisting of 7' positions x in 3D, ve-
locities & and accelerations & is shown to the robot. By
considering flexibility and compactness issues, we propose
to use a controller based on a mixture of K proportional-
derivative systems:

K
F= 3l (K7 =) = w7 (1)

The above formulation shares similarities with the DMP
framework. We extend here the use of DMP by considering
synergy across the different motion variables through the
association of a full matrix K with each of the K primitives
(or states) instead of a fixed k7 gain.

The superposition of basis force fields is determined in (1)
by an implicit time dependency, but other approaches using
spatial and/or sequential information could also be used [27].
Similarly to DMP, a decay term defined by a canonical system
$ l:(—)as is used to create an implicit time dependency ¢t =

-, where s is initialized with s = 1 and converges to

Fig. 3.
performed on the WAM robot.

Sequence of video frames showing a successful pancake flipping,

zero. We define a set of Gaussians A (u],X7) in time space
7, with centers p] equally distributed in time, and variance
parameters X7 set to a constant value inversely proportional
to the number of states. « is fixed depending on the duration
of the demonstrations. The weights are defined by:

N(t; pl, %7
Zk:lN(t5 Hi s 2F)

In (1), {K7}X | is a set of full stiffness matrices, which
we refer to as coordination matrices. Using the full coor-
dination matrices (not only their diagonal elements) allows
us to consider different types of synergies across the vari-
ables, where each state/primitive encodes local correlation
information. Both attractor vectors {u*}X ; and coordination
matrices { K7} X | in Eq. (1) are initialized from the observed
data through weighted least-squares regression (see [26] for
details).

(@)

C. Experiment

Custom-made artificial pancakes are used, whose position
and orientation are tracked in real-time by a reflective marker-
based NaturalPoint OptiTrack motion capture system.

The return of a rollout T (also called trial) is calculated
from the timestep reward r(t). It is defined as a weighted sum
of two criteria (orientational reward and positional reward),
which encourage successful flipping and successful catching
of the pancake
arccos(vo.vt )

R(1) = wl[ } + wge"‘zp*wpll + wgmé‘/f, 3)

™

where w; are weights, ¢y is the moment when the pancake
passes with downward direction the horizontal level at a fixed
height A, above the frying pan’s current vertical position, vg
is the initial orientation of the pancake (represented by a unit
vector perpendicular to the pancake), v;, is the orientation
of the pancake at time ¢, z¥ is the position of the pancake
center at time ¢, xf" is the position of the frying pan center
at time t7, and x3! is the maximum reached altitude of the
pancake. The first term is maximized when the pancake’s
orientation (represented as a normal vector) at time ¢ points in
the opposite direction of the initial orientation, which happens
in a successful flip. The second term is maximized when the
pancake lands close to the center of the frying pan.

To learn new values for the coordination matrices, the RL
algorithm PoWER is used. The policy parameters 6,, for the
RL algorithm are composed of two sets of variables: the
first set contains the full 3 x 3 coordination matrices K}



with the positional error gains in the main diagonal and the
coordination gains in the off-diagonal elements; the second
set contains the vectors p;° with the attractor positions for the
primitives.

D. Experimental results

In practice, around 60 rollouts were necessary to find a
good policy that can reproducibly flip the pancake without
dropping it. Fig. 2 shows a recorded sample rollout from the
RL exploration, during which the pancake rotated fully 180
degrees and was caught successfully with the frying pan. Video
frame sequence from a successful 180-degree flipping rollout
is shown in Fig. 3.

It is interesting to notice the up-down bouncing of the frying
pan towards the end of the learned skill, when the pancake
has just fallen inside of it. The bouncing behavior is due
to the increased compliance of the robot during this part of
the movement. This was produced by the RL algorithm in
an attempt to catch the fallen pancake inside the frying pan.
Without it, a controller being too stiff would cause the pancake
to bounce off from the surface of the frying pan and fall out of
it. Such unintentional discoveries made by the RL algorithm
highlight its important role for achieving adaptable and flexible
robots.

In summary, the proposed policy parameterization based on
superposition of basis force fields demonstrates three major
advantages:

o it provides a mechanism for learning the couplings across
multiple motor control variables, thus addressing the
correlations challenge;

« it highlights the advantages of applying probabilistic ap-
proaches in RL for reducing the size of the representation,
thus addressing the compactness challenge;

« it demonstrates that even fast, dynamic tasks can still be
represented and executed in a safe-for-the-robot manner,
addressing the smoothness challenge.

VI. EXAMPLE B: BIPEDAL WALKING ENERGY
MINIMIZATION TASK

In this example, we address mainly the adaptability, multi-
resolution, and globality challenges described in Section III.

Adaptive resolution methods in state space have been
studied in RL before (see e.g. [28]). They address the pitfalls
of discretization during reinforcement learning, and show that
in high dimensions it is better if the learning does not plan
uniformly over the state space. For example, in [29] Moore
et al employed a decision-tree partitioning of state-space
and applied techniques from game-theory and computational
geometry to efficiently and adaptively concentrate high reso-
lution on critical areas.

However, in the context of RL, adaptive resolution in
policy parameterization remains largely unexplored so far. To
address this challenge, we present a policy parameterization
that can evolve dynamically while the RL algorithm is running
without losing information about past experience. We show
that the gradually increasing representational power of the

Fig. 4. The experimental setup for the bipedal walking energy minimization
task, showing a snapshot of the lower body of the compliant humanoid robot
COMAN during one walking rollout.

policy parameterization helps to find better policies faster than
a fixed parameterization. The particular problem at hand is an
energy minimization problem for bipedal walking task. More
implementation details can be found in [30].

A. Energy minimization problem

Recent advances in robotics and mechatronics have allowed
for the creation of a new generation of passively-compliant
robots, such as the humanoid robot COMAN (derived from
the cCub bipedal robot [31]) shown in Fig. 4.

Such robots have springs which can store and release energy
and are essential for reducing the energy consumption and
for achieving mechanical power peaks. However, it is difficult
to manually engineer an optimal way to use the passive
compliance for dynamic and variable tasks, such as walking.
For instance, the walking energy minimization problem is
very challenging because it is nearly impossible to be solved
analytically, due to the difficulty in modeling accurately the
properties of the springs, the dynamics of the whole robot and
various nonlinearities of its parts. In this section, we apply
RL to learn to minimize the energy consumption required for
walking of this passively-compliant bipedal robot.

The vertical center of mass (CoM) movement is a crucial
factor in reducing the energy consumption. Therefore, the
proposed RL method is used to learn an optimal vertical
trajectory for the center of mass (CoM) of the robot to be used
during walking, in order to minimize the energy consumption.
In order to apply RL in robotics to optimize the movement of
the robot, first the trajectory needs to be represented (encoded)
in some way. This particular experiment is based on cubic
splines. Similar approaches have been investigated before in
robotics under the name via-points [32]—-[34].

However, there is a problem with applying a fixed policy
parameterization RL to such a complex optimization problem.

B. Problems with fixed policy parameterization

In policy-search RL, in order to find a good solution, the
policy parameterization has to be powerful enough to represent
a large enough policy space, so that a good candidate solution



is present in it. If the policy parameterization is too simple,
with only a few parameters, then the convergence is quick,
but often a sub-optimal solution is reached. If the policy
parameterization is overly complex, the convergence is slow,
and there is a higher possibility that the learning algorithm will
converge to some local optimum, possibly much worse than
the global optimum. The level of sophistication of the policy
parameterization should be just the right amount, in order to
provide both fast convergence and good enough solution.

Deciding what policy parameterization to use, and how
simple/complex it should be, is a very difficult task, often
performed via trial-and-error manually by the researchers.
This additional overhead is usually not even mentioned in
reinforcement learning papers, and falls into the category
of “empirically tuned” parameters, together with the reward
function, decay factor, exploration noise, weights, etc. Since
changing the policy parameterization requires to restart the
learning from scratch, throwing away all accumulated data,
this process is slow and inefficient. As a consequence, the
search for new solutions often cannot be done directly on
a real-world robot system, and requires instead the use of
simulations, which are not accurate enough.

C. Evolving policy parameterization

To solve this problem, we propose an approach that allows
to change the complexity of the policy representation dynam-
ically while the reinforcement learning is running, without
losing any of the collected data, and without having to restart
the learning. We propose a mechanism which can incre-
mentally “evolve” the policy parameterization as necessary,
starting from a very simple parameterization and gradually
increasing its complexity and thus, its representational power.
The goal is to create an adaptive policy parameterization,
which can automatically “grow” to accommodate increasingly
more complex policies and get closer to the global optimum.

A very desirable side effect of this is that the tendency
of converging to a sub-optimal solution will be reduced,
because in the lower-dimensional representations this effect
is less exhibited, and gradually increasing the complexity of
the parameterization helps not to get caught in a poor local
optimum.

The main difficulty to be solved is providing backward
compatibility, i.e. how to design the subsequent policy rep-
resentations in such a way, that they are backward-compatible
with the previously collected data, such as past rollouts and
their corresponding policies and rewards.

One of the simplest representations which have the property
of backward compatibility, are the geometric splines. For
example, if we have a cubic spline with K knots, and then we
increase the number of knots, we can still preserve the shape
of the generated curve (trajectory) by the spline. In fact, if
we put one additional knot between every two consecutive
knots of the original spline, we end up with a 2K — 1
knots and a spline which coincides with the original spline.
Based on this, the idea we propose is to use the spline knots
as a policy parameterization, and use the spline backward

(a) Fixed policy parameterization (b) Evolving policy parameterization

Fig. 5. Comparison of the policy output from RL with fixed policy
parameterization (30-knot spline) versus evolving policy parameterization
(from 4- to 30-knot spline). In black, the unknown to the algorithm global
optimum which it is trying to approximate. In green, all the rollouts performed
during the learning process. In red, the current locally-optimal discovered
policy by each RL algorithm. Due to the lower policy-space dimensionality
at the beginning, the evolving policy parameterization approaches much faster
the shape of the globally-optimal trajectory. The fixed policy parameterization
suffers from inefficient exploration due to the high dimensionality, as well as
from overfitting problems, as seen by the high-frequency oscillations of the
discovered policies.
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Fig. 6. Comparison of the convergence of the RL algorithm with fixed policy
parameterization (30-knot spline) versus evolving policy parameterization
(from 4- to 30-knot spline). The results are averaged over 20 runs of each
of the two algorithms. The standard deviation is indicated with error bars.
In addition to faster convergence and higher achieved rewards, the evolving
policy parameterization also achieves lower variance compared to the fixed
policy parameterization.

compatibility property for evolving the policy parameterization
without losing the previously collected data.

The proposed technique for evolving the policy parameter-
ization can be used with any policy-search RL algorithm. For
this particular implementation, we use the POWER, due to its
low number of parameters that need tuning.

Different techniques can be used to trigger the increase in
the number of knots of the spline representation. For this
example, we used a fixed, pre-detemined trigger, activating
at regular time intervals.

D. Evaluation of evolving policy parameterization

In order to evaluate the proposed evolving policy parame-
terization, we conduct a function approximation experiment.
The goal is to compare the proposed method with a conven-
tional fixed policy parameterization method that uses the same
reinforcement learning algorithm as a baseline.



For this experiment, the reward function is defined as
follows:

R(r)=e" fo [T(t)*f(t)]zdt7 4)

where R(7) is the return of a rollout (the policy-generated
trajectory) 7, and 7 is the (unknown to the learning algorithm)
function that the algorithm is trying to approximate.

Fig. 5 shows a comparison of the generated policy output
produced by the proposed evolving policy parameterization
method, compared with the output from the conventional fixed
policy parameterization method. Fig. 6 shows that the con-
vergence properties of the proposed method are significantly
better than the conventional approach.

E. Bipedal walking experiment

For the real-world bipedal walking experiment we use
the lower body of the passively-compliant humanoid robot
COMAN which has 17 DoF. The experimental setup is shown
in Fig. 4.

To generate trajectories for the robot joints, we use a custom
variable-height bipedal walking generator. Given the z-axis
CoM trajectory provided by the RL, we use ZMP (Zero
Moment Point) concept for deriving the x- and y-axis CoM
trajectories.

To calculate the reward, we measure the actual electrical
energy used by the motors of the robot. The return of a
rollout 7 depends on the average electric energy consumed
per walking cycle, and is defined as:

R(7) = ekt Dies Bitrt) (5)

where J is the set of joints whose energy consumption we try
to minimize, Ej(tl, to) is the accumulated consumed electric
energy for the motor of the j-th individual joint of COMAN,
and k is a scaling constant. To reduce the effect of noise on the
measurement, for each rollout the robot walks for 16 seconds
(from time ¢; to t3), which corresponds to 8 steps (¢ = 4
walking cycles).

The learning converged after 150 rollouts. The total cumu-
lative distance traveled by the robot during our experiments
was 0.5 km. The discovered optimal policy by the RL algo-
rithm, for which the lowest energy consumption was achieved,
consumes 18% less energy than a conventional fixed-height
walking, which is a significant improvement.

In summary, the proposed evolving policy parameterization
demonstrates three major advantages:

o it achieves faster convergence and higher rewards than
the fixed policy parameterization, using varying resolu-
tion for the policy parameterization, thus addressing the
adaptability and multi-resolution challenges;

« it exhibits much lower variance of the generated policies,
addressing the gradual exploration challenge;

o it helps to avoid local minima, thus addressing the glob-
ality challenge.

VII. CONCLUSION

We summarized the state-of-the-art for RL in robotics,
in terms of both algorithms and policy representations. We
identified a significant number of the existing challenges for
policy representations in robotics. We showed two examples
for extensions of the capabilities of policy representations, on
two real-world tasks: pancake flipping and bipedal walking. In
these examples we proposed solutions to four rarely-addressed
challenges in policy representations: correlations, adaptability,
multi-resolution, and globality.

What does the future hold for RL in robotics? This seems
difficult to predict for RL, but it is relatively easier to predict
the near-future trend for robotics. Robotics is moving towards
higher and higher DoF robots, having more nonlinear ele-
ments, variable passive compliance, variable damping, flexible
joints, reconfigurability, fault tolerance, independence, power
autonomy, etc. Robots will be progressively going out of the
robot labs and into everyday life.

As the robot hardware complexity increases to higher levels,
the conventional engineering approaches and analytical meth-
ods for robot control will start to fail. Therefore, machine
learning (and RL in particular) will inevitably become a more
and more important tool to cope with the ever-increasing
complexity of the physical robotic systems. And the future
RL candidates will have to address an ever-growing number
of challenges accordingly.
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