
 12

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES • Volume 8, No 1

Sofia • 2008

Time Manipulation Technique for Speeding up Reinforcement
Learning in Simulations

Petar Kormushev1, Kohei Nomoto1,2, Fangyan Dong1, Kaoru Hirota1
1 Department of Computational Intelligence and Systems Science, Tokyo Institute of Technology,
Japan
E-mails: {petar, nomoto, tou, hirota}@hrt.dis.titech.ac.jp
2 Industrial Design Center, Mitsubishi Electric Corporation, Japan
E-mail: Nomoto.Kohei@dw.MitsubishiElectric.co.jp

Abstract: A technique for speeding up reinforcement learning algorithms by using
time manipulation is proposed. It is applicable to failure-avoidance control
problems running in a computer simulation. Turning the time of the simulation
backwards on failure events is shown to speed up the learning by 260% and
improve the state space exploration by 12% on the cart-pole balancing task,
compared to the conventional Q-learning and Actor-Critic algorithms.

Keywords: Reinforcement learning, computer simulation, state space exploration,
active learning.

1. Introduction

Reinforcement Learning (RL) algorithms have been applied successfully for many
years [4]. One of their main virtues is that they don’t require a model of the device
they are supposed to control [7]. Also, general RL algorithms like Q-learning [10]
and TD(λ) [8] provably converge to the globally optimal solution (under some
assumptions) [1, 10].

This convenience, however, comes at a certain cost. The price for this
flexibility of RL algorithms is that they require long training [9]. Even for a
relatively simple control task (e.g. the inverted pendulum balancing problem, also
known as the cart-pole balancing problem [2]) a general RL algorithm requires
many trials (hundreds or even thousands of trials) to be able to learn the task.

 13

What is the reason for this slow convergence? Trying to answer this question,
let us focus on a subset of the RL problems: learning a control policy to avoid
failure. The inverted pendulum balancing task is a good representative example for
such a problem. In this case, a failure is defined as falling of the pole beyond a
certain angle from the upright position or hitting the edges of the cart track. The aim
of the RL algorithm is to find a control policy which can prevent the pendulum
from falling by moving the cart, without hitting the edges of the cart track. A good
name for such problems is “failure-avoidance problems”. They follow the general
“trial-and-error” paradigm of unsupervised learning [11].

The learning process is organized in separate trials (or episodes), each starting
from the same initial position at the center of the cart track and finishing in a failure
state (either when the pendulum has tilted too much, or when the cart has hit an
edge). After every failure, the state of the pendulum is reset back to the initial
position and the next trial begins.

Usually, the reward function in such problems is defined as −1 in case of a
failure and 0 in all other cases. Thus, the RL agent is trying to maximize the
cumulative reward effectively avoiding failure states. The failure states include
tilting the pendulum more than a certain angle, as well as hitting the left or right
edges of the cart track. The target is, for example, to keep the pendulum balanced
for at least 100 000 steps in a single trial.

For this particular problem, a general RL algorithm like Q-learning will need
more than 1000 trials and more than 200 000 total steps to reach the target. Why
does it take so long?

One main reason for this is the poor state space exploration. Practically all RL
algorithms follow the same scheme of doing trials. Each time a failure occurs, a
new trial begins from the initial state. As a consequence, the state space close to the
initial state is very well explored, but the state space further from the initial state is
not. In this particular example, the RL algorithm learns to balance the pendulum
around the initial position very quickly, but as the pendulum goes further and
reaches the ends of the track, it fails immediately. And this is completely
understandable, since the RL agent doesn’t have enough “experience” in that part of
the state space.

The main problem under investigation here is: how to improve the state space
exploration, providing enough “experience” for the RL agent in a broader part of
the state space. For example, instead of exploring the same state space near the
initial state over and over again, it is desirable for the RL algorithm to focus on the
states which lead to failure and try harder to avoid them. This would improve
dramatically the state space exploration and speed up the learning process. The
present paper proposes a time manipulation technique to achieve this goal.

The key idea is that it is possible to manipulate the time of the simulation in
such a way which forces the RL algorithm to explore better the state space in
proximity to failures. At the same time, it is possible to avoid re-visiting already
well-explored parts of the state space. The time manipulation, which is proposed,
consists of turning the time of the simulation backwards when failure events occur,
while at the same time preserving the learned policy as it was at the time of the

 14

failure. This technique is shown to improve substantially the learning speed and the
state space exploration of Q-learning and Actor-Critic algorithms, at the expense of
using additional memory. Also, it has the advantage of being completely transparent
for the RL algorithm.

Section 2 describes the general RL algorithm for solving failure-avoidance
problems. Section 3 is devoted to the proposed time manipulation technique for
improving the previously mentioned algorithm. Section 4 describes the
experimental evaluation of the proposed technique on a classical benchmark RL
problem.

2. The general RL algorithm for solving failure-avoidance problems

For the purpose of explaining the proposed time manipulation technique any
general RL algorithm for solving failure-avoidance problems is usable. Probably the
most widely known and used such algorithm is Q-learning [10]. It is a classical
form of RL algorithm that does not need a model of its environment and can be
used for solving failure-avoidance problems. Because of its popularity, Q-learning
was selected as a very good candidate for describing and testing the proposed time
manipulation technique. This section describes the standard Q-learning algorithm
and the next section explains how to modify it using the proposed time
manipulation technique.

The Q-learning algorithm works by estimating the values of the state-action
pairs. A lookup table is used to store the Q-values. The value Q(s, a) is defined to
be the expected discounted sum of future rewards obtained by taking action a from
state s and following an optimal policy thereafter. Once these values have been
learned, the optimal action from any state is the one with the highest Q-value. The
algorithm to estimate the Q-values based on experience is as follows:
Standard Q-learning algorithm for RL
1) Initialization

Set all Q-values to zero.
Set the current state st to be the initial state s0.

2) From the current state st, select an action at. This will cause a receipt of an immediate reward rt,
and arrival at a next state st+1.
3) Update Q(st, at) based on the acquired experience as follows:

Q(st, at) ← Q(st, at) + αt(st, at)[rt + γ maxaQ(st+1, a) – Q(st, at)],
where 0 ≤ αt(st, at) ≤ 1 is the learning rate and 0 ≤ γ < 1 is the discount factor.

4) Go to Step 2.

This algorithm is guaranteed to converge to the correct Q-values with
probability 1 if the following conditions are satisfied: the environment is stationary
and Markovian (depends on the current state and the action taken in it only), every
state-action pair continues to be visited, and the learning rate is decreased
appropriately over time [10]. This exploration strategy does not specify which
action to select at each step. Usually, different methods for selecting actions are
used (such as ε-greedy or Boltzmann distribution strategy [3]), which ensure that all
actions have chance of being selected while still favoring actions with higher value
estimates.

 15

The standard Q-learning algorithm, however, cannot be used directly in
practice, because most of the problems require keeping the state within some set of
allowed or desired states. Therefore, the learning process is organized in trials and
every time when the state changes to an undesirable state (failure state), a new trial
starts from the initial state s0. This is the resulting algorithm:
Standard Q-Learning algorithm with trial resetting on failure
1) Initialization

Set all Q-values to zero.
Set the current state st to be the initial state s0.

2) From the current state st, select an action at. This will cause a receipt of an immediate reward rt,
and arrival at a next state st+1. The reward rt is defined to be –1 if st+1 is a failure state.
3) Update Q(st, at) based on the acquired experience as follows:

 Q(st, at) ← Q(st, at) + αt(st, at)[rt + γ maxaQ(st+1, a) – Q(st, at)],
where 0 ≤ αt(st, at) ≤ 1 is the learning rate and 0 ≤ γ < 1 is the discount factor.

4) If the new state st+1 is a failure state, mark the current trial as a failure and reset the current state st
to the initial state s0.
5) Go to Step 2.

Due to the trial resetting on failure events, this algorithm has some major
disadvantages:

• The state space around the initial state becomes very well explored (because
every trial starts from it), but not any further states, especially states close to failure
states.

• A lot of computational power is used just to repeat already explored states
and state transitions, which makes the Q-values change slowly over time, thus
slowing down the learning progress. The longer the algorithm is running, the slower
it learns new experience.

• Hundreds and even thousands of trials are required to be able to learn a
longer sequence of state transitions, in order to avoid failure states for longer time.

Trying to overcome the mentioned disadvantages, a novel time manipulation
technique to improve the standard RL algorithm with trial resetting on failure is
proposed, as described in Section 3.

3. Time manipulation technique
The proposed time manipulation technique is in essence a modification of the
standard RL algorithm presented in Section 2. Before giving the implementation
details, let us start with an intuitive description of the basic idea.

RL algorithms are very useful when trying to teach a robot to perform some
motor control task. In most cases however, it is not practical to run the RL
algorithms directly on the physical robot, because it may break during the trials, or
because it takes too much time and resources. This is especially true for failure-
avoidance problems, since failure states are often associated with falling or
breaking of the robot, which is not desirable. In such cases computer simulations
are used first, and later the learned policy is fine-tuned on the physical robot.

Virtual simulations have many advantages over real-world experiments. One
such prominent advantage is the control over time. For example, you can speed up
or slow down the time inside a simulation. You can even make the time go

 16

backwards and go back to events that already happened. Also, you can repeat
exactly the same experiment twice using exactly the same environment. Such time
manipulations are impossible in the real-world, but this paper is going to show that
they can be extremely beneficial for a RL algorithm running inside a simulation.
The proposed time manipulation technique helps to speed up learning and explore
the state space better.

The main focus of the proposed idea is the failure event which occurs during
the RL simulation. As mentioned in Section 2, when a failure state is incurred, the
standard RL algorithm immediately stops the current trial and resets the state to the
initial one. However, it is exactly the state space in proximity to the failure states
which is “interesting” for the RL algorithm and it should be better explored instead
of abandoned so quickly.

Of course, normally, after failure there is no action that can be done to
continue the trial. This is where the power of virtual simulations comes into play. It
is actually possible to manipulate the time of the simulation and turn it back to a
previous point in time, shortly before the failure occurred. Only this is not enough,
however, because the RL algorithm is going to choose the same actions and the
simulation will repeat itself. To avoid this, while turning back the time, it is
necessary to retain the newly learned experience of the failure by preserving the RL
policy (the Q-values in the case of Q-learning). This time the RL algorithm will try
to avoid the failure state by choosing other actions shortly before it. The modified
Q-learning algorithm looks like this:
Time Manipulated Q-learning algorithm
1) Initialization

Set all Q-values to zero.
Set the current state st to be the initial state s0.
Set the sequence of saved states to be <s0>

2) From the current state st, select an action at. This will cause a receipt of an immediate reward rt,
and arrival at a next state st+1. The reward rt is defined to be –1 if st+1 is a failure state.
3) Add the new state st+1 to the sequence of saved states <s0, s1, s2, …>.
4) Update Q(st, at) based on the acquired experience as follows:

 Q(st, at) ← Q(st, at) + αt(st, at)[rt + γ maxaQ(st+1, a) – Q(st, at)],
where 0 ≤ αt(st, at) ≤ 1 is the learning rate and 0 ≤ γ < 1 is the discount factor.

5) If the new state st+1 is a failure state, turn back the time of the simulation to the previous saved
state st in the time sequence, preserving the current Q-values.
6) Go to Step 2.

What if choosing other actions does not help and failure occurs again? In this
case, the time has to be turned even further back in the simulation, earlier enough so
that the RL agent can perform actions to avoid the failure. The absolute extreme is
going back to the initial state of the trial, which is identical to trial resetting in the
standard RL algorithm. The minimum is going back just one step before the failure
occurred. For practical purposes, going back to the middle of the failed trial seems
to provide a good balance between these two extremes. This strategy was employed
during the experiments described in Section 4 and it showed satisfactory results.
Another approach is to select probabilistically a previous state by using, for
example, some distribution strategy.

It is interesting to mention that, actually, using this technique it might be
possible to finish learning in only one trial. If the RL agent is doing only “small”
time manipulations to recover from failures, there is no need to start a new trial at

 17

all. This means that the RL agent could learn in only one single trial (ignoring the
small time manipulations).

Another important issue to deal with are the so called “eligibility traces” [6, 7].
Eligibility traces are one of the basic mechanisms for temporal credit assignment in
reinforcement learning. An eligibility trace is a temporary record of the occurrence
of an event, such as the visiting of a state or the taking of an action. For example, in
the popular temporal-difference algorithm TD(λ), the λ refers to the use of an
eligibility trace. The trace marks the memory parameters associated with the event
as eligible for undergoing learning changes. When a policy update occurs, only the
eligible states or actions are assigned credit or blame for the received reward.
Almost any temporal-difference method, e.g. Q-learning or Sarsa [5], can be
combined with eligibility traces to obtain a more general method that may learn
more efficiently [7].

The question is, if eligibility traces are used is it still possible to apply the
proposed time manipulation technique? And the answer is affirmative, providing
that care is taken to adjust the values of the eligibility traces correctly when turning
back the time of the simulation. In the case when the eligibility traces et(s) are
decayed by a constant rate λ at each time step, the forward update looks like this:

(1) 1

1

() if ,
()

() 1 if ,
t t

t
t t

e s s s
e s

e s s s
λγ

λγ
−

−

≠⎧
= ⎨ + =⎩

where 0 ≤ λ < 1 is the decay rate for the eligibility traces and 0 ≤ γ < 1 is the
discount factor. In order to reverse the eligibility traces one step back in time, the
following backward update is required:

(2) 1
() / if ,

()
(() 1) / if .

t t
t

t t

e s s s
e s

e s s s
λγ
λγ−

≠⎧
= ⎨ − =⎩

To conclude the description of the proposed time manipulation technique, let
us analyze it from computational complexity viewpoint. Obviously, the technique is
trying to improve the speed of learning at the expense of using more memory. The
algorithm needs enough memory to store the complete state of the simulation for
every state for which it is required to be able to go back to. In this sense, it is
possible to implement efficiently the proposed technique in such a way that it uses
only a limited amount of memory. This can be done by deleting some of the old
saved states, e.g. every alternating state, in order to reduce the memory
consumption while still keeping the ability to turn back in time. The need to do this
will occur only in case of very long trials and when the state variables are extremely
numerous. In such case the used memory can be adapted to the available resources
dynamically by limiting the number of saved states during execution.

An important advantage of the proposed time manipulation technique is its
complete transparency for the RL algorithm, in the sense that the RL algorithm does
not even realize that the time of the simulation is being manipulated externally.
From the viewpoint of the RL algorithm, the time is flowing only forward and all
the trials are just an ordered sequence of states in a linearly flowing time (this is, of
course, providing that the time manipulation takes care to save and restore the
appropriate eligibility traces along with the rest of the simulation parameters),

2

 18

whereas, in fact, the sequence is a tree of time interconnected state sequences.
Being transparent for the RL algorithm means that the proposed technique can
easily be combined with arbitrary RL algorithm, improving its performance without
changing the algorithm’s logic at all.

4. Evaluation of the learning speed and the state space exploration

The proposed time manipulation technique was extensively tested using different
conventional RL algorithms, various parameters for the time manipulation
technique and variations of the problem parameters. This section presents the
experimental environment, the conducted experiments and the obtained results.

4.1. The TiME experimental environment
A dedicated experimental system called TiME (Time Manipulation Environment)
was developed especially for the purpose of this evaluation. A general view of the
environment is shown on Fig. 1. TiME has a built-in simulation engine,
implementation of two conventional RL algorithms (Q-learning and Actor-critic
algorithm), useful visualization modules (for the simulation, the learning data and
the state transitions graph) and most important – a prototype implementation of the
time manipulation technique. To facilitate the analysis of the algorithm behavior,
TiME displays detailed information about the current state, the previous state
transitions, a visual view of the simulation, and allows runtime modification of all
important parameters of the algorithms and the simulation. There is a manual and
automatic control of the time manipulation technique, as well as visualization of the
accumulated data in the form of charts.

Fig. 1. General view of TiME

 19

The experiments were conducted on a classical failure-avoidance RL problem:
the cart-pole balancing task. This problem was chosen because it is very well
studied and is commonly used as a benchmark for new RL algorithms. During the
experiments, failure was defined as falling of the pole beyond a 12-degree angle
from the upright position or hitting the edges of the cart track. The reward function
was defined as –1 in case of a failure and 0 in all other cases. The values of the
physical parameters used in the simulation are given in Table 1. A fixed force
magnitude was used for both left and right push of the cart.
 Table 1. The values of the physical parameters used during the experiments

Physical parameter of the simulation Value (units)
Length of the cart track 4.4 (m)
Length of the pole 1.0 (m)
Mass of the pole 0.1 (kg)
Mass of the cart 1.0 (kg)
Simulation time slice duration 0.02 (s)
Force magnitude for pushing the cart 10.0 (N)

Although the proposed time manipulation technique is not a stand-alone RL
algorithm, it can easily be used to modify any general RL algorithm to produce a
time manipulated version of it. For the experiments two conventional RL
algorithms were used: Q-learning and Actor-Critic learning. During the preliminary
tests with the unmodified versions of the conventional algorithms, it was found that
the Actor-Critic method is performing much better on this task than the Q-learning.
This is probably due to the fact that the Actor-Critic method maintains separate
representations for the action selection part and the state evaluation part of the
algorithm. The results presented in this section compare the time manipulation
technique with the better one of the two conventional RL algorithms: the Actor-
Critic method. Otherwise, the implementation of the time manipulation technique is
the same for both Q-learning and Actor-Critic method.

The conducted experiments can be classified in two groups: experiments to
evaluate the technique‘s effect on the speed of learning and on the exploration of
the state space. The experiments from both groups were conducted in a similar way.
First, the unmodified RL algorithm was used with a set of different algorithm
parameters and problem settings. After that, the time manipulation technique was
added to the algorithm, and the same set of parameters and settings was used in
exactly the same simulation environment and initial state. This schema was
repeated 10 times and the results were averaged. The unmodified RL algorithm and
the time manipulated version of it were compared based on the two sets of results.

4.2. Evaluation of the technique’s effect on the learning speed

The two versions (with and without the time manipulation) were trained for the
same number of steps. During the training the best (longest) trial steps were
recorded, as well as the number of unique states visited. The training was stopped
(the running trial was interrupted if necessary) and a benchmark trial was executed.
This schema was repeated 12 times while increasing the total number of training
steps. Table 2 shows the experimental results.

 20

Table 2. The averaged experimental results for 12 groups of experiments

 Best trial steps Benchmark trial steps Unique states visited
Total

Training
steps

Without time
manipula-

tion

With time
manipula-

tion

Without time
manipula-

tion

With time
manipula-

tion

Without time
manipula-

tion

With time
manipula-

tion
100 25 66 32 48 18 20
200 57 75 64 71 26 26
500 92 147 111 113 31 32

1000 160 165 114 162 43 51
2000 187 350 103 311 54 63
5000 435 732 255 319 76 87

10000 1053 3608 867 4280 91 96
20000 3245 6192 2476 19855 99 113
30000 4707 6412 7534 69345 104 116
40000 5381 12561 25854 134032 101 114
50000 12341 21078 89722 267621 104 121

100000 28163 68523 over 500000 over 500000 108 125

The difference in the learning speed of the two versions can be seen by
comparing the duration of the best trials and the benchmark trials after each training
set. Fig. 2 shows the comparison results. During all the tests, the time manipulation
technique achieved better results: longer best trials, as well as longer benchmark
trials for the same amount of training steps. The reason for longer best trials using
time manipulation is that the training was focusing on the failure states more than
without time manipulation and managed to find ways to avoid them better. As a
consequence, the speed of learning was increased and the algorithm learned earlier
how to keep the balance longer, which lead to longer benchmark trials.

Best trial steps comparison

0

5000

10000

15000

20000

25000

0 10000 20000 30000 40000 50000 60000

Training steps

B
es

t t
ria

l s
te

ps

Without time manipulation With time manipulation
 (a) (b)

Fig. 2. Comparing the learning performance with and without the time manipulation technique:
(a) best trial steps comparison and (b) benchmark trial steps comparison

An important observation is that the time manipulation technique has bigger
impact on the speed of learning as the duration of the training increases. The reason
for this is that the conventional algorithm “wastes” increasingly bigger amounts of
steps going through the same state transitions from the beginning of the trial, which
do not provide new experience for the learning algorithm to improve its policy. In

Benchmark trial steps comparison

0

50000

100000

150000

200000

250000

300000

0 10000 20000 30000 40000 50000 60000

Training steps

B
en

ch
m

ar
k

tri
al

 s
te

ps

Without time manipulation With time manipulation

 21

addition, the time manipulation technique makes the learning algorithm focus on
the problematic close-to-failure states and learn earlier a good policy to avoid them
while at the same time avoiding repetition of already well-explored states. All these
facts mean that the effect (i.e. increase of the learning speed) of the proposed
technique is becoming bigger and bigger as the training duration increases. It starts
around 20% for the shorter training sets and increases to more than 400% on the
longer ones, resulting in a total averaged increase of about 260%. As a result, the
speed of learning is increased by a factor of 2 on average.

4.3. Evaluation of the technique’s effect on the state space exploration

In order to analyze the state space exploration, the entire continuous state space of
the problem was divided in 162 discrete states. The division was based on dividing
the cart track in 3 parts (left, center, right), dividing the angle of the pole in 6 parts
(using 0, 1, 6 and 12 degrees for boundaries), dividing the linear velocity of the cart
in 3 parts and the angular velocity also in 3 (3 × 6 × 3 × 3 = 162). Using this
division, the state space exploration was easier to visualize and analyze.

For the purpose of visual inspection of the state space exploration, a special
module in TiME was developed for displaying the state transitions graph in real-
time during the learning trial. The module shows the state transitions graph using
different graph layout algorithms, subgraph highlighting and graph operations
animation for better visibility. During the experiments, this module proved to be an
extremely valuable tool for evaluating the state space exploration.

 (a) (b)

Fig. 3. Comparing the state space exploration: (a) without time manipulation and
(b) with time manipulation

Each state in the state transitions graph is represented by one numbered node,
corresponding to the discretization of the continuous variables describing the state.
The active state is marked with a yellow color, and the thickness of the edges shows
the number of times the corresponding state transition occurred during the current

 22

learning trial. The developed graph visualization module allows transforming,
picking and editing operations to be conducted on the graph for more detailed
analysis.

As expected, the state space exploration of the proposed algorithm is broader
than the conventional one. Fig. 3 shows a visual comparison of the state transitions
graph with and without the time manipulation technique after 300 steps of training.
It is obvious that the proposed technique managed to explore more states (thus,
more vertices in the graph) and to find bigger number of different state transitions
(thus, better connected graph for the same number of edges).

In order to confirm objectively the visually observed results, 12 groups of
experiments were conducted. The two algorithm versions (with and without time
manipulation) were trained for the same number of increasing total steps. During
the training, the number of unique (different) states visited was recorded. This
number can justifiably be used as a measure of how good the state space
exploration was during the training. The last two columns in Table 2 contain the
experimental results and Fig. 4 shows a comparison chart of the unique states
visited data with and without the time manipulation technique.

Unique states visited

0

20

40

60

80

100

120

140

0 10000 20000 30000 40000 50000 60000

Training steps

Ex
pl

or
ed

 s
ta

te
s

Without time manipulation With time manipulation

Fig. 4. Comparing the state space exploration with and without the time manipulation technique

Again, very promising results have been obtained. The state space exploration
has improved as much as 19% in some of the longer training sets and 12% on
average. The explanation for this result is that the proposed time manipulation
technique makes the RL algorithm explore deeper the state space, thus discovering
bigger number of different states and transitions between them. This has an
additional positive effect on the speed of learning.

 23

5. Conclusions and future perspectives

A time manipulation technique to improve the general RL algorithm has been
proposed. It is applied to the standard Q-learning RL algorithm for solving failure-
avoidance problems and thus a new Time Manipulated RL algorithm is created. The
algorithm is tested on the classical pole-balancing task and it shows promising first
results.

It is confirmed that the time manipulation technique improves the state space
exploration by allowing the RL algorithm to explore better the state space in
proximity to failure states. Also, it prevents the algorithm from “wasting” time to
explore already well-explored areas of the state space. As a consequence, the RL
agent is able to make much longer trials and explore the state space deeper
compared with the unmodified RL algorithm for the same amount of simulation
steps. It is shown that the proposed technique speeds up the learning by 260% and
improves the state space exploration by 12% on average on the classical cart-pole
balancing task, compared with the conventional Q-learning and Actor-Critic
algorithms.

This research can be continued in many directions. For instance, the time
manipulation technique can be tested with a wider range of failure-avoidance
problems. It is interesting to see how it performs in the case of higher dimensional
state and action spaces. Another possibility is to develop different strategies for
choosing how many steps in the current trial to go back when a failure occurs. It
could depend on local state information or global optimization parameters. It is also
possible to devise other methods for selecting actions. For example, such methods
could take into account the additional information from the time manipulations and
try to make “smart selection” of actions based on this additional information.

In the future, a more generalized time manipulation framework can be
developed. One possible generalization is to extend the scope of the time
manipulations to include not only going backward, but also going forward in time.
Such an audacious possibility is not completely absurd in a simulation environment,
especially if multiple parallel simulations are executed simultaneously.

Acknowledgements: The authors would like to express their gratitude to Professor Gennady Agre
from the Bulgarian Academy of Sciences for his valuable comments and suggestions.

This work is partially supported by MEXT (Japanese Ministry of Education, Culture, Sports,
Science and Technology).

R e f e r e n c e s

1. D a y a n, P., T. J. S e j n o w s k i. TD(λ) Converges with Probability 1. – Machine Learning,
Vol. 14, 1994, No 3, 295-301.

2. G e v a, S., J. S i t t e. A Cart-Pole Experiment Benchmark for Trainable Controllers. – IEEE
Control Systems Magazine, Vol. 13, 1993, 40-51.

3. H a m z a h, Z. Are we Learning Now?
http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol2/zah/article2.html
Last visited 18/12/2007.

 24

4. K a e l b l i n g, L. P., L. M. L i t t m a n, A. W. M o o r e. Reinforcement Learning: A Survey. –
J. Artif. Intell. Res., Vol. 4, 1996, 237-285.

5. R u m m e r y, G. A., M. N i r a n j a n. On-Line Q-Learning Using Connectionist Systems. – In:
CUED/F-INFENG/TR 166, Cambridge University, UK, 1994.

6. S i n g h, S. P., R. S. S u t t o n. Reinforcement Learning with Replacing Eligibility Traces. –
Mach. Learn., Vol. 22, 1996, 123-158.

7. S u t t o n, R. S., A. G. B a r t o. Reinforcement Learning: An Introduction. Cambridge, MA, MIT
Press, 1998.

8. S u t t o n, R.S. Learning to Predict by the Methods of Temporal Difference. – Machine Learning,
Vol. 3, 1988, 9-44.

9. T h r u n, S. B. Efficient Exploration in Reinforcement Learning. Technical Report.
CMU-CS-92-102. Carnegie Mellon University, Pittsburgh, PA 15213, 1992.

10. W a t k i n s, C. J. C. H., P. D a y a n. Q-Learning. – Machine Learning, Vol. 8, 1992, 279-292.
11. W h i t e h e a d, S. D., D. H. B a l l a r d. Learning to Perceive and Act by Trial and Error. –

Machine Learning, Vol. 7, 1991, 45-83.

