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Abstract: A technique called Time Hopping is proposed for speeding up 
reinforcement learning algorithms. It is applicable to continuous optimization 
problems running in computer simulations. Making shortcuts in time by hopping 
between distant states combined with off-policy reinforcement learning allows the 
technique to maintain higher learning rate. Experiments on a simulated biped 
crawling robot confirm that Time Hopping can accelerate the learning process 
more than seven times.  
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1. Introduction 

Reinforcement Learning (RL) algorithms [16] address the problem of learning to 
select optimal actions when limited feedback (usually in the form of a scalar 
reinforcement function) from the environment is available. General RL algorithms 
like Q-Learning [19], SARSA and TD(λ) [15] have been proved to converge to the 
globally optimal solution (under certain assumptions) [1, 19]. They are very 
flexible, because they do not require a model of the environment, and have been 
shown to be effective in solving a variety of RL tasks. This flexibility, however, 
comes at a certain cost: these RL algorithms require extremely long training to cope 
with large state space problems [17]. Even for a relatively simple control task such 
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as the cart-pole balancing problem on a limited-length track, they require tens of 
thousands of steps [3]. 

Many different approaches have been proposed for speeding up the RL 
process. One possible technique is to use function approximation [8], in order to 
reduce the effect of the “curse of dimensionality”. Unfortunately, using function 
approximation creates instability problems when used with off-policy learning [18]. 
For instance, Q-Learning [19], one of the most popular RL algorithms, is known to 
diverge when used with linear function approximation, even for very simple 
environments. This divergent behavior is generated, at least in part, by the  
off-policy nature of the learning algorithm. The key problem is that the policy used 
to generate behavior and the target policy visit states with different frequencies [8]. 

Significant speed-up can be achieved when a demonstration of the goal task is 
available [12], as in Apprenticeship Learning [24]. Although there is a risk of 
running dangerous exploration policies in real world [22], successful 
implementation of apprenticeship learning for aerobatic helicopter flight exists [23]. 

Another possible technique for speeding up RL is to use some form of 
hierarchical decomposition of the problem [4]. A prominent example is the 
“MAXQ Value Function Decomposition” [2]. Hybrid methods using both 
apprenticeship learning and hierarchical decomposition have been successfully 
applied to quadruped locomotion [13, 14]. Unfortunately, decomposition of the 
target task is not always possible, and sometimes it may impose additional burden 
on the users of the RL algorithm. 

A state-of-the-art RL algorithm for efficient state space exploration is E3 [6]. 
It uses active exploration policy to visit states whose transition dynamics are still 
inaccurately modeled. Because of this, running E3 directly in the real world might 
lead to a dangerous exploration behavior. 

Instead of using value-iteration-based RL algorithms, some researchers have 
focused on significantly different algorithms, namely, policy search RL algorithms 
[7]. Examples include the Natural Actor-Critic architecture [20], as well as the 
Policy Gradient RL algorithm, which has been applied successfully to robot control 
[11]. An alternative way to represent states and actions also exists, known as 
Relational Reinforcement Learning [21], which generalizes RL by relationally 
representing states and actions. 

This paper explores a completely different approach for speeding up RL: more 
efficient use of computer simulations. Simulations have been commonly used 
instead of executing RL algorithms in the real world. This approach has two main 
advantages: speed and safety. Depending on its complexity, a simulation can run 
many times faster than a real-world experiment. Also, the time needed to set up and 
maintain a simulation experiment is far less compared to a real-world experiment. 
The second advantage, safety, is also very important, especially if the RL agent is a 
very expensive equipment (e.g., a fragile robot), or a dangerous one (e.g., a 
chemical plant). 

Whether or not the full potential of computer simulations has been utilized for 
RL, however, is a different question. A recently proposed technique, called “Time 
Manipulation” [25], suggests that using backward time manipulations inside a 
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simulation can significantly speed up the learning process and improve the state 
space exploration. Applied to failure-avoidance RL problems, such as the cart-pole 
balancing problem, Time Manipulation has been shown to increase the speed of 
convergence by 260% [26].  

In the same line of research, this paper extends the paradigm of time 
manipulations and proposes a RL technique, called “Time Hopping”, which can be 
successfully applied to continuous optimization problems. Unlike the original Time 
Manipulation technique, which can only perform backward time manipulation, the 
Time Hopping proposed can make arbitrary “hops” between states and traverse 
rapidly throughout the entire state space. Time Hopping extends the applicability of 
time manipulations to include not only failure-avoidance problems, but also 
continuous optimization problems, by creating new mechanisms to trigger the time 
manipulation events, to make prediction about the possible future rewards, and to 
select promising time hopping targets.  

The next Section 2 introduces the concept of Time Hopping and explains how 
it can be applied to RL in general. Section 3 proposes a concrete implementation of 
Time Hopping technique for Q-learning algorithm. Section 4 presents the results 
from experimental evaluation of Time Hopping on a particular continuous-
optimization problem: a biped crawling robot.  

2. The concept of Time Hopping 

A. The problem with decreasing learning rate 

Reinforcement learning works very similar to the natural trial-and-error learning 
that we, humans, use in real world. Let us consider the following example: a person 
is trying to learn how to ski. Usually the first day he falls many times, learning a lot 
of crucial motor skills and advancing significantly in the task. The second day, he 
learns how to keep better his balance on the ski during slow motion. Gradually, he 
increases the speed and the difficulty of the terrain. At some point he reaches an 
adequate level of skiing skill. As time goes by, the learning rate slows down and 
eventually the person needs to train very long time in order to advance his skill just 
a little bit more. A typical learning curve is depicted on Fig. 1.  
 

 
Fig. 1.  A typical learning curve, showing the cumulative acquired knowledge (learned skill) with 

respect to the time spent for training. The learning rate is gradually decreasing, because the probability 
of experiencing unknown situations is becoming smaller 
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Exactly the same phenomenon is observed when a computer program uses 
reinforcement learning to acquire some new skill. It is important to understand why 
this is happening. 

The explanation of this phenomenon is very simple: new skills can only be 
learned from new situations. As the skier becomes more experienced, he faces 
fewer new, unfamiliar situations/conditions of the environment. In other words, the 
probability of an unknown situation becomes so small, that the person has to ski for 
a very long time in order to find himself in a situation that allows him to learn 
something new.  

Finding a way to prevent this phenomenon and keep the learning rate high 
throughout the entire training is a worthy objective. In real world probably very 
little can be done towards this objective. For a computer simulation, however, we 
propose one potential solution called “Time Hopping”. 

B. The concept of Time Hopping 

Learning how to ski is essentially a continuous optimization problem. Let us 
consider a more formal definition of the same RL problem, given by Markov 
Decision Process (MDP) on Fig. 2. Each state transition has a probability associated 
with it. State 1 represents situations of the environment that are very common and 
quickly learned. The frequency with which state 1 is visited is the highest of all. As 
the state number increases, the probability of being in the corresponding state 
becomes lower. State 4 represents the rarest situations and therefore the most 
unlikely to be learned. 
 

 
Fig. 2.  An example of a MDP with uneven state probability distribution. Time Hopping can create 

“shortcuts in time” (shown with dashed lines) between otherwise distant states, i.e., states connected 
by a very low-probability path. This allows even the lowest-probability state 4 to be learned easily 

The fundamental idea of Time Hoping is to provide “shortcuts in time” to such 
low-probability states, making them easier to learn, while at the same time avoiding 
unnecessary repetition of already well-explored states. This can be done by 
externally manipulating the computer simulation in a way which is completely 
transparent for the RL algorithm, as demonstrated in Section 3. 

Time Hopping creates “shortcuts in time” by making direct hops between very 
distant states inside the MDP. Depending on how it is used, Time Hopping can 
potentially change the state probability distribution to, for example, an almost 
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uniform distribution. In this way all the states can be visited (and therefore, learned) 
almost equally well. Fig. 3 shows what would be the effect of Time Hopping when 
applied to the same MDP from Fig. 2. In general, it is possible to do a complete 
probability redistribution of the MDP using Time Hopping, as shown in [27], but 
this falls out of the scope of this paper. 

 
Fig. 3.  Time Hopping can potentially change the state probability distribution to an almost uniform 

distribution. The four states shown correspond to the same four states from Fig. 2 

The question we try to answer here is whether it is possible to efficiently 
implement Time Hopping for a continuous optimization RL problem. The following 
section defines what is required to be able to do this. 

C. Components of Time Hopping 

In order to accurately define Time Hopping in the context of RL, two things have to 
be specified: what components are necessary, and how they should interact with 
each other. 

For failure-avoidance problems Time Manipulation technique [25] has proven 
to be very efficient. For continuous optimization problems, however, it can not be 
directly applied for various reasons. By analyzing these reasons we define the 
components required for successfully implementing Time Hopping for such 
problems. 

Time Manipulation works by externally manipulating (modifying) the time 
within the simulation, in order to increase the speed of RL convergence. For failure-
avoidance RL problems, such as the cart-pole balancing problem, the failure event 
provides a convenient trigger for a backward time manipulation. For continuous 
optimization problems, however, there are no such failure events and therefore the 
original Time Manipulation technique cannot be applied. A new trigger is needed 
for Time Hopping (Component #1 – Hopping trigger). 

When the Time Hopping trigger is activated, a target state and time have to be 
selected, considering many relevant properties of the states, such as probability, 
number of times visited, level of exploration, connectivity to other states (number 
of state transitions), etc. In other words, a target selection strategy is needed 
(Component #2 – Target selection). 

After a target state and time have been selected, hopping can be performed. It 
includes setting the RL agent and the simulation environment to the proper state, 
while preserving at the same time all the acquired knowledge by the agent 
(Component #3 – Hopping).  
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The flowchart on Fig. 4 shows how these three components of Time Hopping 
are connected and interact with RL algorithm. Now we can provide an accurate 
definition for the technique proposed. 

D. Definition of Time Hopping 

Definition: Time Hopping is an algorithmic technique which allows maintaining 
higher learning rate in a simulation environment by hopping to appropriately 
selected states. 

 
Fig. 4.  Time Hopping technique applied to a conventional RL algorithm. The lower group (marked by 

a dashed line) contains the conventional RL algorithm main loop, into which the Time Hopping 
components (the upper group) are integrated 

 
Appropriately selected states could be, for example, rarely experienced states, 

or states which are more promising for exploration. As a result of this state selection 
strategy, Time Hopping can potentially change the state probability distribution to, 
for example, an almost uniform distribution, or increase the visit probability of 
more promising states. This ability makes Time Hopping a tool for re-shaping the 
state probability distribution as desired. 

When applied to a conventional RL algorithm, Time Hopping consists of three 
components: 

1) Hopping trigger – decides when the hopping starts; 
2) Target selection – decides where does it hop to; 
3) Hopping – performs the actual hopping. 
The components are connected according to Fig. 4 and integrated into a RL 

algorithm, allowing it to maintain higher learning rate throughout the entire 
training. Any proper implementation of Time Hopping for RL must provide 
concrete implementations of these three components. In Section 3 we propose one 
such possible implementation. 

E. Convergence of Time Hopping 

One very important question about Time Hopping is whether a RL algorithm using 
Time Hopping can converge or not. Conventional RL algorithms like TD(λ) and 
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SARSA [15] provably converge to the globally optimal solution [1, 19], but they 
both require gradual convergence of the exploration policy to the optimal policy. 
Such algorithms are known as on-policy RL algorithms. The value function that 
they learn is dependent on the policy that is being followed during the training. In 
the case of Time Hopping, however, it deliberately tries to avoid convergence of the 
policy in order to maintain high learning rate and minimize exploration redundancy. 
Therefore, if Time Hopping is used with such an on-policy RL algorithm, it is 
obviously not going to converge. 

To ensure that Time Hopping converges, an off-policy RL algorithm must be 
used. One example of such algorithm is Q-Learning. The fundamental difference 
between Q-Learning and the previous two algorithms is that the learned policy is 
independent on the policy followed during learning. This makes Q-Learning much 
more suitable for Time Hopping. 

Very often a good policy for the task we are attempting to learn is not known. 
Using an on-policy algorithm with an inappropriate training policy might cause the 
system not to learn the optimal policy. Using an off-policy algorithm, such as        
Q-Learning, frees us from worrying about the quality of the policy that the system 
follows during the training. In fact, Q-Learning even works when random training 
policies are used. 

As a result, the convergence of Time Hopping is guaranteed by using an off-
policy RL algorithm, regardless of the target selection policy, provided that it 
preserves the ergodicity of the underlying MDP (in order to guarantee sufficient 
exploration).  

3. Implementation of Time Hopping technique 

One possible implementation of Time Hopping is suggested in this section, by 
proposing concrete implementations for each of its three components (as defined in 
Section 2.  D). Table 1 lists the proposed implementation for each component. 

Table 1. Proposed implementation of each Time Hopping component 

No of 
component Component name Proposed implementation 

1 Hopping trigger “Gamma pruning” 
2 Target selection “Lasso target selection” 
3 Hopping “Basic Hopping” 

In the implementation proposed, Q-Learning is used as a representative off-
policy reinforcement learning algorithm, in order to guarantee the convergence (as 
explained in Section 2. E).  

A. Gamma pruning 

What we would like to call “Gamma pruning” is an implementation of the Hopping 
trigger component of Time Hopping. By definition, a Hopping trigger component 
decides when to interrupt the current sequential exploration of RL algorithm and 
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initiate a Time Hopping step. In the proposed Gamma pruning, this is done by 
predicting unpromising branches of exploration and triggering a Time Hopping step 
to avoid them. We call it pruning, because the idea is similar to Alpha-beta pruning, 
used in Mini-max algorithm. And we call it Gamma pruning, because the pruning is 
based on the γ discount factor. 

The basic idea of Gamma pruning can be illustrated with the example on      
Fig. 5. Let us assume that the current best policy follows the transition 〈state 1  
state T〉, and the RL algorithm decides to explore a new transition 〈state 1       
state 2〉 to see whether it can achieve a bigger reward than the current best. After a 
few exploratory transitions, we can try to predict the “best-case scenario” (i.e., the 
biggest possible cumulative reward) if we continue this exploratory path. If even the 
best-case prognosis for the future path is not good enough to override the current 
best policy at state 1, then this exploratory path is unpromising and we can perform 
pruning here (i.e., activate the Hopping trigger to perform a Time Hopping step, 
leaving this unpromising exploratory path). In the particular example this is done 
after reaching state 3. 

 
Fig. 5.  An example of how Gamma-pruning works. After branching away from the current best policy 

(at state 1), the algorithm makes two state transitions, receives rewards R1,2 and R2,3, compares them 
with the calculated threshold and decides that it is unpromising to continue, so it performs pruning 

The Q-value of (making) a state transition 〈state i  state j〉 is defined as 
follows: 

(1)  { }, , ,max ,i j i j j ss
Q R Qγ= +  

where ,i jR  is the reward received from this state transition. For convenience, let us 
denote: 

(2)  { },max .i i ss
Q Q=  

In the example shown in Fig. 5, state 1 and state T are part of the current best 
policy. In order for the candidate state 2 to become a part of a new best policy, the 
Q-value of the transition 〈state 1  state 2〉 must become bigger than the current 
biggest Q-value: the Q-value of the transition 〈state 1  state T〉. Therefore,  
state 2 can override the current best policy if and only if: 1,2 1,TQ Q> , which can be 
rewritten using (1) and (2) as 

Q1 

R1,T 

R1,2 
 

. . . 
1 

T  

2 3

γ-pruning

QT

Q3 

R2,3 

. . .

Current best policy 

Candidate policy 

Q2 



 50

(3)  1,2 2 1, .T TR Q R Qγ γ+ > +  

The RHS of inequality (3) is the minimum value that has to be surpassed, in 
order to change the best policy at state 1. The necessary Q-value of state 2 must 
satisfy: 

(4)  
1, 1,2

2 .T
T

R R
Q Q

γ
−

> +  

We can do this safely because 0 1γ< < . The RHS of inequality (4) shows the 
minimum Q-value of state 2 that has to be surpassed, in order to change the best 
policy from 〈state 1  state T〉 to 〈state 1  state 2〉. Let us call this value a 
threshold value and define it in the following way: a threshold ,s tT  is the minimum 
Q-value for state t that has to be surpassed, in order to change the current best 
policy at state s and make it pass through state t. For convenience, we assume that 

,s t sT Q=  when .s t=  
For the particular example in Fig. 5 

(5)  { }1,1 1 1, 1,max .s T Ts
T Q Q R Qγ= = = +  

Using the RHS of inequality (4) for state 2, the following equation for the 
threshold 1,2T can be derived: 

(6)  
1, 1,2 1,1 1,2

1,2 .T TR Q R T R
T

γ
γ γ

+ − −
= =  

In the same way the threshold after the next state transition 〈state 2  state 3〉 
can be calculated as 

(7)  
1,2 2,3

1,3 .
T R

T
γ
−

=  

This recursive formula can be generalized for the threshold after state 
transition 〈state n – 1  state n〉 as 

(8)  
1, 1 1,

1, .n n n
n

T R
T

γ
− −−

=  

Now that we have an efficient way to calculate the trigger thresholds, we need 
a way of predicting future rewards for the current state. One possible solution is to 
assume the best-case scenario: that all future rewards will be equal to the maximum 
possible reward Rmax. This prediction is actually plausible, since there might be a 
loop of states in which each transition has the highest possible reward Rmax, as 
illustrated on Fig. 6. 
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Fig. 6.  The maximum-reward cycles with length 1, 2, 3 and etc., used for predicting the best-case 

future cumulative reward starting from a given state. The prediction assumes that it is possible to reach 
such a cycle in one step and calculates the maximum possible cumulative reward, which is a constant 

value regardless of the cycle length 

There are infinitely many such loops possible but all of them have the same Q-
value of the states, which can be calculated as 

(9)  ( )( ) ( )2 max
max max max... 1 ... .

1
R

R R Rγ γ γ γ
γ

+ + = + + + =
−

 

According to (8), after every exploratory transition the threshold value 
increases (because 0 1γ< < ). The value of the best-case prediction, however, 
remains fixed, as determined by (9). Therefore, at some point the threshold value 
will surpass the value of the best-case prediction. This means that at that point even 
the best-case scenario is not sufficient to change the current best policy. This is 
exactly the right moment to do Gamma-pruning and activate the Hopping trigger. 

B. Lasso target selection 

What we would like to call “Lasso target selection” is an implementation of 
component #2 (Target selection) of Time Hopping. The objective of this 
implementation is to construct a “lasso”, which is a sequence of state transitions 
following the current best policy, starting at the initial state and ending when a 
cycle is detected. Fig. 7 illustrates why the name “lasso” is appropriate for such a 
construction. 

 
Fig. 7.  A lasso in the state space, starting with a chain of states from the initial state and ending with a 
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The procedure for constructing the lasso follows these steps: 

Step 1. Start from the initial state and add it to the lasso. 

Step 2. Select the action which has yielded the maximum Q-value for the 
current state and follow the corresponding state transition. If there is 
more than one action equal to the maximum, then select one randomly 
among them. 

Step 3. If the new state is not a member of the lasso, then add it to the lasso 
and go to Step (2). 

Step 4. Stop. 

This procedure is guaranteed to finish, because there is only a finite number of 
states. It is important to note that the element of randomness in Step 2 is necessary 
for balanced exploration, especially during the early stages of the learning process, 
when the states have many equally-valued actions. 

The so constructed lasso represents the current best policy starting from the 
initial state. Moreover, the yet unknown globally optimal policy is guaranteed to 
have a common subsequence with the lasso, starting from the initial state and 
following the lasso up to a certain state. In any case, at least the first (initial) state is 
always shared between both of them. Therefore, if we limit the targets for Time 
Hopping only to the states belonging to the current lasso, there is no risk of missing 
the globally optimal solution. 

The Lasso target selection is doing exactly this: it re-calculates the current 
lasso every time when a change occurs in the current best policy, and selects a 
Hopping target among the states in the lasso. This forces the RL algorithm to better 
explore the states in proximity to the current best policy, which are in fact the most 
probable states to be part of the globally optimal policy. 

Additionally, the Lasso target selection performs certain “load-balancing” of 
the states on the lasso by giving preference to those which are less explored. This is 
done by keeping the number of times each state was visited so far. 

C. Basic Hopping 

The implementation of the Hopping component is rather straightforward. After the 
Target selection has selected a specific state, it is necessary to set the state of the RL 
agent and the state of the environment to the corresponding target state. This is easy 
to do in a computer simulation, and the only concern is to have enough memory to 
store the representations of all states. 

While doing this, care should be taken to preserve all the acquired knowledge 
so far by the RL algorithm. Additionally, all the threshold values for the Gamma 
pruning component have to be reset to reflect the new active state. After the 
Hopping is performed, the RL algorithm takes back control and continues executing 
its main loop. If the implementation of Time Hopping is proper, it is completely 
transparent for the RL algorithm and does not require any modification to it. 
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D. Eligibility propagation 
Eligibility traces are one of the basic mechanisms for temporal credit assignment in 
reinforcement learning [16]. An eligibility trace is a temporary record of the 
occurrence of an event, such as visiting of a state or taking of an action. When a 
learning update occurs, the eligibility trace is used to assign a credit or blame for 
the received reward to the most appropriate states or actions. 

Eligibility traces are usually easy to implement for conventional RL methods. 
However, in the case of Time Hopping, due to its non-sequential nature, it is not 
trivial to do so. Since arbitrary hops between states are allowed, it is impossible to 
directly apply the conventional (linear) eligibility traces. Instead, a different 
mechanism must be used, such as Eligibility Propagation [28]. 

Eligibility Propagation provides for Time Hopping similar abilities to what 
eligibility traces provide for conventional RL, except that it uses a state transitions 
graph to propagate values from one state to all of its temporal predecessors. The 
constructed oriented graph represents the state transitions with their associated 
actions and rewards and uses this data to propagate the learning updates. Because of 
the way Time Hopping works, this graph might be disconnected, consisting of 
many separate connected components. Using the transitions graph to obtain all 
predecessor states of an updated state allows the propagation to flow logically 
backwards in time. 

4. Application of Time Hopping to a biped crawling robot 

In order to evaluate the efficiency of the proposed Time Hopping technique in a 
continuous optimization problem, experiments on a biped crawling robot are 
conducted. The goal of the learning process is to find a crawling motion with the 
maximum speed. The reward function for this task is defined as the horizontal 
displacement of the robot after every action. 

A. Description of the crawling robot 
The crawling robot has two limbs, each one with two segments, for a total of four 
Degrees Of Freedom (DOF). Every DOF is independent from the rest and has three 
possible actions at each time step: to move clockwise, to move anti-clockwise, or to 
stand still. Fig. 8 shows a typical crawling sequence of the robot as visualized in the 
simulation environment constructed for this task. 

 
Fig. 8.  A crawling robot with two limbs, each with 2 segments for a total of 4 DOF. Nine different 

states of the crawling robot are shown in a normal crawling sequence 
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When all possible actions of each DOF of the robot are combined, assuming 
that they can all move at the same time independently, it produces an action space 
with size 34 – 1 = 80 (we exclude the possibility that all DOF are standing still). 
Using appropriate discretization for the joint angles (9 for the upper limbs and 13 
for the lower limbs), the state space becomes divided into (9×13)2 = 13 689 states. 
For better analysis of the crawling motion, each limb has been colored differently 
and only the “skeleton” of the robot is displayed. 

B. Description of the experimental method 

The conducted experiments are divided in two groups: experiments using a 
conventional RL algorithm (conventional Q-Learning, as described in [26]) and 
experiments using the same algorithm modified with the Time Hopping technique. 
The experiments from both groups are conducted in exactly the same way, using 
exactly the same RL parameters (incl. discount factor γ, learning rate α, and the 
action selection method parameters). First, the conventional RL algorithm is used 
with a set of fixed algorithm parameters. After that, the Time Hopping technique is 
activated and the same set of parameters is used in exactly the same simulation 
environment starting from the same initial state. The robot training continues up to 
a fixed number of steps (45 000), and the achieved crawling speed is recorded at 
fixed checkpoints during the training. This process is repeated at least 10 times and 
the results are averaged, in order to ensure statistical significance. 

C. Evaluation of Time Hopping 

The conventional RL algorithm and the Time Hopping version of it are compared 
based on the best solution found (i.e., the fastest crawling sequence achieved) for 
the same fixed number of training steps. The comparison results are shown in  
Fig. 9. The achieved speed (as the amount of training steps increases) is displayed 
as percentage of the globally optimal solution. 

 
Fig. 9.  Comparison of conventional RL and Time Hopping, based on the best solution achieved 

relative to the number of training steps. The fitness of the solutions is measured as a percentage from 
the optimal solution, i.e., the fastest possible crawling speed of the robot. The best solution achieved at 

each checkpoint is found following the current best policy at that point 
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Time Hopping achieves significant speed-up of the learning process. For 
example, it learns an 80%-optimal crawl in only 5 000 steps, while the conventional 
RL algorithm needs 35 000 steps to learn the same, i.e., in this case Time Hopping 
is seven times faster. The speed-up becomes even higher as the number of training 
steps increases. For example, Time Hopping reaches 90%-optimal solution with 
less than 15000 steps, while the conventional RL needs more than 50 000 steps to 
do the same. 

The main reason for these results is that the conventional RL algorithm spends 
many steps exploring broadly (and quite randomly) the state space, regardless of 
whether such exploration is promising or not. Time Hopping, on the other hand, 
detects as early as possible unpromising branches using the proposed Gamma-
pruning and avoids unnecessary exploration. 

In addition, the Lasso target selection focuses the exploration on the most 
probable candidates for the best policy and thus provides a more purposeful 
exploration than the conventional RL. The cumulative effect of Gamma-pruning 
and Lasso target selection is shown in Fig. 10. It shows the sorted sequence of 
maximum Q-values of all explored states for the same number of steps (30 000) by 
the conventional RL algorithm and Time Hopping. The bigger steepness of the 
Time Hopping curve means bigger Q-values achieved with fewer explored states, 
i.e., more efficient exploration. 

 

Fig. 10.  Comparison of conventional RL and Time Hopping using the sorted sequence of maximum 
Q-values of all explored states after 30 000 steps of training. The steepness of the curves is used as an 

indication of the exploration efficiency. A steeper curve means better ability to find high-valued 
policies with fewer explored states 

D. Evaluation of Gamma pruning 

In order to evaluate the effectiveness of the proposed implementation for the 
Hopping trigger component (Gamma-pruning), a comparison with a different 
trigger is necessary.  

For this purpose, a trigger called “Fixed trigger” was created. It is probably the 
simplest possible implementation of a Hopping trigger, because it is based on a 
single fixed parameter: number of steps Ns. After every Ns consecutive steps of the 
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RL algorithm, the Fixed trigger initiates one hopping step. The value of Ns is 
constant throughout the training, which means that the total number of hopping 
trigger activations is proportional to the number of training steps.  

The smaller the value of Ns, the more trigger activations will be performed. 
There is a certain threshold, however, which cannot be exceeded: if the chosen 
value of Ns is smaller than the length of the optimal solution, the Fixed trigger 
would prevent the RL algorithm from reaching it.  

Fig. 11 compares the cumulative number of hopping trigger activations for the 
two triggers: Gamma-pruning trigger and the best possible Fixed trigger. It clearly 
indicates that Gamma-pruning makes increasingly more trigger activations as the 
number of time steps increases. After a certain threshold (around 10 000 steps) the 
effectiveness of Gamma-pruning increases significantly, due to the fact that the 
maximum Q-values of the states have increased enough to enable early pruning of 
the exploratory sequences. This means that unpromising state space areas are 
pruned effectively, and explains why the proposed Time Hopping implementation 
performs better than the conventional RL. 

 

Fig. 11.  Comparing a Gamma-pruning trigger with a Fixed trigger for Time Hopping, based on the 
cumulative number of trigger activations relative to the number of training steps. The Fixed trigger 

uses Ns = 9, which means that 1 out of every 10 consecutive transitions is a hopping step. This is the 
best that the Fixed trigger can do, because any value below 9 would cause failure to reach the optimal 

solution (which has a length of at least 9 steps) 

E. Evaluation of Lasso target selection 

In this experiment the effectiveness of the proposed implementation for the 
Hopping target selection component (Lasso target selection) is compared to a 
different target selection method. For comparison, a “Random target selection” 
method was created, which selects a target state randomly among all the currently 
known states. Fig. 12 compares the maximum Q-value achieved by both target 
selection methods as the number of training steps increases.  
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Fig. 12.  Comparing Lasso target selection with Random target selection for Time Hopping. The 
maximum Q-value achieved relative to the number of training steps is used as an indicator of the 

ability of each selection method to discover early high-valued policies 

The Lasso target selection performs significantly better because it manages to 
focus the exploration efforts on the most promising parts of the state space, while 
the Random target selection distributes the exploration uniformly throughout the 
state space. It is worth noting that for a different RL task in which uniform 
exploration is the goal, the Random target selection method might be a good 
candidate. For the robot crawling task, however, the Lasso target selection is more 
appropriate. 

5. Conclusion 

The general concept of Time Hopping is proposed and a concrete implementation 
for continuous optimization RL problems is developed. 

The conducted experiments on a biped crawling robot show significant 
increase in the speed of learning when Time Hopping technique is used. This is due 
to the ability of Time Hopping to make direct hops between otherwise distant states, 
thus changing the state probability distribution favorably. The proposed Gamma-
pruning trigger and Lasso target selection additionally boost the learning 
performance by predicting and avoiding unpromising branches of exploration, and 
also by selecting appropriate hopping targets. 

An important advantage of the proposed implementation of Time Hopping is 
that no parameter tuning or manual adjustments are necessary during learning, 
which makes the technique easy to use. 

The clear separation of the three well-defined components makes it 
straightforward to experiment with alternative component implementations. 

Another strong point of Time Hopping is its complete transparency for the RL 
algorithm, which means that no modifications to RL algorithm are necessary, other 
than inserting Time Hopping as a part of the main RL loop. This offers future 
perspectives on combining Time Hopping with other approaches for speeding up 
the learning process. 



 58

The generality of the Time Hopping concept and the complete transparency of 
its implementation make another application feasible: Time Hopping as a tool for 
re-shaping the state probability distribution as desired. 

Finally, an important drawback of the proposed technique is that it can only be 
used in a simulation, not directly applied in real world. Yet, it can be used as a part 
of the off-line computation of a real-world system. 

Acknowledgments: This work was supported in part by the Japanese Ministry of Education, Culture, 
Sports, Science and Technology (MEXT). 

6. R e f e r e n c e s 

1. D a y a n, P., T. J. S e j n o w s k i. TD(λ) Converges with Probability 1. – Mach. Learn., Vol. 14, 
1994, No 3, 295-301.  

2. D i e t t e r i c h, T. G. Hierarchical Reinforcement Learning with the MAXQ Value Function 
Decomposition. – Journal Artif. Intell. Res., Vol. 13, 2000, 227-303. 

3. G e v a, S., J. S i t t e. A Cart-Pole Experiment Benchmark for Trainable Controllers. – IEEE 
Control Systems Magazine, Vol. 13, 1993, 40-51.  

4. B a r t o, A., S. M a h a d e v a n. Recent Advances in Hierarchical Reinforcement Learning. – 
Discrete Event Dynamic Systems, Vol. 13, 2003, 341-379. 

5. H u m p h r y s, M. Action Selection Methods Using Reinforcement Learning. Ph.D. Thesis, 
University of Cambridge, June 1997.  

6. K e a r n s, M., S. S i n g h. Near-Optimal Reinforcement Learning in Polynomial Time. Machine 
Learning, 2002. 

7. P e s h k i n, L. Reinforcement Learning by Policy Search. PhD Thesis, MIT, November 2001. 
8. P r e c u p, D., R. S. S u t t o n, S. D a s g u p t a. Off-Policy Temporal-Difference Learning with 

Function Approximation. – In: Proc. of the Eighteenth Conference on Machine Learning 
(ICML 2001), M. Kaufmann, Ed., 2001, 417-424. 

9. P r i c e, B., C. B o u t i l i e r. Accelerating Reinforcement Learning through Implicit Imitation. –  
Journal of Artificial Intelligence Research, Vol. 19, 2003, 569-629. 

10. K a e l b l i n g, L. P., L. M. L i t t m a n, A. W. M o o r e. Reinforcement Learning: A Survey. – 
Journal Artif. Intell. Res., Vol. 4, 1996, 237-285. 

11. K o h l, N., P. S t o n e. Policy Gradient Reinforcement Learning for Fast Quadrupedal 
Locomotion. – In: Proc. of the IEEE International Conference on Robotics and Automation 
(ICRA 2004), New Orleans, LA,  May 2004,  2619-2624. 

12. C o a t e s, A., P. A b b e e l, A. N g. Learning for Control from Multiple Demonstrations. – ICML,     
Vol. 25, 2008. 

13. K o l t e r, J., P. A b b e e l, A. N g. Hierarchical Apprenticeship Learning, with Application to 
Quadruped Locomotion. – Neural Information Processing Systems, Vol. 20, 2007. 

14. K o l t e r, J., M. R o d g e r s, A. N g. A Control Architecture for Quadruped Locomotion Over 
Rough Terrain. – IEEE International Conference on Robotics and Automation, 2008. 

15. S u t t o n, R. S. Learning to Predict by the Methods of Temporal Difference. – Mach. Learn., Vol. 
3, 1988, 9-44. 

16. S u t t o n, R. S., A. G. B a r t o. Reinforcement Learning: An Introduction. Cambridge, MA, MIT 
Press, 1998. 

17. T h r u n, S. B. Efficient Exploration in Reinforcement Learning. Technical Report CMU-CS-92-
102, Carnegie Mellon University, Pittsburgh, PA 15213, 1992. 

18. T h r u n , S., A. S c h w a r t z. Issues in Using Function Approximation for Reinforcement 
Learning. – In: Proc. of the Fourth Connectionist Models Summer School, 1993. 

19. W a t k i n s, C. J. C. H., P. D a y a n. Q-Learning. – Mach. Learn., Vol. 8, 1992, 279-292. 
20. P e t e r s, J., S. S c h a a l. Natural Actor-Critic. – Neurocomputing, Vol. 71, 2008, Issues 7-9, 

1180-1190. 



 59

21. T a d e p a l l i, P., R. G i v a n, K. D r i e s s e n s. Relational Reinforcement Learning: An 
Overview. – In: ICML-2004 Workshop on Relational Reinforcement Learning, 2004. 

22. A b b e e l, P., A. N g. Exploration and Apprenticeship Learning in Reinforcement Learning. – 
ICML, 2005. 

23. A b b e e l, P., A. C o a t e s, M. Q u i g l e y, A. N g. An Application of Reinforcement Learning 
to Aerobatic Helicopter Flight. – NIPS, Vol. 19, 2007. 

24. N g, A. Reinforcement Learning and Apprenticeship Learning for Robotic Control. – In: Lecture 
Notes in Computer Science, Vol. 4264, 2006, 29-31. 

25. K o r m u s h e v, P., K. N o m o t o, F. D o n g, K. H i r o t a. Time Manipulation Technique for 
Speeding up Reinforcement Learning in Simulations. – International Journal of Cybernetics 
and Information Technologies, Vol. 8, 2008, No 1, 12-24. 

26. K o r m u s h e v, P. Time Hopping Technique for Reinforcement Learning and its Application to 
Robot Control. PhD Thesis, Department of Computational Intelligence and Systems Science, 
Tokyo Institute of Technology, September 2009. 

27. K o r m u s h e v, P., F. D o n g, K. H i r o t a. Probability Redistribution Using Time Hopping for 
Reinforcement Learning. – In: 10-th International Symposium on Advanced Intelligent 
Systems ISIS-2009, 2009. 

28. K o r m u s h e v, P., K. N o m o t o, F. D o n g, K. H i r o t a. Eligibility Propagation to Speed up 
Time Hopping for Reinforcement Learning. – Journal of Advanced Computational 
Intelligence and Intelligent Informatics, Vol. 13, 2009, No 6. 

 
 


