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Abstract: A technique for speeding up reinforcement learning algorithms by using 
time manipulation is proposed. It is applicable to failure-avoidance control 
problems running in a computer simulation. Turning the time of the simulation 
backwards on failure events is shown to speed up the learning by 260% and 
improve the state space exploration by 12% on the cart-pole balancing task, 
compared to the conventional Q-learning and Actor-Critic algorithms. 
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1. Introduction 

Reinforcement Learning (RL) algorithms have been applied successfully for many 
years [4]. One of their main virtues is that they don’t require a model of the device 
they are supposed to control [7]. Also, general RL algorithms like Q-learning [10] 
and TD(λ) [8] provably converge to the globally optimal solution (under some 
assumptions) [1, 10]. 

This convenience, however, comes at a certain cost. The price for this 
flexibility of RL algorithms is that they require long training [9]. Even for a 
relatively simple control task (e.g. the inverted pendulum balancing problem, also 
known as the cart-pole balancing problem [2]) a general RL algorithm requires 
many trials (hundreds or even thousands of trials) to be able to learn the task.  
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What is the reason for this slow convergence? Trying to answer this question, 
let us focus on a subset of the RL problems: learning a control policy to avoid 
failure. The inverted pendulum balancing task is a good representative example for 
such a problem. In this case, a failure is defined as falling of the pole beyond a 
certain angle from the upright position or hitting the edges of the cart track. The aim 
of the RL algorithm is to find a control policy which can prevent the pendulum 
from falling by moving the cart, without hitting the edges of the cart track. A good 
name for such problems is “failure-avoidance problems”. They follow the general 
“trial-and-error” paradigm of unsupervised learning [11]. 

The learning process is organized in separate trials (or episodes), each starting 
from the same initial position at the center of the cart track and finishing in a failure 
state (either when the pendulum has tilted too much, or when the cart has hit an 
edge). After every failure, the state of the pendulum is reset back to the initial 
position and the next trial begins.  

Usually, the reward function in such problems is defined as −1 in case of a 
failure and 0 in all other cases. Thus, the RL agent is trying to maximize the 
cumulative reward effectively avoiding failure states. The failure states include 
tilting the pendulum more than a certain angle, as well as hitting the left or right 
edges of the cart track. The target is, for example, to keep the pendulum balanced 
for at least 100 000 steps in a single trial. 

For this particular problem, a general RL algorithm like Q-learning will need 
more than 1000 trials and more than 200 000 total steps to reach the target. Why 
does it take so long? 

One main reason for this is the poor state space exploration. Practically all RL 
algorithms follow the same scheme of doing trials. Each time a failure occurs, a 
new trial begins from the initial state. As a consequence, the state space close to the 
initial state is very well explored, but the state space further from the initial state is 
not. In this particular example, the RL algorithm learns to balance the pendulum 
around the initial position very quickly, but as the pendulum goes further and 
reaches the ends of the track, it fails immediately. And this is completely 
understandable, since the RL agent doesn’t have enough “experience” in that part of 
the state space.  

The main problem under investigation here is: how to improve the state space 
exploration, providing enough “experience” for the RL agent in a broader part of 
the state space. For example, instead of exploring the same state space near the 
initial state over and over again, it is desirable for the RL algorithm to focus on the 
states which lead to failure and try harder to avoid them. This would improve 
dramatically the state space exploration and speed up the learning process. The 
present paper proposes a time manipulation technique to achieve this goal.  

The key idea is that it is possible to manipulate the time of the simulation in 
such a way which forces the RL algorithm to explore better the state space in 
proximity to failures. At the same time, it is possible to avoid re-visiting already 
well-explored parts of the state space. The time manipulation, which is proposed, 
consists of turning the time of the simulation backwards when failure events occur, 
while at the same time preserving the learned policy as it was at the time of the 
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failure. This technique is shown to improve substantially the learning speed and the 
state space exploration of Q-learning and Actor-Critic algorithms, at the expense of 
using additional memory. Also, it has the advantage of being completely transparent 
for the RL algorithm. 

Section 2 describes the general RL algorithm for solving failure-avoidance 
problems. Section 3 is devoted to the proposed time manipulation technique for 
improving the previously mentioned algorithm. Section 4 describes the 
experimental evaluation of the proposed technique on a classical benchmark RL 
problem. 

2. The general RL algorithm for solving failure-avoidance problems 

For the purpose of explaining the proposed time manipulation technique any 
general RL algorithm for solving failure-avoidance problems is usable. Probably the 
most widely known and used such algorithm is Q-learning [10]. It is a classical 
form of RL algorithm that does not need a model of its environment and can be 
used for solving failure-avoidance problems. Because of its popularity, Q-learning 
was selected as a very good candidate for describing and testing the proposed time 
manipulation technique. This section describes the standard Q-learning algorithm 
and the next section explains how to modify it using the proposed time 
manipulation technique. 

The Q-learning algorithm works by estimating the values of the state-action 
pairs. A lookup table is used to store the Q-values. The value Q(s, a) is defined to 
be the expected discounted sum of future rewards obtained by taking action a from 
state s and following an optimal policy thereafter. Once these values have been 
learned, the optimal action from any state is the one with the highest Q-value. The 
algorithm to estimate the Q-values based on experience is as follows: 
Standard Q-learning algorithm for RL 
1) Initialization 

Set all Q-values to zero. 
Set the current state st to be the initial state s0. 

2) From the current state st, select an action at. This will cause a receipt of an immediate reward rt, 
and arrival at a next state st+1. 
3) Update Q(st, at) based on the acquired experience as follows: 

Q(st, at) ← Q(st, at) + αt(st, at)[rt + γ maxaQ(st+1, a) – Q(st, at)], 
where 0 ≤ αt(st, at) ≤ 1 is the learning rate and 0 ≤ γ < 1 is the discount factor.  

4) Go to Step 2. 

This algorithm is guaranteed to converge to the correct Q-values with 
probability 1 if the following conditions are satisfied: the environment is stationary 
and Markovian (depends on the current state and the action taken in it only), every 
state-action pair continues to be visited, and the learning rate is decreased 
appropriately over time [10]. This exploration strategy does not specify which 
action to select at each step. Usually, different methods for selecting actions are 
used (such as ε-greedy or Boltzmann distribution strategy [3]), which ensure that all 
actions have chance of being selected while still favoring actions with higher value 
estimates.  
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The standard Q-learning algorithm, however, cannot be used directly in 
practice, because most of the problems require keeping the state within some set of 
allowed or desired states. Therefore, the learning process is organized in trials and 
every time when the state changes to an undesirable state (failure state), a new trial 
starts from the initial state s0. This is the resulting algorithm: 
Standard Q-Learning algorithm with trial resetting on failure 
1) Initialization 

Set all Q-values to zero. 
Set the current state st to be the initial state s0. 

2) From the current state st, select an action at. This will cause a receipt of an immediate reward rt, 
and arrival at a next state st+1. The reward rt is defined to be –1 if st+1 is a failure state. 
3) Update Q(st, at) based on the acquired experience as follows: 

 Q(st, at) ← Q(st, at) + αt(st, at)[rt + γ maxaQ(st+1, a) – Q(st, at)], 
where 0 ≤ αt(st, at) ≤ 1 is the learning rate and 0 ≤ γ < 1 is the discount factor.  

4) If the new state st+1 is a failure state, mark the current trial as a failure and reset the current state st 
to the initial state s0. 
5) Go to Step 2. 

Due to the trial resetting on failure events, this algorithm has some major 
disadvantages: 

• The state space around the initial state becomes very well explored (because 
every trial starts from it), but not any further states, especially states close to failure 
states. 

• A lot of computational power is used just to repeat already explored states 
and state transitions, which makes the Q-values change slowly over time, thus 
slowing down the learning progress. The longer the algorithm is running, the slower 
it learns new experience. 

• Hundreds and even thousands of trials are required to be able to learn a 
longer sequence of state transitions, in order to avoid failure states for longer time. 

Trying to overcome the mentioned disadvantages, a novel time manipulation 
technique to improve the standard RL algorithm with trial resetting on failure is 
proposed, as described in Section 3. 

3. Time manipulation technique 
The proposed time manipulation technique is in essence a modification of the 
standard RL algorithm presented in Section 2. Before giving the implementation 
details, let us start with an intuitive description of the basic idea. 

RL algorithms are very useful when trying to teach a robot to perform some 
motor control task. In most cases however, it is not practical to run the RL 
algorithms directly on the physical robot, because it may break during the trials, or 
because it takes too much time and resources. This is especially true for failure-
avoidance problems, since failure states are often associated with falling or 
breaking of the robot, which is not desirable. In such cases computer simulations 
are used first, and later the learned policy is fine-tuned on the physical robot. 

Virtual simulations have many advantages over real-world experiments. One 
such prominent advantage is the control over time. For example, you can speed up 
or slow down the time inside a simulation. You can even make the time go 
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backwards and go back to events that already happened. Also, you can repeat 
exactly the same experiment twice using exactly the same environment. Such time 
manipulations are impossible in the real-world, but this paper is going to show that 
they can be extremely beneficial for a RL algorithm running inside a simulation. 
The proposed time manipulation technique helps to speed up learning and explore 
the state space better. 

The main focus of the proposed idea is the failure event which occurs during 
the RL simulation. As mentioned in Section 2, when a failure state is incurred, the 
standard RL algorithm immediately stops the current trial and resets the state to the 
initial one. However, it is exactly the state space in proximity to the failure states 
which is “interesting” for the RL algorithm and it should be better explored instead 
of abandoned so quickly.  

Of course, normally, after failure there is no action that can be done to 
continue the trial. This is where the power of virtual simulations comes into play. It 
is actually possible to manipulate the time of the simulation and turn it back to a 
previous point in time, shortly before the failure occurred. Only this is not enough, 
however, because the RL algorithm is going to choose the same actions and the 
simulation will repeat itself. To avoid this, while turning back the time, it is 
necessary to retain the newly learned experience of the failure by preserving the RL 
policy (the Q-values in the case of Q-learning). This time the RL algorithm will try 
to avoid the failure state by choosing other actions shortly before it. The modified 
Q-learning algorithm looks like this: 
Time Manipulated Q-learning algorithm 
1) Initialization 

Set all Q-values to zero. 
Set the current state st to be the initial state s0. 
Set the sequence of saved states to be <s0> 

2) From the current state st, select an action at. This will cause a receipt of an immediate reward rt, 
and arrival at a next state st+1. The reward rt is defined to be –1 if st+1 is a failure state. 
3) Add the new state st+1 to the sequence of saved states <s0, s1, s2, …>. 
4) Update Q(st, at) based on the acquired experience as follows: 

 Q(st, at) ← Q(st, at) + αt(st, at)[rt + γ maxaQ(st+1, a) – Q(st, at)], 
where 0 ≤ αt(st, at) ≤ 1 is the learning rate and 0 ≤ γ < 1 is the discount factor.  

5) If the new state st+1 is a failure state, turn back the time of the simulation to the previous saved 
state st in the time sequence, preserving the current Q-values.  
6) Go to Step 2. 

What if choosing other actions does not help and failure occurs again? In this 
case, the time has to be turned even further back in the simulation, earlier enough so 
that the RL agent can perform actions to avoid the failure. The absolute extreme is 
going back to the initial state of the trial, which is identical to trial resetting in the 
standard RL algorithm. The minimum is going back just one step before the failure 
occurred. For practical purposes, going back to the middle of the failed trial seems 
to provide a good balance between these two extremes. This strategy was employed 
during the experiments described in Section 4 and it showed satisfactory results. 
Another approach is to select probabilistically a previous state by using, for 
example, some distribution strategy. 

It is interesting to mention that, actually, using this technique it might be 
possible to finish learning in only one trial. If the RL agent is doing only “small” 
time manipulations to recover from failures, there is no need to start a new trial at 



 17 

all. This means that the RL agent could learn in only one single trial (ignoring the 
small time manipulations). 

Another important issue to deal with are the so called “eligibility traces” [6, 7]. 
Eligibility traces are one of the basic mechanisms for temporal credit assignment in 
reinforcement learning. An eligibility trace is a temporary record of the occurrence 
of an event, such as the visiting of a state or the taking of an action. For example, in 
the popular temporal-difference algorithm TD(λ), the λ refers to the use of an 
eligibility trace. The trace marks the memory parameters associated with the event 
as eligible for undergoing learning changes. When a policy update occurs, only the 
eligible states or actions are assigned credit or blame for the received reward. 
Almost any temporal-difference method, e.g. Q-learning or Sarsa [5], can be 
combined with eligibility traces to obtain a more general method that may learn 
more efficiently [7]. 

The question is, if eligibility traces are used is it still possible to apply the 
proposed time manipulation technique? And the answer is affirmative, providing 
that care is taken to adjust the values of the eligibility traces correctly when turning 
back the time of the simulation. In the case when the eligibility traces et(s) are 
decayed by a constant rate λ at each time step, the forward update looks like this: 

(1)              1

1

( ) if ,
( )

( ) 1 if ,
t t

t
t t

e s s s
e s

e s s s
λγ

λγ
−

−

≠⎧
= ⎨ + =⎩

 

where 0 ≤ λ < 1 is the decay rate for the eligibility traces and 0 ≤ γ < 1 is the 
discount factor. In order to reverse the eligibility traces one step back in time, the 
following backward update is required: 

(2)  1
( ) / if ,

( )
( ( ) 1) / if .

t t
t

t t

e s s s
e s

e s s s
λγ
λγ−

≠⎧
= ⎨ − =⎩

 

To conclude the description of the proposed time manipulation technique, let 
us analyze it from computational complexity viewpoint. Obviously, the technique is 
trying to improve the speed of learning at the expense of using more memory. The 
algorithm needs enough memory to store the complete state of the simulation for 
every state for which it is required to be able to go back to. In this sense, it is 
possible to implement efficiently the proposed technique in such a way that it uses 
only a limited amount of memory. This can be done by deleting some of the old 
saved states, e.g. every alternating state, in order to reduce the memory 
consumption while still keeping the ability to turn back in time. The need to do this 
will occur only in case of very long trials and when the state variables are extremely 
numerous. In such case the used memory can be adapted to the available resources 
dynamically by limiting the number of saved states during execution. 

An important advantage of the proposed time manipulation technique is its 
complete transparency for the RL algorithm, in the sense that the RL algorithm does 
not even realize that the time of the simulation is being manipulated externally. 
From the viewpoint of the RL algorithm, the time is flowing only forward and all 
the trials are just an ordered sequence of states in a linearly flowing time (this is, of 
course, providing that the time manipulation takes care to save and restore the 
appropriate eligibility traces along with the rest of the simulation parameters), 

2 
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whereas, in fact, the sequence is a tree of time interconnected state sequences. 
Being transparent for the RL algorithm means that the proposed technique can 
easily be combined with arbitrary RL algorithm, improving its performance without 
changing the algorithm’s logic at all. 

4. Evaluation of the learning speed and the state space exploration 

The proposed time manipulation technique was extensively tested using different 
conventional RL algorithms, various parameters for the time manipulation 
technique and variations of the problem parameters. This section presents the 
experimental environment, the conducted experiments and the obtained results. 

4.1. The TiME experimental environment 
A dedicated experimental system called TiME (Time Manipulation Environment) 
was developed especially for the purpose of this evaluation. A general view of the 
environment is shown on Fig. 1. TiME has a built-in simulation engine, 
implementation of two conventional RL algorithms (Q-learning and Actor-critic 
algorithm), useful visualization modules (for the simulation, the learning data and 
the state transitions graph) and most important – a prototype implementation of the 
time manipulation technique. To facilitate the analysis of the algorithm behavior, 
TiME displays detailed information about the current state, the previous state 
transitions, a visual view of the simulation, and allows runtime modification of all 
important parameters of the algorithms and the simulation. There is a manual and 
automatic control of the time manipulation technique, as well as visualization of the 
accumulated data in the form of charts. 

 
Fig. 1. General view of TiME  



 19 

The experiments were conducted on a classical failure-avoidance RL problem: 
the cart-pole balancing task. This problem was chosen because it is very well 
studied and is commonly used as a benchmark for new RL algorithms. During the 
experiments, failure was defined as falling of the pole beyond a 12-degree angle 
from the upright position or hitting the edges of the cart track. The reward function 
was defined as –1 in case of a failure and 0 in all other cases. The values of the 
physical parameters used in the simulation are given in Table 1. A fixed force 
magnitude was used for both left and right push of the cart. 
                Table 1. The values of the physical parameters used during the experiments 

Physical parameter of the simulation Value (units) 
Length of the cart track 4.4 (m) 
Length of the pole 1.0 (m) 
Mass of the pole 0.1 (kg) 
Mass of the cart 1.0 (kg) 
Simulation time slice duration 0.02 (s) 
Force magnitude for pushing the cart 10.0 (N) 

Although the proposed time manipulation technique is not a stand-alone RL 
algorithm, it can easily be used to modify any general RL algorithm to produce a 
time manipulated version of it. For the experiments two conventional RL 
algorithms were used: Q-learning and Actor-Critic learning. During the preliminary 
tests with the unmodified versions of the conventional algorithms, it was found that 
the Actor-Critic method is performing much better on this task than the Q-learning. 
This is probably due to the fact that the Actor-Critic method maintains separate 
representations for the action selection part and the state evaluation part of the 
algorithm. The results presented in this section compare the time manipulation 
technique with the better one of the two conventional RL algorithms: the Actor-
Critic method. Otherwise, the implementation of the time manipulation technique is 
the same for both Q-learning and Actor-Critic method. 

The conducted experiments can be classified in two groups: experiments to 
evaluate the technique‘s effect on the speed of learning and on the exploration of 
the state space. The experiments from both groups were conducted in a similar way. 
First, the unmodified RL algorithm was used with a set of different algorithm 
parameters and problem settings. After that, the time manipulation technique was 
added to the algorithm, and the same set of parameters and settings was used in 
exactly the same simulation environment and initial state. This schema was 
repeated 10 times and the results were averaged. The unmodified RL algorithm and 
the time manipulated version of it were compared based on the two sets of results. 

4.2. Evaluation of the technique’s effect on the learning speed 

The two versions (with and without the time manipulation) were trained for the 
same number of steps. During the training the best (longest) trial steps were 
recorded, as well as the number of unique states visited. The training was stopped 
(the running trial was interrupted if necessary) and a benchmark trial was executed. 
This schema was repeated 12 times while increasing the total number of training 
steps. Table 2 shows the experimental results. 
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Table 2. The averaged experimental results for 12 groups of experiments 

 Best trial steps Benchmark trial steps Unique states visited 
Total 

Training 
steps 

Without time 
manipula-

tion 

With time 
manipula-

tion 

Without time 
manipula-

tion 

With time 
manipula-

tion 

Without time 
manipula-

tion 

With time 
manipula-

tion 
100 25 66 32 48 18 20 
200 57 75 64 71 26 26 
500 92 147 111 113 31 32 

1000 160 165 114 162 43 51 
2000 187 350 103 311 54 63 
5000 435 732 255 319 76 87 

10000 1053 3608 867 4280 91 96 
20000 3245 6192 2476 19855 99 113 
30000 4707 6412 7534 69345 104 116 
40000 5381 12561 25854 134032 101 114 
50000 12341 21078 89722 267621 104 121 

100000 28163 68523 over 500000 over 500000 108 125 

The difference in the learning speed of the two versions can be seen by 
comparing the duration of the best trials and the benchmark trials after each training 
set. Fig. 2 shows the comparison results. During all the tests, the time manipulation 
technique achieved better results: longer best trials, as well as longer benchmark 
trials for the same amount of training steps. The reason for longer best trials using 
time manipulation is that the training was focusing on the failure states more than 
without time manipulation and managed to find ways to avoid them better. As a 
consequence, the speed of learning was increased and the algorithm learned earlier 
how to keep the balance longer, which lead to longer benchmark trials. 
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Fig. 2. Comparing the learning performance with and without the time manipulation technique: 
(a) best trial steps comparison and (b) benchmark trial steps comparison 

An important observation is that the time manipulation technique has bigger 
impact on the speed of learning as the duration of the training increases. The reason 
for this is that the conventional algorithm “wastes” increasingly bigger amounts of 
steps going through the same state transitions from the beginning of the trial, which 
do not provide new experience for the learning algorithm to improve its policy. In 
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addition, the time manipulation technique makes the learning algorithm focus on 
the problematic close-to-failure states and learn earlier a good policy to avoid them 
while at the same time avoiding repetition of already well-explored states. All these 
facts mean that the effect (i.e. increase of the learning speed) of the proposed 
technique is becoming bigger and bigger as the training duration increases. It starts 
around 20% for the shorter training sets and increases to more than 400% on the 
longer ones, resulting in a total averaged increase of about 260%. As a result, the 
speed of learning is increased by a factor of 2 on average. 

4.3. Evaluation of the technique’s effect on the state space exploration  

In order to analyze the state space exploration, the entire continuous state space of 
the problem was divided in 162 discrete states. The division was based on dividing 
the cart track in 3 parts (left, center, right), dividing the angle of the pole in 6 parts 
(using 0, 1, 6 and 12 degrees for boundaries), dividing the linear velocity of the cart 
in 3 parts and the angular velocity also in 3 (3 × 6 × 3 × 3 = 162). Using this 
division, the state space exploration was easier to visualize and analyze. 

For the purpose of visual inspection of the state space exploration, a special 
module in TiME was developed for displaying the state transitions graph in real-
time during the learning trial. The module shows the state transitions graph using 
different graph layout algorithms, subgraph highlighting and graph operations 
animation for better visibility. During the experiments, this module proved to be an 
extremely valuable tool for evaluating the state space exploration.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 

      (a)                 (b) 

Fig. 3. Comparing the state space exploration: (a) without time manipulation and 
(b) with time manipulation 

Each state in the state transitions graph is represented by one numbered node, 
corresponding to the discretization of the continuous variables describing the state. 
The active state is marked with a yellow color, and the thickness of the edges shows 
the number of times the corresponding state transition occurred during the current 
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learning trial. The developed graph visualization module allows transforming, 
picking and editing operations to be conducted on the graph for more detailed 
analysis. 

As expected, the state space exploration of the proposed algorithm is broader 
than the conventional one. Fig. 3 shows a visual comparison of the state transitions 
graph with and without the time manipulation technique after 300 steps of training. 
It is obvious that the proposed technique managed to explore more states (thus, 
more vertices in the graph) and to find bigger number of different state transitions 
(thus, better connected graph for the same number of edges). 

In order to confirm objectively the visually observed results, 12 groups of 
experiments were conducted. The two algorithm versions (with and without time 
manipulation) were trained for the same number of increasing total steps. During 
the training, the number of unique (different) states visited was recorded. This 
number can justifiably be used as a measure of how good the state space 
exploration was during the training. The last two columns in Table 2 contain the 
experimental results and Fig. 4 shows a comparison chart of the unique states 
visited data with and without the time manipulation technique. 
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Fig. 4. Comparing the state space exploration with and without the time manipulation technique 

Again, very promising results have been obtained. The state space exploration 
has improved as much as 19% in some of the longer training sets and 12% on 
average. The explanation for this result is that the proposed time manipulation 
technique makes the RL algorithm explore deeper the state space, thus discovering 
bigger number of different states and transitions between them. This has an 
additional positive effect on the speed of learning. 
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5. Conclusions and future perspectives 

A time manipulation technique to improve the general RL algorithm has been 
proposed. It is applied to the standard Q-learning RL algorithm for solving failure-
avoidance problems and thus a new Time Manipulated RL algorithm is created. The 
algorithm is tested on the classical pole-balancing task and it shows promising first 
results. 

It is confirmed that the time manipulation technique improves the state space 
exploration by allowing the RL algorithm to explore better the state space in 
proximity to failure states. Also, it prevents the algorithm from “wasting” time to 
explore already well-explored areas of the state space. As a consequence, the RL 
agent is able to make much longer trials and explore the state space deeper 
compared with the unmodified RL algorithm for the same amount of simulation 
steps. It is shown that the proposed technique speeds up the learning by 260% and 
improves the state space exploration by 12% on average on the classical cart-pole 
balancing task, compared with the conventional Q-learning and Actor-Critic 
algorithms. 

This research can be continued in many directions. For instance, the time 
manipulation technique can be tested with a wider range of failure-avoidance 
problems. It is interesting to see how it performs in the case of higher dimensional 
state and action spaces. Another possibility is to develop different strategies for 
choosing how many steps in the current trial to go back when a failure occurs. It 
could depend on local state information or global optimization parameters. It is also 
possible to devise other methods for selecting actions. For example, such methods 
could take into account the additional information from the time manipulations and 
try to make “smart selection” of actions based on this additional information. 

In the future, a more generalized time manipulation framework can be 
developed. One possible generalization is to extend the scope of the time 
manipulations to include not only going backward, but also going forward in time. 
Such an audacious possibility is not completely absurd in a simulation environment, 
especially if multiple parallel simulations are executed simultaneously. 
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