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Abstract— We present an integrated approach allowing a
free-standing humanoid robot to acquire new motor skills by
kinesthetic teaching. The proposed method controls simultane-
ously the upper and lower body of the robot with different
control strategies. Imitation learning is used for training the
upper body of the humanoid robot via kinesthetic teaching,
while at the same time Reaction Null Space method is used
for keeping the balance of the robot. During demonstration, a
force/torque sensor is used to record the exerted forces, and
during reproduction, we use a hybrid position/force controller
to apply the learned trajectories in terms of positions and forces
to the end effector. The proposed method is tested on a 25-DOF
Fujitsu HOAP-2 humanoid robot with a surface cleaning task.

I. INTRODUCTION

Controlling a full-body humanoid robot is an extremely

difficult task, especially if the robot is standing free on its

own two legs. Physical human-robot interaction with full-

body humanoids has been studied in the context of assisted

walking [1], helping a robot to stand up [2], or compliant

human-robot interaction with a standing robot [3].

Recent advances in robotics and mechatronics have al-

lowed for the creation of light-weight research-oriented hu-

manoid robots, such as RobotCub’s iCub, Kawada’s HRP-2,

Honda’s ASIMO and Fujitsu’s HOAP-2 (shown in Fig. 1).

From a hardware point of view, these research platforms have

the potential for great movement abilities: they have many

DOF (degrees of freedom), permit low-level actuator control

for both position and torque, and have a number of useful

onboard sensors. From a software point of view, however,

it is difficult to pre-program sophisticated full-body motion

controllers for the huge variety of complex tasks they will

face in dynamic environments.

Developing the full potential of these robots is only

possible by giving them the ability to learn new tasks by

themselves or by imitation of human demonstrations of tasks

[4]–[6]. Such approaches give robots the ability to learn,

generalize, adapt and reproduce a task with dynamically

changing constraints based on human demonstrations of the

task.

Traditional ways of demonstrating skills to robots require

the use of vision, immersive teleoperation, or motion capture

[7]. The difficulty with them is that the correspondence

problem [8] needs to be addressed. Also, the lack of feedback

from the robot during the demonstrations means that the
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Fig. 1. Upper-body kinesthetic teaching of a free-standing HOAP-2 robot
for a whiteboard cleaning task. During the teaching, the robot keeps its
balance while at the same time allowing the human to move its arm. (a)
The human teacher demonstrates the task by holding the hand of the robot. A
simple active compliance controller is used for the arm, and reactive balance
controller for the rest of the body; (b) The hip-strategy balance controller
allows the robot to increase the size of the working space without falling;
(c) At the beginning of the standalone reproduction, the robot extends its
arm and touches the surface; (d) During task reproduction, the robot leans
forward and uses the ankle torque controller and its own gravitational force
to exert the required force on the surface; (e) When the reference force is
bigger, the robot achieves it by leaning forward more and holding the hand
closer to the body; (f) At the end of the reproduction, the robot pushes itself
away from the board and returns to upright position.

teacher does not know for sure if the robot will be able

to perform the skill without self-collisions or singular con-

figurations.

An alternative modality for performing the human demon-

strations is through kinesthetic teaching [9], in which the

human teacher moves directly the robot’s arms. Applying

kinesthetic teaching to a full-body humanoid robot, how-

ever, is not trivial, because of the difficulty in performing

demonstrations on many DOF simultaneously, as well as

the difficulty of keeping the robot’s balance during the

demonstration. Due to this, previous kinesthetic teaching

approaches mostly considered humanoid robots permanently

attached to a supporting base, thus avoiding the problem

of self-balancing (as in [9]), or by using very small servo-

controlled humanoid whose body was entirely supported by

the demonstrator (as in [10]). In either case, only a small

fraction of the robot’s DOF were actually used (e.g. by

disabling or freezing lower body motors during the teaching

process). Only few works have considered imitation learning

in full-body humanoid self-balancing robots [11]–[14], but

not in the context of kinesthetic teaching.
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The novelty of this paper is in extending the kinesthetic

teaching approach to a full-body free-standing1 humanoid

robot that allows upper-body kinesthetic teaching and si-

multaneously keeps the robot’s own balance. We propose to

treat the teaching interaction as an external disturbance to the

robot. We thus assume that the human demonstrator is acting

as a continuous and variable external force on the upper body

of the humanoid robot, which needs to be compensated by

an appropriate balance controller.

A study of the dynamics and balance of a humanoid

robot during manipulation tasks can be found in [15]. In

[16], Hwang et al. studied the static relationship between

the hand reaction force and the Zero Moment Point (ZMP)

position. Harada et al. [17] did research on a humanoid robot

adaptively changing the gait pattern according to the hand

reaction force. A methodology for the analysis and control of

internal forces and center of mass behavior produced during

multi-contact interactions between humanoid robots and the

environment is proposed in [18].

One promising method for balance control of a humanoid

robot is based on the Reaction Null Space concept [19],

[20]. The concept was originally developed for free-flying

and flexible-base manipulators, but it has recently been

successfully applied to humanoid robots for controlling the

balance via the reactions imposed on the feet. The ankle and

hip strategies for balance recovery of a biped robot based

on the Reaction Null Space concept provide swift reaction

patterns resembling those of humans.

In this paper we develop an integrated approach for upper-

body kinesthetic teaching allowing a free-standing humanoid

robot to acquire new motor skills including force interactions

with external objects. In our approach, the robot is free-

standing and self-balancing during both the teaching and the

reproduction. We control simultaneously the upper and lower

body of the robot with different control strategies allowing

it to be compliant during teaching and stiff enough to exert

forces during reproduction.

The proposed method is tested on a 25-DOF Fujitsu

HOAP-2 humanoid robot by teaching it a surface cleaning

skill. The robot is equipped with a force/torque sensor

mounted on a passive two-DOF attachment at the end-

effector. After being instructed how to move the arm and

what force to apply with the hand on the surface, the robot

learns to generalize and reproduce the task by itself. The

surface cleaning task is challenging because it requires the

use of a tool (e.g. sponge) to affect an external object (e.g.

board), and involves both position and force information

[21]. The task is a good testbed for the proposed approach

because: (1) it can be taught via kinesthetic teaching; (2) it

requires full-body control, especially balance control during

both teaching and reproduction; (3) it requires exerting

varying forces to external objects; (4) it involves integration

of motor control and learning parts in one coherent task.

1By free-standing humanoid robot we mean self-balancing robot which
is standing on its own two feet without any additional support.

II. PROPOSED APPROACH

The proposed approach consists of three consecutive

phases: demonstration phase, learning phase, and reproduc-

tion phase. Fig. 2 shows a high-level outline of the approach.

A. Demonstration phase

During the demonstration phase, we use active compli-

ance controller for the upper body (the arms including the

shoulders), and a balance controller for the lower body

(the legs including the hip). The experimental setup for the

demonstration phase is shown in Fig. 1.

1) Active compliance controller for the upper body:

Moving HOAP-2’s limbs manually is possible by switching

off the motors, but requires effort that limits the use of

kinesthetic teaching to setups in which the robot is in a fixed

seated position [22]. Because of this, it is practically impos-

sible to do kinesthetic teaching of a free-standing HOAP-2

by simply switching off the motors of the arms, because the

demonstrator’s exerted forces are rapidly transmitted to the

torso and the robot is prone to fall down. In order to solve

this problem, we use a simple active compliance controller

based on torque control mode for friction compensation

with velocity feedback. We use velocity feedback, instead

of torque feedback, because the HOAP-2 does not have

torque sensing capabilities, but only motor current control.

We use imperfect friction model, taking into consideration

only the viscous friction, i.e. we consider the joint friction to

be proportional to the angular velocity. Also, we use lower

gains than the ones set by the manufacturer. Since the static

(Coulomb) friction of HOAP-2 is very high, and the weight

of the arm is light, we do not use gravity compensation.

The arm of the robot keeps its current configuration if it is

not touched by the user, due to the high static friction. The

implemented viscous friction compensation controller helps

in smooth movements, but impedes sudden sharp changes in

the direction of movement. For the tasks considered by this

paper this behavior is a good compromise, which aids the

kinesthetic teaching significantly by making the arm move

easily under the demonstrator’s guidance.

2) Balance controller for the lower body: The balance

controller employs two different balance strategies: ankle

strategy and hip strategy [19]. According to the ankle strat-

egy, the robot reacts in a compliant way in response to

the external disturbance by displacing its CoM (center of

mass). After the disappearance of the disturbance, the initial

posture will be recovered. On the other hand, the essence

of the hip strategy is to ensure compliant reaction to the

external disturbance by bending the hips, trying thereby to

displace the CoM as little as possible. This strategy has

been realized with the help of the Reaction Null Space

method [20]. Further on, smooth transition between the two

strategies is also ensured by making use of the transition

strategy recently presented in [23]. The resulting behavior

is such that the balance is first controlled with the help of

the ankle strategy in response to a relatively small force

exerted by the human teacher. When the teacher exerts an

additional force by strongly pulling the arm, e.g. to extend
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Fig. 2. Flowchart of the proposed approach, showing details about each of the three phases: demonstration, learning, and reproduction.

Fig. 3. Block schema of the controller used during the demonstration
phase.

the reach, the robot switches smoothly to the hip strategy and

bends the hips. When the strong pull is removed, the robot

switches back to the ankle balance strategy. A block schema

of the proposed controller used during the demonstration

phase is shown in Fig. 3. The controller consists of three

parts: the active compliance controller based on viscous

friction compensation for the arm with velocity feedback,

the balance controller with position and ZMP feedback, and

a local feedforward torque controller at the joint level2.

B. Learning phase

During this phase the recorded demonstrations are used to

learn a compact representation of the skill. We propose to en-

code the skill based on a superposition of basis motion fields

to provide a compact and flexible representation of a move-

ment. The approach is an extension of Dynamic Movement

Primitives (DMP) [24], [25] which encapsulates variation

and correlation information across multivariate data. In the

proposed method, a set of virtual attractors is used to reach

a target. The influence of these virtual attractors is smoothly

2HOAP-2’s controller has been modified to ensure 1 ms real-time torque
control for all joints.

switched along the movement on a time basis. The set of

attractors is learned by weighted least-squares regression,

by using the residual errors as covariance information to

estimate stiffness gain matrices. A proportional-derivative

controller is used to move sequentially towards the sequence

of targets (see [26] for details).

During the demonstration phase, the position, velocity, and

acceleration of the end-effector are recorded in the robot’s

frame of reference using forward kinematics. In the forward

kinematics model for the arm we have also included a model

of the two passive DOF of the sponge for cleaning the

surface, in order to improve the precision of recording of

the tip of the tool which the end-effector is holding. In

order to provide generalization ability for cleaning a surface

regardless of its position and orientation with respect to the

robot, the recorded trajectories from the robot’s frame of

reference are transformed to the surface’s frame of reference

before encoding them.

A demonstration consisting of T positions x (x has 3

dimensions), velocities ẋ and accelerations ẍ is recorded by

the robot. We use a mixture of K proportional-derivative

systems:
ˆ̈x =

K
∑

i=1

hi(t)
[

KP

i
(µX

i
− x)− κV ẋ

]

, (1)

where µX

i
are the learned virtual attractors, KP

i
- the full

stiffness matrix gains, hi(t) - the mixing weights, and κV

is a damping factor. Fig. 4 shows example for recorded

trajectories and their corresponding reproduced trajectories

from the learned model representations. Both position and

force information are encoded by using this encoding schema

(see [27] for details).

C. Reproduction phase

For the reproduction, the learned trajectory is first trans-

formed from the surface’s frame of reference back to the

robot’s frame of reference. Then, a hybrid position/force

controller is used. The controller includes forward and

inverse kinematics functions for hand position feedback

control, an ankle joint regulator to ensure a reference static

force component at the initial contact, and a ZMP-based

feedback controller for the desired hand force during the
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Fig. 4. Demonstrated trajectory (in black) and the learned trajectory
(retrieved from the model, in red). Four trajectories are demonstrated for
variations of the cleaning task: (a) and (b) cover a bigger area and use
smooth movement for the end-effector; (c) uses faster movement with sharp
turns; (d) is for spot cleaning, focusing only on a small area.

motion. Note that the force/torque sensor is detached from

the hand during the reproduction phase because the robot’s

arm is underpowered to bear the weight of the sensor while

reproducing the task. Because of this, the applied force at

the hand is calculated via the ZMP position. The passive

two-DOF attachment is used so that the tool in the hand

has complete six DOF to comply with the surface being

cleaned. The attachment is sensorless, its joint angles and

joint velocities are calculated via the kinematic closed-loop

condition.

A 3D model of the reproduction phase is shown in Fig.

5. The sagittal and transverse projections of the used robot

model are depicted in Fig. 6. The reproduction controller

block schema is given in Fig. 7.

III. EXPERIMENTS

A. Experimental setup

The experimental setup is shown in Fig. 1. The follow-

ing number of servo actuators of Fujitsu’s HOAP-2 robot

are used: six for each leg, four for each arm3, and one

for the waist. Four force sensing resistors (FSRs) in each

3The left arm is kept fixed during the experiment, at a safe distance from
the torso and the legs.
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(b) Coordinate frames

Fig. 5. 3D model of the reproduction phase. (a) Joint angles θ1 through θ5

are actively controlled, θ6 and θ7 are the passive joint coordinates resolved
via kinematic loop closure. (b) Coordinate frames of reference used for
transformation of the trajectories: {b} base, {w} whiteboard, {h} hand,
{e} end-effector (sponge).

(a) Ankle torque control

End-effector

Feet

ZMP

Wall surface

x
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f d

(b) ZMP projection

Fig. 6. (a) The model of the robot projected onto the sagittal plane.
The notations match those of the controller. (b) Transverse plane projection
of the robot’s feet and the swept path by the ZMP projection during the
reproduction of the task (in red dotted line).

Fig. 7. Block schema of the controller used during the reproduction phase.
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foot are used to detect reaction forces from the floor. The

exerted force by the sponge on the whiteboard is recorded

from a 6-axis Nitta F/T sensor attached to the end-effector

during the demonstration phase. Vision is not used. The

position and orientation of the whiteboard is computed by

touching 3 points of it with the end-effector via kinesthetic

teaching. This is a convenient way to adapt to a new

position/orientation of the whiteboard when the robot is

moved to a new place. Anti-slippery coating is used for

the feet to allow exerting stronger forces on the whiteboard

without foot slippage.

B. Experimental results

Fig. 4 shows four example recorded trajectories, and their

corresponding reproduced learned trajectories. A variety of

positional profiles have been successfully encoded with the

same number of parameters K = 50. The trajectories are

sampled to 500 points each, and the reproduction time is

between 10 and 30 seconds.

Fig. 8 shows the demonstrated force during the teach-

ing phase on one trial. The demonstrated force required

to perform the task is between 10N and 20N (the force

component in the direction normal to the surface). During

the reproduction, forces in the same range are used (i.e. no

rescaling is done) because the robot is able to exert forces of

such magnitude using both the ankle torque controller and the

gravity force produced by leaning forward. Only the normal

(Fz) component of the force is reproduced by the ankle

controller, while the other two components are naturally

produced by the planar movement of the end-effector along

the surface. The force exerted by the end-effector is not

measured directly during the reproduction, because the F/T

sensor is too heavy to be moved by the robot while in contact

with the surface. Instead, the exerted force is derived from

the reaction force measured at the feet of the robot, which

is shown in Fig. 9.

Fig. 10 shows the learned speed profile of the end-effector

for the same example. The maximum speed reaches 400

mm/s, which the robot is capable of reproducing. However,

for a faster or more dynamic task, or for a more force-

intensive task, appropriate rescaling would be necessary.

A video of the surface cleaning experiment is available

online at [28]. Fig. 1 shows some selected snapshots from

the demonstration and the reproduction phases.

IV. DISCUSSION

Numerous problems were identified and solved during the

experiments. Because of the only 4 available DOF of the arm

it was impossible to keep the wrist oriented parallel to the

whiteboard. This was solved by using two additional passive

DOF in the tool (sponge) and adding the passive joints to

the kinematics model of the robot.

The initial robot posture before starting a reproduction

turned out to be very important for avoiding self-collisions.

Improvements to the current implementation of the in-

verse kinematics position controller are required to ensure

collision-free paths for both the end-effector and the arm.
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Fig. 8. This shows the demonstrated force during the teaching phase,
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Fig. 9. Reaction force measured at the feet of the robot during reproduction.

A trade-off was established in the compliant controller for

the arm. The implemented active control for the arm makes

the arm feel ”lighter” while doing kinesthetic teaching, but at

the same time it makes it harder to do rapid sharp changes

in the velocity. For heavier human-sized humanoid robots,

however, it might be necessary to use state-of-the-art gravity

compensation controllers to allow easier movements.

The proposed method can be extended in several direc-

tions. The Reaction Null Space method can be extended to

also include stepping. In case of a strong perturbation, it

might be necessary to move one foot forward or backward in

order to keep the balance of the robot, which requires online

footstep re-planning, which has been studied in the context of

robot guidance but not in the context of kinesthetic teaching.

The presented approach is easily applicable to bi-manual

tasks, due to the relative independence of the lower-body
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Fig. 10. Speed profile of the end-effector (EE) for the demonstrated
trajectory shown in Fig. 4(a).
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balance controller from the upper-body movements. This

allows the human teacher to demonstrate tasks involving both

arms such as manipulating big objects, pulling a bar, putting

wallpapers, etc. The disturbances caused by the upper-body

kinesthetic teaching will be rejected by the Reaction Null

Space controller.

In the presented experiment, the generalization abilities

of the position and force encoding technique are not fully

exploited. They will be used in further work to cope with

situations where multiple and noisy demonstrations are avail-

able, in which case the model will be used to encapsulate

in a probabilistic way the uncertainty in order to generalize

over a larger range of new situations.

Another extension that we plan to consider is to incorpo-

rate visual feedback to provide the robot with the capability

to automatically find spots to clean on the surface, determine

their shape and select an appropriate trajectory from the

learned movement repertoire.

V. CONCLUSION

We have presented an approach for upper-body kinesthetic

teaching of a free-standing humanoid robot, based on imi-

tation learning and disturbance rejection with Reaction Null

Space method. We successfully applied it to a surface clean-

ing task. The proposed approach and its future extensions

will secure a more natural way for human-robot interaction.
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imental study on dynamic reactionless motions with DLR’s humanoid
robot Justin,” in Proc. IEEE/RSJ Intl Conf. on Intelligent robots and

systems (IROS’09), 2009, pp. 5481–5486.
[21] A. Gams, M. Do, A. Ude, T. Asfour, and R. Dillmann, “On-line

periodic movement and force-profile learning for adaptation to new
surfaces,” in IEEE Intl Conf. on Humanoid Robots (Humanoids), 2010.

[22] S. Calinon and A. Billard, “What is the teacher’s role in robot
programming by demonstration? - Toward benchmarks for improved
learning,” Interaction Studies, vol. 8, no. 3, pp. 441–464, 2007.

[23] Y. Kanamiya, S. Ota, and D. Sato, “Ankle and hip balance control
strategies with transitions,” in Proc. IEEE Intl Conf. on Robotics and

Automation (ICRA), Alaska, USA, May 2010, pp. 3446–3451.
[24] A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Trajectory formation for

imitation with nonlinear dynamical systems,” in Proc. IEEE Intl Conf.

on Intelligent Robots and Systems (IROS), 2001, pp. 752–757.
[25] H. Hoffmann, P. Pastor, D. H. Park, and S. Schaal, “Biologically-

inspired dynamical systems for movement generation: automatic real-
time goal adaptation and obstacle avoidance,” in Proc. IEEE Intl Conf.

on Robotics and Automation (ICRA), 2009, pp. 2587–2592.
[26] S. Calinon, I. Sardellitti, and D. G. Caldwell, “Learning-based control

strategy for safe human-robot interaction exploiting task and robot
redundancies,” in Proc. IEEE/RSJ Intl Conf. on Intelligent Robots and

Systems (IROS), Taipei, Taiwan, October 2010.
[27] P. Kormushev, S. Calinon, and D. G. Caldwell, “Imitation learning of

positional and force skills demonstrated via kinesthetic teaching and
haptic input,” Advanced Robotics, 2011, to appear.

[28] Video accompanying this paper. [Online]. Available:
http://kormushev.com/research/videos/

3975


