
Learning the skill of archery by a humanoid robot iCub

Petar Kormushev1, Sylvain Calinon2, Ryo Saegusa3, Giorgio Metta4

Abstract— We present an integrated approach allowing the
humanoid robot iCub to learn the skill of archery. After being
instructed how to hold the bow and release the arrow, the robot
learns by itself to shoot the arrow in such a way that it hits the
center of the target. Two learning algorithms are proposed and
compared to learn the bi-manual skill: one with Expectation-
Maximization based Reinforcement Learning, and one with
chained vector regression called the ARCHER algorithm. Both
algorithms are used to modulate and coordinate the motion
of the two hands, while an inverse kinematics controller is
used for the motion of the arms. The image processing part
recognizes where the arrow hits the target and is based on
Gaussian Mixture Models for color-based detection of the target
and the arrow’s tip. The approach is evaluated on a 53-DOF
humanoid robot iCub.

I. INTRODUCTION

Acquiring new motor skills involves various forms of

learning. The efficiency of the process lies in the intercon-

nections between imitation and self-improvement strategies.

Similarly to humans, a robot should ideally be able to acquire

new skills by employing such mechanisms.

Some tasks can be successfully transferred to the robot

using only imitation strategies [1] [2]. Other tasks can be

learned very efficiently by the robot alone using Reinforce-

ment Learning (RL) [3]. The recent development of com-

pliant robots progressively moves their operational domain

from industrial applications to home and office uses, where

the role and tasks can not be determined in advance. While

some tasks allow the user to interact with the robot to teach it

new skills, it is generally preferable to provide a mechanism

that permits the robot to learn to improve and extend its skills

to new contexts under its own guidance.

Researchers in machine learning and robotics have made

tremendous efforts and advances to move RL algorithms

from discrete to continuous domains, thus extending the

possibilities for robotic applications. Until recently, policy

gradient algorithms (such as Episodic REINFORCE [4] and

Episodic Natural Actor-Critic eNAC [5]) have been a well-

established approach to cope with the high dimensionality

[6]. Unfortunately, they also have shortcomings, such as high

sensitivity to the learning rate.

To avoid such problems, Kober et al proposed in [7] an

episodic RL algorithm called Policy learning by Weighting

Exploration with the Returns (PoWER). It is based on

Expectation-Maximization algorithm (EM) and one major

advantage over policy-gradient-based approaches is that it

Authors {1,2} are with the Advanced Robotics Department and authors
{3,4} are with the Robotics, Brain and Cognitive Sciences Department
of the Italian Institute of Technology (IIT), 16163 Genova, Italy.
{petar.kormushev,sylvain.calinon,ryo.saegusa,
giorgio.metta}@iit.it.

Fig. 1. Experimental setup for the archery task. A position-controlled 53-
DOF humanoid robot iCub learns to shoot arrows using a bow and learn to
hit the center of the target using RL algorithm and visual feedback from a
camera.

does not require a learning rate parameter. This is desirable

because tuning a learning rate is usually difficult to do for

control problems but critical for achieving good performance

of policy-gradient algorithms. PoWER also demonstrates

superior performance in tasks learned directly on a real robot,

such as the ball-in-a-cup task [8] and the pancake flipping

task [9].

In this paper we present an integrated approach allowing

a humanoid robot to learn the skill of archery. After being

instructed how to hold the bow and release the arrow, the

robot learns by itself to shoot the arrow in such a way that

it hits the center of the target. The archery task was selected

because: (1) it involves bi-manual coordination; (2) it can

be performed with slow movements of the arms and using

small torques and forces; (3) it requires using tools (bow

and arrow) to affect an external object (target); (4) it is an

appropriate task for testing different learning algorithms and

aspects of learning, because the reward is inherently defined

by the high-level description of the task goal; (5) it involves

integration of image processing, motor control and learning

parts in one coherent task.

The focus of the paper is on learning the bi-manual

2010 IEEE-RAS International Conference on Humanoid Robots
Nashville, TN, USA, December 6-8, 2010

978-1-4244-8689-2/10/$26.00 ©2010 IEEE 417

(a) (b)

Fig. 2. Archery by a human and automata. (a) the shooting form in Kyudo
[10]. (b) the replica of the archery automata [11].

coordination necessary to control the shooting direction and

velocity in order to hit the target. Two learning algorithms are

proposed and compared: one with Expectation-Maximization

based Reinforcement Learning, and one with chained vector

regression. Both algorithms are used to modulate and coor-

dinate the motion of the two hands, while inverse kinematics

controller is used for the motion of the arms. We propose

solutions to the learning part, the image processing part used

to detect the arrow’s tip on the target, and the motor control

part of the archery training.

II. DESCRIPTION OF THE ARCHERY TASK

Archery is the art of propelling arrows with the use of a

bow and has been developed to high levels in many societies.

In North America, archery was well known among native

people from pre-Columbian times. In Japan archery is known

as Kyudo, shown in Fig. 2 (a), which is recognized as a rather

mental sport, with a longer bow and simpler equipment than

in European archery [10].

At the end of the 19th century, H. Tanaka created an

archery automata which was able to perform the complete se-

quential movements to shoot an arrow [11]. The movements

were composed of four primitives: grasping an arrow, setting

the arrow at the bow string, drawing the bow, and releasing

the shot. Fig. 2 (b) shows a replica of the archery automata.

Instead of pulling the string of the bow with the right hand

towards the torso, this automata is actually pushing the bow

with the left hand in the opposite direction.

The independently developed examples of archery show

that the same skill can be achieved in a different manner,

and that the skill is adapted differently depending on the tool

and embodiment, to achieve the same result. Similarly, in our

robotic archery experiment, we needed to adapt the setup and

shooting movement to the specifics of our humanoid robot.

III. PROPOSED APPROACH

In this section we propose two different learning algo-

rithms for the archery training and one image processing

algorithm for detecting the arrow on the target. The focus

of the proposed approach falls on learning the bi-manual

coordination for shooting the arrow with a desired direction

and velocity. Similarly to [12], we consider discrete goal-

directed movements where the relative position between the

two hands represents coordination patterns that the robot

needs to learn. We do not consider the problem of learning

how to grasp the bow or pull the arrow, and therefore these

sub-tasks are pre-programmed.

A. Learning algorithm 1: PoWER

As a first approach for learning the bi-manual coordination

needed in archery, we use the state-of-the-art EM-based

RL algorithm PoWER by Jens Kober and Jan Peters [7].

We selected PoWER algorithm because it does not need

a learning rate (unlike policy-gradient methods) and also

because it can be combined with importance sampling to

make better use of the previous experience of the agent in

the estimation of new exploratory parameters.

PoWER uses a parameterized policy and tries to find val-

ues for the parameters which maximize the expected return of

rollouts (also called trials) under the corresponding policy.

For the archery task the policy parameters are represented

by the elements of a 3D vector corresponding to the relative

position of the two hands performing the task.

We define the return of an arrow shooting rollout τ to be:

R(τ) = e−||r̂T−r̂A||, (1)

where r̂T is the estimated 2D position of the center of the

target on the target’s plane, r̂A is the estimated 2D position

of the arrow’s tip, and || · || is Euclidean distance.

As an instance of EM algorithm, PoWER estimates the

policy parameters θ to maximize the lower bound on the

expected return from following the policy. The policy param-

eters θn at the current iteration n are updated to produce the

new parameters θn+1 using the following rule (as described

in [8]):

θn+1 = θn +

〈

(θk − θn)R(τk)
〉

w(τk)
〈

R(τk)
〉

w(τk)

. (2)

In Eq. (2), (θk − θn) = ∆θk,n is a vector difference which

gives the relative exploration between the policy parameters

used on the k-th rollout and the current ones. Each relative

exploration ∆θk,n is weighted by the corresponding return

R(τk) of rollout τk and the result is normalized using the

sum of the same returns. Intuitively, this update rule can be

thought of as a weighted sum of parameter vectors where

higher weight is given to these vectors which result in better

returns.

In order to minimize the number of rollouts which are

needed to estimate new policy parameters, we use a form of

importance sampling technique adapted for RL [3] [7] and

denoted by 〈·〉w(τk) in Eq. (2). It allows the RL algorithm to

re-use previous rollouts τk and their corresponding policy

parameters θk during the estimation of the new policy

418

^

3D parameter space

2D reward spaceθ3

θ2

θ1

r2

r1

r3

θΤ

rΤ

 f (.)

wi

Fig. 3. The conceptual idea underlying the ARCHER algorithm.

parameters θn+1. The importance sampler is defined as:

〈

f(θk, τk)
〉

w(τk)
=

σ
∑

k=1

f(θind(k), τind(k)), (3)

where σ is a fixed parameter denoting how many rollouts the

importance sampler is to use, and ind(k) is an index function

which returns the index of the k-th best rollout in the list of

all past rollouts sorted by their corresponding returns, i.e. for

k = 1 we have:

ind(1) = argmax
i

R(τi), (4)

and the following holds: R(τind(1)) ≥ R(τind(2)) ≥ ... ≥
R(τind(σ)). The importance sampler allows the RL algorithm

to calculate new policy parameters using the top-σ best

rollouts so far. This reduces the number of required rollouts

to converge and makes this RL algorithm applicable to online

learning.

B. Learning algorithm 2: ARCHER

For a second learning approach we propose a custom

algorithm developed and optimized specifically for problems

like the archery training, which have a smooth solution space

and prior knowledge about the goal to be achieved. We will

refer to it as the ARCHER algorithm (Augmented Reward

CHainEd Regression). The motivation for ARCHER is to

make use of richer feedback information about the result of

a rollout. Such information is ignored by the PoWER RL al-

gorithm because it uses scalar feedback which only depends

on the distance to the target’s center. ARCHER, on the other

hand, is designed to use the prior knowledge we have on the

optimum reward possible. In this case, we know that hitting

the center corresponds to the maximum reward we can get.

Using this prior information about the task, we can view

the position of the arrow’s tip as an augmented reward. In

this case, it consists of a 2-dimensional vector giving the

horizontal and vertical displacement of the arrow’s tip with

respect to the target’s center. This information is obtained

either directly from the simulated experiment in Section IV

or calculated by the image processing algorithm in Section

III-C for the real-world experiment. Then, ARCHER uses

a chained local regression process that iteratively estimates

new policy parameters which have a greater probability of

leading to the achievement of the goal of the task, based on

the experience so far.

Each rollout τi, where i ∈ {1, . . . , N}, is initiated by

input parameters θi ∈ R
3, which is the vector describing the

relative position of the hands and is produced by the learning

algorithms. Each rollout has an associated observed result

(considered as a 2-dimensional reward) ri = f(θi) ∈ R
2,

which is the relative position of the arrow’s tip with respect

to the target’s center rT = (0, 0)T . The unknown function f

is considered to be non-linear due to air friction, wind flow,

friction between the bow and the arrow, and etc. A schematic

figure illustrating the idea of the ARCHER algorithm is

shown in Fig. 3.

Without loss of generality, we assume that the rollouts are

sorted in descending order by their scalar return calculated

by Eq. 1, i.e. R(τi) ≥ R(τi+1), i.e. that r1 is the closest to

rT . For convenience, we define vectors ri,j = rj − ri and

θi,j = θj −θi. Then, we represent the vector r1,T as a linear

combination of vectors using the N best results:

r1,T =

N−1
∑

i=1

wir1,i+1. (5)

Under the assumption that the original parameter space

can be linearly approximated in a small neighborhood, the

calculated weights wi are transferred back to the original

parameter space. Then, the unknown vector to the goal

parameter value θ1,T is approximated with θ̂1,T as a linear

combination of the corresponding parameter vectors using

the same weights:

θ̂1,T =
N−1
∑

i=1

wiθ1,i+1. (6)

In a matrix form, we have r1,T = WU , where W contains

the weights {wi}
N
i=2, and U contains the collected vectors

{r1,i}
N
i=2 from the observed rewards of N rollouts. The least-

norm approximation of the weights is given by Ŵ = r1,TU
†,

where U† is the pseudoinverse of U .1 By repeating this

regression process when adding a new couple {θi, ri} to the

dataset at each iteration, the algorithm refines the solution

by selecting at each iteration the N closest points to rT .

ARCHER can thus be viewed as a linear vector regression

with a shrinking support region.

In order to find the optimal value for N (the number of

samples to use for the regression), we have to consider both

the observation errors and the function approximation error.

The observation errors are defined by ǫθ = ||θ̃ − θ|| and

ǫr = ||r̃ − r||, where θ̃ and r̃ are the real values, and θ

and r are the observed values. The function approximation

error caused by non-linearities is defined by ǫf = ||f−Aθ||,
where A is the linear approximation.

On the one hand, if the observations are very noisy (ǫr ≫
ǫf and ǫθ ≫ ǫf), it is better to use bigger values for N ,

1In this case, we used a least-squares estimate. For more complex solution
spaces, ridge regression or other regularization scheme can be considered.

419

in order to reduce the error when estimating the parameters

wi. On the other hand, for highly non-linear functions f

(ǫf ≫ ǫr and ǫf ≫ ǫθ), it is better to use smaller values for

N , i.e. to use a small subset of points which are closest to

rT in order to minimize the function approximation error

ǫf . For the experiments presented in this paper we used

N = 3 in both the simulation and the real-world, because

the observation errors were kept very small in both cases.

The ARCHER algorithm can also be used for other tasks,

provided that: (1) a-priori knowledge about the desired target

reward is known; (2) the reward can be decomposed into

separate dimensions; (3) the task has a smooth solution

space.

C. Image processing algorithm

The problem of detecting where the target is, and what is

the relative position of the arrow with respect to the center

of the target, is solved by image processing. We use color-

based detection of the target and the tip of the arrow based

on Gaussian Mixture Model (GMM). The color detection is

done in YUV color space, where Y is the luminance, and

UV is the chrominance. Only U and V components are used

to ensure robustness to changes in luminosity.

In a calibration phase, prior to conducting an archery

experiment, the user explicitly defines on a camera image

the position and size of the target and the position of the

arrow’s tip. Then, the user manually selects NT pixels lying

inside the target in the image, and NA pixels from the arrow’s

tip in the image. The selected points produce two datasets:

cT ∈ R
2×NT and cA ∈ R

2×NA respectively.

From the two datasets cT and cA, a Gaussian Mixture

Model (GMM) is used to learn a compact model of the color

characteristics in UV space of the relevant objects. Each

GMM is described by the set of parameters {πk, µk,Σk}
K
k=1,

representing respectively the prior probabilities, centers and

covariance matrices of the model (full covariances are con-

sidered here). The prior probabilities πk satisfy πk ∈ R
[0,1]

and
∑K

k=1 πk = 1. A Bayesian Information Criterion (BIC)

[13] is used to select the appropriate number of Gaussians

KT and KA to represent effectively the features to track.

After each reproduction attempt, a camera snapshot is

taken to re-estimate the position of the arrow and the target.2

From the image cI ∈ R
2×Nx×Ny of Nx ×Ny pixels in UV

color space, the center m of each object on the image is

estimated through the weighted sum

m =

Nx
∑

x=1

Ny
∑

y=1

1

Sx,y

K
∑

k=1

πk N (cI,x,y; µk,Σk)

[

x

y

]

, (7)

with Sx,y =

K
∑

j=1

πj N (cI,x,y; µj ,Σj).

2If the arrow did not stick to the wall, we put it back manually to the
point of impact on the wall.

Fig. 4. Fitting a GMM to represent the target’s and arrow’s color
characteristics in YUV color space. In this case, three Gaussians have been
found to represent the target and a single Gaussian to represent the arrow.

In the above equation, N (c;µk,Σk) is the probability

defined by

N (c;µk,Σk) =
1

√

(2π)2|Σk|
e−

1

2
(c−µk)

⊤Σ−1

k
(c−µk). (8)

The reward vector is finally calculated as r = mT −mA,

where mA is the estimated center of the arrow and mT is the

estimated center of the target. Fig. 4 illustrates the work of

the described algorithm with color data taken from an image

of the real archery target.

IV. SIMULATION EXPERIMENT

The two proposed learning algorithms (PoWER and

ARCHER) are first evaluated in a simulation experiment.

Even though the archery task is hard to model explicitly

(e.g., due to the unknown parameters of the bow and arrow

used), the trajectory of the arrow can be modeled as a simple

ballistic trajectory, ignoring air friction, wind velocity and

etc. A typical experimental result for each algorithm is shown

in Fig. 5. In both simulations, the same initial parameters are

used. The simulation is terminated when the arrow hits inside

the innermost ring of the target, i.e. the distance to the center

becomes less than 5 cm.

For a statistically significant observation, the same ex-

periment was repeated 40 times with a fixed number of

rollouts (60) in each session. The averaged experimental

result is shown in Fig. 6. The ARCHER algorithm clearly

outperforms the PoWER algorithm for the archery task. This

is due to the use of 2D feedback information which allows

ARCHER to make better estimations/predictions of good

parameter values, and to the prior knowledge concerning the

maximum reward that can be achieved. PoWER, on the other

hand, achieves reasonable performance despite using only 1D

feedback information.

Based on the results from the simulated experiment, the

ARCHER algorithm was chosen to conduct the following

real-world experiment.

420

−0.4
−0.2

0
0.2

−2

−1.5

−1

−0.5

0

0.2

0.4

x
2

x
1

x
3

(a) PoWER

−0.4
−0.2

0

−2

−1.5

−1

−0.5

0

0.2

0.4

0.6

x
2

x
1

x
3

(b) ARCHER

Fig. 5. Simulation of archery. Learning is performed under the same
starting conditions with two different algorithms. The red trajectory is the
final rollout. (a) PoWER algorithm needs 19 rollouts to reach the center.
(b) ARCHER algorithm needs 5 rollouts to do the same.

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

Number of rollouts

D
is

ta
n

c
e

 t
o

 t
a

rg
e

t
[m

]

PoWER

ARCHER

Fig. 6. Comparison of the speed of convergence for the PoWER and
ARCHER algorithms. Statistics are collected from 40 learning sessions
with 60 rollouts in each session. The first 3 rollouts of ARCHER are done
with large random exploratory noise, which explains the big variance at the
beginning.

Fig. 7. Real-world experiment using the iCub [14]. The distance between
the target and the robot is 2.2 meters. The diameter of the target is 50 cm.

V. ROBOT EXPERIMENT

A. Robotic platform

The real-world robot experimental setup is shown in Fig.7.

The experiment was conducted with iCub [14]. The iCub is

an open-source robotic platform with dimensions comparable

to a three and a half year-old child (about 104cm tall), with

53 degrees of freedom (DOF) distributed on the head, torso,

arms, hands, and legs [15] [16]. Software modules in the

architecture are interconnected using YARP [17] [18].

In the experiment, we used the torso, arms, and hands. The

torso has 3 DOF (yaw, pitch, and roll). Each arm has 7 DOF,

three in shoulder, one in the elbow and three in the wrist.

Each hand of the iCub has 5 fingers and 19 joints although

with only 9 drive motors several of these joints are coupled.

We manually set the orientation of the neck, eyes and torso of

the robot to turn it towards the target. The finger positions of

both hands were also set manually to allow the robot to grip

the bow and release the string suitably. We used one joint in

the index finger to release the string. It was not possible to

use two fingers simultaneously to release the string because

of difficulties with synchronizing their motion. The posture

of the left arm (bow side) was controlled by the proposed

system, as well as the orientation of the right arm (string

side). The position of the right hand was kept within a small

area, because the limited range of motion of the elbow joint

did not permit pulling the string close to the torso.

B. Robot control

To control the robot, the inverse kinematics module de-

veloped by Pattacini et al is used [19]. The proposed so-

lution is to treat the inverse kinematics as an optimization

under inequality constraints problem. Compared to standard

Jacobian-based approaches, this approach has the advantage

that the solver internally encapsulates knowledge of the joint

bounds. Moreover, it is capable of dealing with a complex

set of non-linear constrains expressed both in joint and

task space. Another difference from standard Jacobian-based

approaches is that this solution gives priority to the position

in Cartesian space over the orientation. Hence, it is possible

421

(Right)

(Left)

(Torso)

Fig. 8. Orientations for the two hands of the iCub robot during the archery
task. Top: The right hand and the left hand CAD models of the iCub hands.
Center: The fixed coordinate frames of reference attached to each hand are
shown, as well as the main frame of reference attached to the torso of the
robot. The thick blue arrow shows the relative position of the two hands
which is controlled by the learning algorithm during the learning sessions.
The current configuration corresponds to the robot’s posture in Fig. 7.

to consider a desired rest position without having to define

an explicit hierarchy as in a standard nullspace formulation.

The optimization is defined as:

qo = argmin
q

(

w1

(

n̂− n(q)
)

⊤

Σn

(

n̂− n(q)
)

+ w2

(

q̂ − q
)

⊤

Σq

(

q̂ − q
)

)

, (9)

u.c.

(

x̂− x(q)
)

⊤

Σx

(

x̂− x(q)
)

< ǫ,

q > qmin,

q < qmax.

In the above equation, qo, q ∈ R
6 are joint angles within

bounds qmin and qmax. x(q) ∈ R
3 and n(q) ∈ R

3 are respec-

tively the position and orientation of the end-effector (the

orientation is represented as an axis-angle representation).

Σq , Σx and Σn are covariance matrices used to modulate

the influence of the different variables. In the experiment

presented here, the use of identity matrices was sufficient to

obtain natural looking motions. ǫ is a predefined error value.

The posture of the iCub’s arms and the grasping configu-

ration for the bow and the arrow are shown in Fig. 1. During

the experiment, while the robot is learning, between every

trial shot it is adjusting the relative position and orientation

of the two hands, which in turn controls the direction and

speed of the arrow. The desired relative position between

the two hands is given by the learning algorithm before each

trial. The desired orientation of the two hands is calculated

in such a way, so that the bow is kept vertical (i.e. zero

roll angle). The left hand’s palm is kept perpendicular to the

desired arrow direction, while the right hand’s fingers are

Fig. 9. Detection of the target and the arrow. Left: The camera image.
Right: The pixels are filtered based on their likelihood of belonging to the
target model or the arrow model. The red cross indicates the estimated center
of the target. The blue circle indicates the estimated position of the arrow.

−0.4
−0.2

0
0.2

−2

−1.5

−1

−0.5

0

0.2

0.4

x
2

x
1

x
3

Fig. 10. Results from a real-world experiment with the iCub robot. The
arrow trajectories are depicted as straight dashed lines, because we do not
record the actual trajectories from the real-world experiment, only the final
position of the arrow on the target’s plane. In this session the ARCHER
algorithm needed 10 rollouts to converge to the innermost ring of the target.

kept aligned with the arrow direction. Fig. 8 illustrates the

orientations for the two hands.

C. Experimental results

The real-world experiment was conducted using the pro-

posed ARCHER algorithm and the proposed image process-

ing method. The camera was attached to the metal frame

holding the robot and produced images with a resolution of

1280 × 720 pixels. An example detection of the target and

the arrow is shown in Fig. 9.

For the learning part, the number of rollouts until con-

vergence in the real world is higher than the numbers

in the simulated experiment. This is caused by the high

level of noise (e.g. physical bow variability, measurement

uncertainties, robot control errors, etc.). Fig. 10 visualizes the

results of a learning session performed with the real robot.

In this session, the ARCHER algorithm needed 10 rollouts

to converge to the center.

A sequence of video frames showing the learned

real-world arrow shooting is shown in Fig. 11. The

video is available online at: http://programming-by-

demonstration.org/videos/humanoids2010/.

VI. DISCUSSION

For the archery task, the original idea was to teach the

robot to pull the arrow by itself before releasing it, but this

turned out to be too difficult, because of the quite limited

422

Fig. 11. Sequence of video frames showing the learned real-world arrow
shooting. The arrow hits the central yellow part of the target.

range of motion and range of orientation of the two arms. The

narrow joint angle ranges makes the workspace very limited

and prohibits performing human-like movement especially

in horizontal direction. Thus, some aspects of the bi-manual

coordination were hard-coded to bypass these hardware lim-

itations. We had to modify the shooting position by folding

both arms in order to achieve maximum maneuverability for

the two hands. Also, we simplified the procedure for hooking

the arrow to the string, because of the difficulty in grasping,

pulling and releasing the rope.

With a RL algorithm, it is possible to incorporate a

bias/preference in the reward. For ARCHER, a similar effect

could be achieved using a regularizer in the regression.

In the future, we plan to extend the proposed method by

adding imitation learning in order to teach the robot how to

perform the whole movement for grasping and pulling the

arrow.

VII. CONCLUSION

We have presented an integrated solution which allows a

humanoid robot to shoot arrows with a bow and learn on its

own how to hit the center of the target. We have proposed a

local regression algorithm called ARCHER for learning this

particular skill, and we have compared it against the state-of-

the-art PoWER algorithm. The simulation experiments show

significant improvement in terms of speed of convergence

of the proposed learning algorithm, which is due to the use

of a multi-dimensional reward and prior knowledge about

the optimum reward that one can reach. We have proposed

a method for extracting the task-specific visual information

from the image, relying on color segmentation and using a

probabilistic framework to model the objects. The conducted

experiments on the physical iCub robot confirm the feasibil-

ity of the proposed integrated solution.

VIII. ACKNOWLEDGMENTS

The authors gratefully acknowledge the help of Ugo

Pattacini for the inverse kinematics controller of iCub, the

support of Dr. Vadim Tikhanoff for running the iCub simu-

lator, and the invaluable help of Prof. Darwin G. Caldwell

for improving the quality of this manuscript.

REFERENCES

[1] A. Billard, S. Calinon, R. Dillmann, and S. Schaal, “Robot program-
ming by demonstration,” in Handbook of Robotics, B. Siciliano and
O. Khatib, Eds. Secaucus, NJ, USA: Springer, 2008, pp. 1371–1394.

[2] B. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey of
robot learning from demonstration,” Robot. Auton. Syst., vol. 57, no. 5,
pp. 469–483, 2009.

[3] R. Sutton and A. Barto, Reinforcement learning: an introduction.
Cambridge, MA, USA: MIT Press, 1998.

[4] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Mach. Learn., vol. 8, no. 3-4,
pp. 229–256, 1992.

[5] J. Peters and S. Schaal, “Natural actor-critic,” Neurocomput., vol. 71,
no. 7-9, pp. 1180–1190, 2008.

[6] J.Peters and S.Schaal, “Policy gradient methods for robotics,” in
Proceedings of the IEEE/RSJ International Conference on Intelligent

Robots and Systems IROS, 2006.
[7] J. Kober and J. Peters, “Learning motor primitives for robotics,” in

Proc. IEEE Intl Conf. on Robotics and Automation (ICRA), May 2009,
pp. 2112 –2118.

[8] J. Kober, “Reinforcement learning for motor primitives,” Master’s
thesis, University of Stuttgart, Germany, August 2008.

[9] P. Kormushev, S. Calinon, and D. G. Caldwell, “Robot motor skill
coordination with EM-based reinforcement learning,” in The 2010

IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS2010),
2010.

[10] Wikipedia. (2010) History of archery; Kyudo. [On-
line]. Available: http://en.wikipedia.org/wiki/History of archery;
http://en.wikipedia.org/wiki/Kyudo

[11] Y. Suematsu. (2001) Zashiki karakuri. Department of Electronic-
Mechanical Engineering, Nagoya University. [Online]. Available:
http://www.karakuri.info/zashiki/index.html

[12] E. Gribovskaya and A. Billard, “Combining dynamical systems control
and programming by demonstration for teaching discrete bimanual
coordination tasks to a humanoid robot,” in Proc. ACM/IEEE Intl Conf.

on Human-Robot Interaction (HRI), 2008.
[13] G. Schwarz, “Estimating the dimension of a model,” Annals of

Statistics, vol. 6, pp. 461–464, 1978.
[14] G. Metta, G. Sandini, D. Vernon, L. Natale, and N. F., “The icub

humanoid robot: an open platform for research in embodied cognition,”
in Proceedings of the 8th Workshop on Performance Metrics for

Intelligent Systems, Washington DC, USA, 2008, pp. 50–56.
[15] N. Tsagarakis, G. Metta, G. Sandini, D. Vernon, R. Beira, F. Becchi,

L. Righetti, J. Santos-Victor, A. Ijspeert, M. Carrozza, and D. Cald-
well, “iCub: The design and realization of an open humanoid platform
for cognitive and neuroscience research,” Advanced Robotics, vol. 21,
no. 10, pp. 1151–1175, 2007.

[16] S. Lallee, S. Lemaignan, A. Lenz, C. Melhuish, L. Natale, S. Skachek,
T. v. D. Zant, F. Warneken, and D. P. Ford, “Towards a platform-
independent cooperative human-robot interaction system: I. percep-
tion,” in The 2010 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS2010), 2010.
[17] G. Metta, P. Fitzpatrick, and L. Natale, “Yarp: Yet another robot

platform,” International Journal on Advanced Robotics Systems, vol. 3,
no. 1, pp. 43–48, 2006.

[18] P. Fitzpatrick, G. Metta, and L. Natale, “Towards long-lived robot
genes,” Robotics and Autonomous Systems, vol. 56, no. 1, pp. 29–45,
2008.

[19] U. Pattacini, F. Nori, L. Natale, G. Metta, and G. Sandini, “An
experimental evaluation of a novel minimum-jerk cartesian controller
for humanoid robots,” in The 2010 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS2010), 2010.

423

