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Abstract Modern humanoid robots include not only

active compliance but also passive compliance. Apart

from improved safety and dependability, availability of

passive elements, such as springs, opens up new possi-

bilities for improving the energy efficiency.With this in

mind, this paper addresses the challenging open prob-

lem of exploiting the passive compliance for the purpose

of energy efficient humanoid walking. To this end, we

develop a method comprising two parts: An optimiza-

tion part that finds an optimal vertical center-of-mass

trajectory, and a walking pattern generator part that

uses this trajectory to produce a dynamically-balanced

gait. For the optimization part, we propose a reinforce-

ment learning approach that dynamically evolves the

policy parametrization during the learning process. By

gradually increasing the representational power of the
policy parametrization, it manages to find better poli-

cies in a faster and computationally efficient way. For

the walking generator part, we develop a variable-center-

of-mass-height ZMP-based bipedal walking pattern gen-

erator. The method is tested in real-world experiments

with the bipedal robot COMAN and achieves a signifi-

cant 18% reduction in the electric energy consumption
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by learning to efficiently use the passive compliance of

the robot.
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1 Introduction

The current state-of-the-art humanoid robots are equipped

with passively compliant elements. In addition to inher-

ent safety and enhanced interaction capabilities, avail-

ability of passive elements, e.g., springs, opens up new

possibilities for improving the energy efficiency [53]. For

instance, the springs can be used for temporary energy

storage by compressing them, and for energy reuse by

releasing the stored energy [9, 48]. The remaining diffi-

cult open problem is how to address the best use of the

described mechanism. This paper tackles the problem

of finding the optimal way to exploit the passive com-

pliance in a walking robot for the purpose of energy

efficiency.

The conventional state-action-based reinforcement

learning approaches suffer severely from the curse of

dimensionality. To overcome this problem, policy-based

reinforcement learning approaches were developed. In-

stead of working in huge state/action spaces, they use a

smaller policy space, which contains all possible policies

representable with a certain choice of policy parametri-

zation. Thus, the dimensionality is drastically reduced,

and the convergence speed is increased.

In order to find a good solution, i.e., a policy that

produces a reward very close to the optimal/desired

one, the policy parametrization has to be powerful enough

to represent a sufficiently large policy space so that a

good candidate solution is present in it. If the policy
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parametrization is very simple, with only a few pa-

rameters, then the convergence is quick, but often a

sub-optimal solution is reached. If the policy parame-

trization is overly complex, the convergence is slow, and

there is a higher possibility that the learning algorithm

will converge to some local optimum, possibly much

worse than the global optimum. The level of sophisti-

cation of the policy parametrization should be just the

right amount, in order to provide both fast convergence

and a sufficiently optimal solution.

Deciding what policy parametrization to use, and

how simple/complex it should be, is a very difficult

task, often manually performed via trial-and-error ses-

sions by the researchers. This additional overhead is

usually not even mentioned in related literature and

falls into the category of ”empirically tuned” parame-

ters, together with the reward function, decay factor,

exploration noise, weights, and so on. Since changing

the policy parametrization requires to restart the learn-

ing process from the scratch, this approach is slow and

inefficient as all the accumulated data needs to be dis-

carded. As a consequence, the search for new solutions

often cannot be done directly on real-world robot sys-

tems; rather, simulation studies are performed for proof

of concept. To remedy these issues, we propose an ap-

proach that allows changing the complexity, i.e., the res-

olution, of the policy representation dynamically while

the reinforcement learning is running.

The rest of the paper is organized as follows: Sec-

tion 2 provides an overview of the state of the art in

multiple research areas which are relevant to the in-

terdisciplinary nature of this paper. In Section 3, the

evolving policy parametrization approach is introduced,

and a prototype implementation using cubic splines is

proposed. Moreover, the proposed approach is evalu-

ated via simulation studies. Section 4 explains details

concerning the bipedal walking generation scheme, our

bipedal robot, and its passively compliant joints. In Sec-

tion 5, the real-world experiments conducted on our

passively compliant bipedal robot are thoroughly de-

scribed and analyzed. In Section 6, obtained results are

discussed and some inevitable limitations are disclosed.

Finally, the paper is concluded in 7 by stating the end

results and addressing the future directions.

2 Background

2.1 Related work to policy-based RL algorithms

A tremendous effort has been done by researchers in

machine learning and robotics to move RL (Reinforce-

ment Learning) algorithms from discrete to continuous

domains, thus extending the possibilities for robotic ap-

plications [7, 10, 35, 46]. Until recently, policy gradient

algorithms such as Episodic REINFORCE [51] and Epi-

sodic Natural Actor-Critic eNAC [36] have been well-

established approaches to cope with the high dimen-

sionality. Unfortunately, they also have shortcomings;

such as, high sensitivity to the learning rate and the ex-

ploratory variance. Trying to overcome this drawback,

the following two recent approaches were proposed.

Theodorou et al. proposed an RL approach for learn-

ing parametrized control policies based on the frame-

work of stochastic optimal control with path integrals

[45, 46]. They derived update equations for learning so

as to avoid numerical instabilities. This is due to the

fact that neither matrix inversions nor gradient learn-

ing rates are required. The approach demonstrates sig-

nificant performance improvements over gradient-based

policy learning and scalability to high-dimensional con-

trol problems, such as control of a quadruped robot.

Abdolmaleki et al. introduced the contextual rela-

tive entropy policy search concept that adapts the robot

walking controller for different contexts through the use

of radial basis functions [1]. The method enabled the

controller to learn a policy which adjusts control pa-

rameters for a simulated NAO humanoid as it walked

forward with a continuous set of walking speeds.

Kober et al. developed an episodic RL algorithm

called Policy learning by Weighting Exploration with

the Returns (PoWER), which is based on Expectation

Maximization algorithm [19]. One of its major advan-

tages over policy-gradient-based approaches is that it

does not require a learning rate parameter. This is desir-

able because tuning a learning rate is usually difficult to

do for control problems, but critical for achieving good

performance of policy-gradient algorithms. PoWER also

demonstrates high performance in tasks learned directly

on real robots, such as underactuated pendulum swing-

up, ball-in-a-cup task, and dynamic pancake flipping

task [23].

2.2 Related work to adaptive-resolution RL

Adaptive resolution in state space has been studied

in various RL algorithms [3]. Moore and Atkeson em-

ployed a decision-tree partitioning of state-space and

apply techniques from game-theory and computational

geometry to efficiently and adaptively concentrate high

resolution on critical areas [30]. They address the pit-

falls of discretization during reinforcement learning, con-

cluding that in high dimensionality it is essential for

the learning not to plan uniformly over the state space.

However, in the context of RL, adaptive resolution in

the policy parametrization remains largely unexplored
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so far. This paper is making a step exactly in this di-

rection.

2.3 Related work to robot trajectory representations

In order to plan and optimize a trajectory, it first needs

to be encoded in a certain way. For instance, cubic

splines could be utilized to achieve this task. Similar

approaches have been investigated in robotics litera-

ture and often called as trajectory generation with via-

points.

As an example, Miyamoto et al. used an actor-critic

reinforcement learning scheme with via-point trajectory

representation for a simulated cart-pole swing up task

[29]. The actor incrementally generates via-points at a

coarse time scale, while a trajectory generator trans-

forms via-points to primitive action at the lower level.

Morimoto and Atkeson proposed a walking gait learn-

ing approach in which via-points are detected from the

observed walking trajectories, and RL modulates the

via-points to optimize the walking pattern [31]. The sys-

tem is applied to a planar biped robot fixed to a boom

that constrains the robot motion within the sagittal

plane. Exploration tries to minimize the torques while

keeping the robot above the desired height to prevent

it from tipping over.

Wada and Sumita developed a via-points acquisition

algorithm based on actor-critic reinforcement learning,

where handwriting patterns are reproduced by an itera-

tive and sequential generation of short movements [50].

The approach finds a set of via-points to mimic a ref-

erence trajectory by iterative learning, with the help of
evaluation values of the generated movement pattern.

Liu et al. proposed a behavior-based locomotion con-

troller. The approach includes feed-forward and feed-

back mechanisms which correspond to motor patterns

and reflexes [26]. An optimization module supports the

controller to minimize energy consumption while ensur-

ing stability for a simulated humanoid robot.

Rosado et al. used the kinematic data that is col-

lected from human walking via VICON system so as to

train a set of dynamic movement primitives [38]. These

trained motion primitives then used to control a simu-

lated humanoid robot in task space.

Shafii et al. utilized central pattern generators to

modulate generated bipedal walking trajectories with

varying hip height [41]. Covariance matrix adaptation

evolution strategy enabled the robot controller to search

for feasible hip height patterns and walking parameters

in a way to optimize forward velocity.

Koch et al. presented a bipedal gait generation method

through the use of movement primitives that are learned

from dynamically consistent and optimal trajectories

[21]. Morphable movement primitives were learned us-

ing Gaussian processes and component analysis. The

method allowed the fast real-time movement generation

for a simulated HRP-2 robot.

2.4 Related work to energy-efficient motion generation

Passive dynamic walkers are known to be energy-efficient

mechanisms since they are able to make use of the

swinging limbs momentum while walking forward [27].

The downside is that this type of bipedal walking is not

able to handle human interaction or disturbance rejec-

tion even if the robot is actuated [52]. Moreover, there

are application differences between these types of walk-

ers and 3D fully actuated bipedal robots. In contrast,

this paper does not focus on energy optimization from

the viewpoint of exploiting the passive walking princi-

ple.

A few approaches exist for reducing the energy con-

sumption on fully actuated 3D bipedal walkers [2, 28],

but not in the context of learning a varying-CoM-height

walking, as presented in this paper. Previously, ma-

chine learning approaches have been successfully used

for learning tasks on bipedal robots, such as dynamic

balancing, quadruped gait optimization [22], and whole-

body control during kinesthetic teaching [24]. One espe-

cially promising approach for autonomous robot learn-

ing is reinforcement learning (RL), as demonstrated

in [10,23,34,39,43].

Stulp et al. presented a Policy Improvement with

Path Integrals (PIˆ2) RL approach for variable impedance

control, where both planned trajectories and gain sched-

ules for each joint are optimized simultaneously [43].

The approach is used to enable the robot to learn how

to push and open a door by minimizing the average stiff-

ness gains controlling the individual joints, with the aim

to reduce energy consumption and to increase safety.

Kormushev et al. presented the use of Expectation-

Maximization-based RL for a pancake flipping task to

refine the trajectory of the frying pan and the coor-

dination gain parameters in Cartesian space by using

a mixture of proportional-derivative systems with full

stiffness matrices [23]. Rosenstein et al. presented a sim-

ple random search approach to increase the payload ca-

pacity of a weightlifting robot by exploiting the robot’s

intrinsic dynamics at a synergy level [39]. Via-points are

learned by exploration in the first phase of learning. RL

and simple random search are then used to refine the

joint coordination matrices initially defined as identity

gains.

RL has been applied previously in the context of

bipedal walking optimization, as in [4,8]. However, the
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goal for optimization is usually achieving the fastest

possible gait without any regard to the energy con-

sumption. In contrast, this paper focuses on the energy

efficiency as the main optimization goal while at the

same time maintaining the walking pace and speed un-

changed.

Certain studies in biomechanics field indicate dif-

ferent aspects of energy-efficient locomotion. Biological

systems, for instance, humans, store and release elastic

potential energy into/from muscles and tendons during

daily activities such as walking [14]. The management

of the elastic potential energy that is stored in these bi-

ological structures is essential for reducing the energy

consumption and for achieving mechanical power peaks.

In this connection, vertical CoM movement appears to

be a crucial factor in reducing the metabolic cost [33].

Recent advances in robotics and mechatronics have

allowed for the creation of a new generation of passively-

compliant bipedal robots, such as COMAN [48]. Similar

to biological systems, elastic structures in this robot can

store and release energy, which can be extremely helpful

if properly used. However, it is difficult to pre-engineer

an analytical way to utilize the passive compliance for

dynamic walking tasks. One possible application could

be the utilization of the passive compliance via machine

learning for the energy-efficient bipedal walking gener-

ation task. In this paper, we present an approach that

minimizes the walking energy by learning a varying-

CoM-height walking which efficiently uses the passive

compliance of the robot. In doing so, an incisive combi-

nation of machine learning and biomechanics could be

exploited in a way to enhance an existing technology in

bipedal locomotion control.

2.5 Novelty

In this paper, we develop a learning-based integrated

for learning to minimize the walking energy required for

a passively-compliant bipedal robot. The energy mini-

mization problem is challenging due to the difficulties

in accurate modeling considering the properties of the

springs, the dynamics of the whole robot and various

nonlinearities.

The contributions in this paper can be categorized

in two fractions: i) Evolving policy parametrization. ii)

The first experimentally demonstrated walking energy

minimization for fully actuated 3D bipeds, through the

utilization of passive compliance.

First, we introduce a novel reinforcement learning

technique which allows the use of changeable-over-time

policy parametrization. The proposed learning mecha-

nism can incrementally evolve the policy parametriza-

tion as necessary, starting from a very simple parame-

trization and gradually increasing its complexity (i.e.

resolution), and therefore, its representational power.

We call this mechanism evolving policy parametrization

and introduce a practical method to implement it using

splines.

Second, we exploit the passive compliance built into

our bipedal robot, in order to minimize the energy needed

for walking. Using the proposed reinforcement learn-

ing algorithm, it is possible to find the optimal vertical

CoM trajectory which minimizes the consumed energy.

To this end, the authors would like to highlight the fact

that this paper reports the first experimental results in

which the physical compliance is successfully utilized in

walking energy minimization task on a fully actuated

and compliant 3D bipedal robot.

An early version of this paper containing prelimi-

nary experimental results was presented [25]. The cur-

rent paper is significantly expanded and improved to

provide an archival report, which explains evolving pol-

icy parametrization technique and elaborates numer-

ous details about the approach, its implementation and

application, newly-added experiment results with thor-

ough analyses and exhaustive discussion on the results.

3 Evolving policy parametrization

We present an RL approach that allows to dynamically

change the complexity, i.e., resolution, of the policy

representation while the reinforcement learning process

is running, without losing any portion of the collected

data, and without having to restart the learning pro-

pose. We propose a mechanism which can incrementally

evolve the policy parametrization as necessary, starting

from a very simple parametrization and gradually in-

creasing its complexity, and thus, its representational

power. The goal is to create an adaptive policy parame-

trization, which can automatically grow to accommo-

date increasingly more complex policies and get closer

to the global optimum. A very desirable side effect of

this mechanism is that the tendency of converging to a

sub-optimal solution is reduced, because in the lower-

dimensional representations this effect is less exhibited,

and gradually increasing the complexity of the parame-

trization helps to avoid getting caught in a poor local

optimum.

To achieve this goal, the most important property

which a policy encoding should provide is backward

compatibility. This means that it should be able to

represent subsequent policies such that it is backward-

compatible with the previously collected data, such as

past rollouts, their corresponding policies, and rewards.
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In general, it is possible to consider cases in which sim-

plifying the policy parametrization might be useful, but

in this work we assume that we only want to increase

the complexity of the policy over time, and never to

reduce it.

3.1 Spline policy representation

One of the simplest representations which have the prop-

erty of backward compatibility is the geometric splines.

For example, if we have a cubic spline with K knots (or

via-points), and then we increase the number of knots,

we can still preserve the exact shape of the generated

curve (trajectory) by the spline. In fact, if we put one

additional knot between every two consecutive knots of

the original spline, we end up with a 2K − 1 knots and

a spline which coincides with the original spline.

Based on this, we propose to use the spline knots as

a policy parametrization and use the spline backward

compatibility property for evolving the policy parame-

trization without losing the previously collected data.

In order to do this, we need to define an algorithm

for evolving the parametrization from K to L knots

(L > K), which is formulated in Algorithm 1. Without

loss of generality, the values of the policy parameters

are normalized in the range [0, 1], and appropriately

scaled/shifted as necessary later upon use. Fig. 1 illus-

trates the process of using spline representation for the

evolving policy parametrization. Fig. 2 shows an ex-

ample for a reinforcement learning process using evolv-

ing policy parametrization to approximate an unknown

function.

Algorithm 1 EvolvePolicy-Spline (Pcurrent: current

policy, L: desired new number of parameters)

1: K ← Pcurrent.numberOfParameters
2: Xcurrent ← [0, 1

K−1
, 2
K−1

, ..., 1]

3: Ycurrent ← Pcurrent.parameterV alues
4: Scurrent ← ConstructSpline(Xcurrent, Ycurrent)
5: Xnew ← [0, 1

L−1
, 2
L−1

, ..., 1]

6: Ynew ← EvaluateSplineAtKnots(Scurrent, Xnew)
7: Snew ← ConstructSpline(Xnew, Ynew)
8: Pnew.numberOfParameters ← L
9: Pnew.parameterV alues ← Snew.Ynew

10: return Pnew

3.2 Integrating the evolving policy parametrization

into RL

The proposed technique for evolving the policy parame-

trization can be used with any policy-based RL algo-

Number of knots = 4

Number of knots = 8

Number of knots = 16

Number of knots = 32

Fig. 1 An example of an evolving policy parametrization
based on spline representation of the policy. The set of spline
knots is the policy parametrization. The spline values at the
knots are the actual policy parameter values. The parametri-
zation starts from 4 knots and evolves up to 32 knots, thus
gradually increasing the resolution of the policy.
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0.6

0.7

0.8

0.9

Fig. 2 Reinforcement learning process using evolving policy
parametrization. The black trajectory is the unknown global
optimum which the reinforcement learning algorithm is try-
ing to approximate. The policy is represented as a trajectory
(in green) and is encoded using a spline. The policy evolu-
tion is shown by changing the color from dark green for the
older policies to bright green for the newer ones. The idea is
to gradually evolve the policy, by increasing the number of
knots of the spline representation and thus gradually increase
the representational power of the policy parametrization. The
process is done dynamically while the reinforcement learning
algorithm is running.
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Fig. 3 Simulation Experiment 1: Comparison of the policy
outputs from the RL algorithm. a) With fixed policy parame-
trization (30-knot spline), b) with evolving policy parametri-
zation (from 4-knot to 30-knot spline). In black, the unknown
to the algorithm global optimum which it is trying to approx-
imate. In green, all the rollouts performed during the learning
process. In red, the current locally-optimal discovered policy
by each RL algorithm.

rithm. In this paper, we use the state-of-the-art Expec-

tation Maximization-based RL algorithm PoWER [20],

due to its fast convergence and a low number of pa-

rameters that need tuning. This makes the algorithm

appropriate for application directly on the real robot,

where it is important to minimize the number of tri-

als, and therefore, the danger of damaging the robot.

To further speed up the learning process, we apply the

proposed evolving policy parametrization which adap-

tively changes the resolution of the policy on the fly

during the learning process.

In order to minimize the computational time, we

evolve the policy parametrization only on those past

rollouts which get selected by the importance sampling

technique used by the PoWER algorithm. This way, it is

not necessary to convert all previous rollouts to the lat-

est policy parametrization, which effectively reduces the

computational complexity from O(N2) to only O(σN),

where N is the number of rollouts, and σ is the num-

ber of importance sampled rollouts at each RL iteration

(σ � N). Usually, σ is a constant number with a value

less than 10, which makes the complexity equivalent to

O(N), and allows fast execution of the proposed ap-

proach for real-time applications.
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Fig. 4 Simulation Experiment 1: Comparison of the conver-
gence of the RL algorithm with fixed policy parametrization
(30-knot spline) versus evolving policy parametrization (from
4-knot to 30-knot spline). The results are averaged over 20
runs of each of the two algorithms in simulation. The stan-
dard deviation is indicated with error bars. In addition to
faster convergence and higher achieved rewards, the evolving
policy parametrization also achieves lower variance compared
to the fixed policy parametrization.

3.3 Simulation Experiment 1: Function approximation

with evolving spline representation

In order to evaluate the proposed reinforcement learn-

ing with evolving policy parametrization, we primarily

conduct a simulation experiment 1. The goal is to com-

pare the proposed method with a conventional fixed

policy parametrization method that uses the same re-

inforcement learning algorithm as a baseline. The fol-

lowing synthetic function τ̃ which is unknown to the

learning algorithm is used as the goal for the optimiza-

tion process.

τ̃(t) = 0.5 + 0.2 sin(10t) + 0.07 sin(20t)+

+0.04 sin(30t) + 0.04 sin(50t),
(1)

In (1) τ̃ is with domain t ∈ [0, 1], and range τ̃(t) ∈
[0, 1]. The learning algorithm is trying to approximate τ̃

by minimizing the difference between it and the policy-

generated trajectory.

The reward function used for the simulated experi-

ment is defined as follows:

R(τ) = e−
∫ 1
0
[τ(t)−τ̃(t)]2dt, (2)

where R(τ) is the return of a rollout (trajectory) τ .

1 https://github.com/petar-kormushev/evolving-policy-
parametrization
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Fig. 5 Simulation Experiment 2: Comparison of the policy
outputs from the RL algorithm. a) With fixed policy para-
metrization (20-knot spline), b) with evolving policy parame-
trization (from 4-knot to 20-knot spline). Blue bars indicate
the obstacles. Green lines represent all the rollouts performed
during the learning process. Red lines represent the current
locally-optimal discovered policy by each RL algorithm.

Fig. 3 shows a comparison of the generated policy

output produced by the proposed evolving policy pa-

rametrization method, compared with the output from

the conventional fixed policy parametrization method.

Due to the lower policy-space dimensionality at the be-

ginning, the evolving policy parametrization approaches

much faster the shape of the globally-optimal trajec-

tory. The fixed policy parametrization suffers from in-

efficient exploration due to the high dimensionality, as

well as from overfitting problems, as seen by the high-

frequency oscillations of the discovered policies.

Fig. 4 shows that the convergence properties of the

proposed method are significantly better than the con-

ventional approach, in terms of faster convergence, higher

achieved rewards and lower variance.

3.4 Simulation Experiment 2: Trajectory Planning for

Obstacle Avoidance

To further evaluate the proposed RL algorithm with

evolving policy parametrization, we have conducted a

second, more challenging simulation experiment. In this

case, the goal is to perform trajectory planning for ob-

stacle avoidance in 2D space. The simulated environ-

ment can be examined in Fig. 5. The starting position

is in the bottom-left corner with coordinates (0,0), and

0 50 100 150 200 250 300
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1

A
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n

Evolving parameterization
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Fig. 6 Simulation Experiment 2: Comparison of the conver-
gence of the RL algorithm with fixed policy parametrization
(20-knot spline) versus evolving policy parametrization (from
4-knot to 20-knot spline). The results are averaged over 20
runs of each of the two algorithms in simulation. The stan-
dard deviation is indicated with error bars. In addition to
faster convergence and higher achieved rewards, the evolving
policy parametrization also achieves lower variance compared
to the fixed policy parametrization.

the goal position is in the top-right corner with coor-

dinates (1,1). There are 6 obstacles (marked in blue)

arranged in a way that creates three narrow openings

with progressively smaller sizes in order to produce

a challenging motion planning problem. Similarly, the

same two methods are being tested and compared: (i)

evolving policy parametrization method, and (ii) con-

ventional fixed policy parametrization method. How-

ever, this time the reward function does not have the

same smoothness properties as in the previous simu-

lation experiments presented in subsection 3.3. This is

due to the fact that whenever a trajectory collides with

an obstacle, it is terminated at that instant. Therefore,

this introduces discontinuities in the reward landscape

and is more challenging for the learning algorithm in

both cases. Furthermore, the reward function is defined

based on the distance from the last reached position be-

fore arriving at the goal position. This, again, is more

challenging as it introduces multiple local optima in

the reward landscape which tends to trap the learn-

ing algorithms and makes it harder to reach the global

optimum.

Despite these challenges, we show that the proposed

evolving policy parametrization method consistently out-

performs the conventional fixed policy parametrization

method. Fig. 5 displays a comparison of the gener-

ated policy output produced by the proposed evolv-
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Table 1 Sequence of walking phases

No. Phase description Start time[s] Duration[s]
1 Wait 1 0.00 1.00
2 Initialization 1.00 1.00
3 Wait 2 2.00 5.00
4 Transfer (double) 7.00 0.60
5 Right single 7.60 0.50
6 Double 8.10 0.15
7 Left single 8.25 0.50
8 Double 8.75 0.15
9 Right single 8.90 0.50
10 Double 9.40 0.15

ing policy parametrization method, compared with the

output from the conventional fixed policy parametriza-

tion method. Due to the lower policy-space dimension-

ality at the beginning, the evolving policy parametri-

zation is able to more quickly explore the 2D space

and is able to navigate around the 6 obstacles in a

much smoother way. For comparison, the fixed pol-

icy parametrization struggles to go through the sec-

ond and third opening because of the difficulty to ex-

plore the high dimensional policy space. Moreover, it

suffers from overfitting problems which produce unde-

sired jitter in the produced trajectories. Finally, the

convergence properties of the two methods are com-

pared in Fig. 6 which again confirms that the proposed

method performs significantly better than the conven-

tional approach, in terms of faster convergence, higher

achieved rewards, and better quality solutions. This

makes the proposed method particularly useful for real-

world trajectory-planning scenarios, as shown in the fol-

lowing sections on a bipedal walking robot.

4 Bipedal walking energy reduction

For a real-world evaluation of the proposed approach,

we tackle the problem of bipedal walking energy mini-

mization. The proposed RL method is used to learn a

vertical trajectory for the CoM of the robot such that

the potential elastic energy exchange is fully utilized

during walking, in order to minimize the energy con-

sumption. A high-level outline of the real-world exper-

iment is shown in Fig. 7.

For the reinforcement learning component, an im-

portant difference from the simulated experiments is

that here the RL policy (i.e. the vertical CoM tra-

jectory) needs to be cyclic in time. This is necessary

because walking motion must be executed periodically

over many cycles. A single walking cycle includes a sin-

gle support phase in which either the left foot or right

foot is in swing mode. This phase is followed by a dou-

ble support phase where both feet are in the stance

Table 2 Basic specifications of the robot.

Size
Upper Leg length: 226.63 [mm]
Lower Leg length: 203.3 [mm]
Ankle-sole length: 60.3 [mm]

Weight
Each Leg: 6.816 [kg]

Waist: 4.41 [kg]
Total: 17.772 [kg]

mode. Subsequently, single support phases are swapped

between left and right feet to generate continuous walk-

ing motion. In particular, continuous walking was im-

portant in our case for the purpose of assessing energy

consumption. Duration values for the walking phases,

as well as initialization periods, are provided in Table

1.

Fig. 9 illustrates the process of creating a time-

cyclic policy out of a single spline in which a single

cycle time was contained in the interval [0, 1]. The red

line represents the input policy in the form of a spline

for a one cycle interval; the values at spline knots were

obtained from the policy parametrization values. The

green line represents the time-cyclic policy whose spline

knots were copied from the policy values at one cycle

interval. Since the time-cyclic policy represents the ver-

tical CoM trajectory in bipedal walking, it guarantees

that both position and velocity are continuous and in

differentiable form.

4.1 Compliant Bipedal Robot COMAN

In order to explore compliant humanoid characteristics,

we developed a bipedal robot at the Italian Institute of

Technology, as a part of the European AMARSi project.

Table 2 summarizes its mechanical specifications. The

robot has a total of 15 active DoFs (Degree of Free-

dom); 6 DoFs in each leg and 3 DoFs at the waist to

be able to obtain greater motion flexibility. Each active

joint incorporates three position sensors (two absolute

and one relative encoders) and one torque sensor. The

robot is also equipped with two 6-axis Force/Torque

sensors at the ankles and five single-axis load cells on

the foot sole. In addition, it has a triaxial rate gyro sen-

sor and an accelerometer, located at the pelvis. In its

electronic hardware structure, the main controller is an

Intel Core 2 Duo 1.5 GHz dual processor with 3.0 GB

RAM, running on a 32-bit GNU/Linux operating sys-

tem that includesa real-time Xenomai extension. Data

communication is performed via a real-time Ethernet

protocol called RTnet. Fig. 8 displays the actual robot

and its joint configuration.

In the first prototype, only pitch axis ankle and knee

joints are equipped with passive compliant elements,
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Fig. 7 Outline of the proposed approach for bipedal walking energy consumption minimization, showing details about each
of the three components: reinforcement learning, walking generation, and real-world rollout execution. Note that all the
components are run in real-time.

{1}

{2}

{3}

{4}

{5}

{6}

{7}

{8}

{9}

{10}

{11}

{12}

{15}

Left foot

Pitch

Roll

Roll

Yaw

Pitch

Pitch

Yaw

Right foot

{14} Roll

z

x
y

{0}

{13} Pitch

Fig. 8 The mechanical assembly of COMAN and its joint
configuration. Joints with yellow color indicate SEA units.

i.e., springs (see Fig. 8, frames with yellow color). For

the compliant actuation system in our bipedal robot,

the main objectives are to satisfy dimensional and weight

requirements while achieving high rotary stiffness within

a compact structure. Regarding these requirements as

well as with the previously discussed issues, a series

elastic actuator (SEA) module appears to be a very

suitable candidate and it is presently implemented in

our robot [49]. The rotary stiffness of these modules

was set to an approximate value of 156 [Nm/rad] to

maximize the walking efficiency while providing suffi-

cient bandwidth for joint position tracking.

4.2 Evaluation of walking energy consumption

There are many ways in which energy can be measured.

One possible approach is to estimate the mechanical

energy from motor torque measurements and angular

−0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

Time (cyclic)

Fig. 9 Illustration of the process for creating a time-cyclic
policy out of a single spline. One time cycle is contained in
the interval [0, 1]. In red, the input policy in the form of a
spline (red line), where the values at the spline knots (red cir-
cles) come from the policy parametrization values. In green,
the produced time-cyclic policy, where the green knots have
values copied from the policy values at one cycle interval. The
green spline is the output time-cyclic policy, which guarantees
that both position and velocity of the CoM is a continuous
and differentiable function.

velocities. However, the problem with this approach is

that it incorrectly includes the work done by gravity,

and can only infer indirectly the actual electric power

used for walking. Furthermore, electrical energy is def-

initely used by the motors even when the mechanical

energy is zero, e.g., when the robot is only standing.

We propose, what we think is the best approach, to

directly measure the electrical energy used by all the

motors of the robot, which allows us to explicitly mea-

sure the value that we are trying to minimize. We use

the formula P = IU , linking the electric power P to the

electric current I and the voltage U , and we integrate

over time to calculate the consumed electric energy in

Joules. The COMAN robot is equipped with both cur-

rent and voltage sensing units at each motor so that we

can accurately measure these values. Fig. 10 shows the

accumulated consumed electric energy values for the
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(b) Right leg

Fig. 10 Electric energy consumption of each leg of COMAN
during a 4-cycle walk. Alternating between left and right foot
support redistributes the weight on different joint motors and
causes differences in the left-right energy consumption. Hip
roll joints consume the highest energy due to the fact that
they solely support the whole leg weight in the lateral plane
while it is in swinging mode.

motor of each individual joint of COMAN, calculated

as:

Ej(t1, t2) =

∫ t2

t1

Ij(t)Uj(t) dt, (3)

where j is a selected joint for which the energy con-

sumption is calculated, and [t1, t2] is the time interval.

To evaluate the whole walking rollout, we define the

energy consumption metric of a given rollout τ to be

the average electric energy consumed per walking cycle,

and estimate it using the formula.

Fig. 11 The experimental setup, showing a snapshot of the
bipedal robot COMAN during one walking rollout execution.

E(τ) =
1

c

∑
j∈J

Ej(t1, t2), (4)

where J is the set of joints in the sagittal plane (hip,

knee, and ankle pitch of both legs, 6 in total) whose

energy consumption we try to minimize.

In order to reduce the noise effects on the measure-

ment, we make the robot walk for 16 seconds and collect

the electric current and voltage measurements of the

c = 4 consecutive walk cycles (4 repetitions of phases

7 to 10 in Table 1), which contain a total of 8 steps.

Therefore, the value of t1 is the start of phase 7, and

the time t2 is the end of phase 10 in the fourth cycle.
Afterward, we average the energy consumption and use

this value as the estimate of the electric energy used for

this walking rollout.

In this work, the main focus is the exploitation of

passive compliance for energy efficiency which may be

achieved with the help of springs. Therefore, we use the

sum of all electric energy consumed by the motors con-

trolling the motion in the sagittal plane, i.e. the hip,

knee, and ankle pitch joints on both legs, in our evalua-

tion metric. Even though hip pitch joints do not include

series elasticity, they sufficiently contribute to the verti-

cal CoM trajectory as they are dominant in the sagittal

plane together with ankle pitch and knee joints; there-

fore, they were included in the metric.

Finally, we define the return of a rollout τ as:

R(τ) = e−kE(τ), (5)

where k is a scaling constant. The lower the energy

consumed, the higher the reward is.
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5 Real-world experiments

Based on the results of the simulation experiment, the

proposed evolving policy parametrization method is cho-

sen for the real-world walking experiment, due to its

favorable characteristics for real-time applications. The

experimental setup is shown in Fig. 11. The total dis-

tance traveled by the robot during our experiments is

around 0.5 km. For the evaluation of the energy con-

sumption, we did not include the traveled distance, as

the speed of walking was the same for all rollouts be-

cause the stride length was fixed.

Fig. 12 shows the convergence results from the walk-

ing experiments. The figure shows the convergence of

the consumed energy over time during the reinforce-

ment learning. Energy measurements are normalized

with the maximum possible energy consumption in mind.

Each rollout corresponds to a walking experiment that

was executed. For each rollout, the average energy con-

sumed per cycle (averaged over 8 walking steps, i.e. 4

full walk cycles) is shown. At rollout number 126 the

lowest energy consumption was achieved, which is 18%

lower than the initial energy consumption.

Fig. 13 visualizes the discovered optimal policy by

the RL algorithm, as well as all the intermediate 180

rollouts that were performed. Although the single and

double support phase periods were determined in ad-

vance, the RL algorithm discovered the instant at which

the heel strikes the ground (shown with dotted verti-

cal line), and adjusted the trajectory so that the CoM

height is bounced off upward in that exact same mo-

ment. Note that the CoM height trajectory is normal-

ized by considering the maximum and minimum allow-
able values which are imposed by the kinematic struc-

ture of the robot. All trajectories have been made cyclic

in time so that walking can be executed continuously

over many cycles.

ZMP response measurements with respect to the

inertial frame are displayed in Fig. 15, for 7 consec-

utive steps. During single support phases, the support

polygon is the supporting foot area which is illustrated

with rectangles. When the robot is in a double support

phase, the area between two feet becomes the support

polygon. We illustrated this support polygon only once

with a dashed cyan area, in which the robot switches

from the first step to the second step. What is more,

green areas stand for transition phases in which the

robot motion is initiated from a stationary position or

vice versa. Steps with odd numbers indicate the right

leg’s single support phases whereas even numbers stand

for the left leg’s single support phases. Based on this re-

sult, it is possible to examine that the ZMP response is

always within the support polygon boundaries. As a re-
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Fig. 12 Results from the real-world minimization of the con-
sumed energy for walking.

sult, we obtained dynamically equilibrated and feasible

walking cycles throughout the experimentation period.

That being the case, we were able to focus solely on the

energy minimization problem, without worrying about

auxiliary issues, such as the dynamic balance.

As previously stated, each compliant joint includes

separate encoders to measure both link side (after the

spring) and motor side angles. This feature enables us

to record spring deflection variations, in a reliable way.

To this end, right leg’s knee and ankle joint deflections

are respectively illustrated in Fig. 16 and Fig. 17. In

these figures, solid purple lines show the deflection vari-

ations while varying CoM height is generated by the RL

algorithm after it learns to use the passive compliance

efficiently to minimize the energy. Solid green lines indi-

cate deflection values when CoM height is fixed. Anal-

ogous trends are observed for the left leg as well and

therefore not plotted.

6 Discussion of results

6.1 Discussions on Evolving Policy parametrization

A major advantage demonstrated by the proposed ap-

proach is the low variance of the generated policies. The

lower exploratory variance combined with the faster

convergence is the key factor for achieving higher re-

wards than the fixed parametrization.

With respect to the learning, the focus of the pa-

per is not on the encoding scheme (splines), but on

the evolving policy parametrization. Spline-based tech-

niques have well-known limitations such as providing a

non-autonomous (time-based) control policy, discard-

ing variability and synergy information in the repre-
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Fig. 13 The discovered optimal policy (in red) by the rein-
forcement learning. Among all tried 180 CoM trajectories (in
green), which were executed on the real robot.

sentation, and having difficulty to cope with unforeseen

perturbations [37,40]. Being aware of their limitations,

splines provided us with a simple encoding scheme to

be used as a first step to study the possibility of dy-

namic evolution of the policy parametrization during

the learning. In addition, splines provided us with a

straightforward way to implement a cyclic policy which

spans continuously over many time cycles and is conve-

nient for robot walking applications.

In this study, the knots were increased along the

way in a heuristic manner for the sake of simplicity. By

observing the convergence rates, it is possible to devise

a systematic method for the addition of knots along

the iteration. This additional feature deserves further

investigation and is addressed as a future work.

6.2 Discussions on Bipedal Walking and Energy

Minimization

The passive compliance of our robot was recently ex-

ploited to generate periodic jumping patterns [48]. In

this study, the base resonance frequency of the overall

system is identified to be within 0.925 ∼ 1.04 [Hz] fre-

quency band. Even though the stiffness in robot joint is

constant, the base resonance frequency depends on the

configuration, so that it varies within a frequency band.

When the robot is vertically excited within a close prox-

imity to the base resonance frequency, joint deflections

are expected to be maximized. This enables us to maxi-

mize elastic potential energy stored in the springs. That

being the case, it is possible to obtain walking cycles

with lower energy demands.

Throughout the learning process, the RL algorithm

produced vertical motions with relatively higher fre-

quencies as seen in Fig. 13, resulting in bad score in en-

ergy minimization goal. Finally, the vertical CoM move-

ment which was eventually learned by the RL algorithm

produced cyclic motions with a frequency within the

0.925 ∼ 1.04 [Hz] band; approximately 1.0 [Hz]. This

can be justified in Fig. 16 and Fig. 17. Spring deflec-

tions are measured to be about -11 degrees, which is

97% of the maximum allowable2 values. Therefore, the

algorithm achieved bipedal walking energy minimiza-

tion goal, as it successfully found the optimal vertical

CoM trajectory.

The end result of the energy minimization is com-

puted to be 18%, which may be regarded as a crucial

value when considering real-time operation duration of

bipedal robots. The authors would like to highlight the

fact that this paper reports the first experimental re-

sults of a bipedal walking energy minimization task,

achieved on a fully actuated 3D robot with spring-

supported passively compliant joints. Furthermore, it

allows us to operate COMAN in real-time for approxi-

mately 4.3 more hours while using Li-Ion on-board bat-

teries. Due to this fact, the robot demands less for bat-

tery recharge and become more environment-friendly

by effectively using the limited power source.

We would like to highlight the fact that the dynamic

balance is guaranteed by the ZMP-based motion gener-

ator as it outputs dynamically balanced and consistent

walking trajectories for a given set of feasibly desig-

nated ZMP inputs, regardless of the CoM height vari-

ance. In other words, the vertical CoM trajectory is

given by the RL algorithm beforehand and utilized in
the ZMP-based walking generator to induce dynami-

cally balanced horizontal CoM trajectories. Therefore,

we may focus on the bipedal walking energy minimiza-

tion task without having any concern related to the

dynamic balance issue.

In the current configuration, spring deflections are

already maximized as illustrated in Fig. 16 and Fig.

17, thanks to the RL algorithm. Therefore, 18% en-

ergy minimization appears to be the direct consequence

of maximizing spring deflections. The amount of en-

ergy minimization may be further improved if springs

in the joint are replaced with their softer counterparts.

In doing so, elastic energy storage can be increased,

however, the robot may suffer undesired vertical os-

cillations. Therefore, there is a trade-off between the

energy minimization and dynamic balance, in choos-

ing the spring stiffness profile. We handled this prob-

2 Spring deflections are mechanically limited within 11.25
degrees in COMAN.
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Fig. 14 A sequence of video snapshots from the real-world experiment with the lower body of the COMAN robot.
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Fig. 15 Actual ZMP measurements with respect to the iner-
tial frame. In this experiment, the robot walked 7 steps ahead.
Foot positions are also indicated with rectangles.

lem throughout the design process by empirically trying

various springs with different stiffness coefficients.

Variable stiffness actuators may remedy the stiff-

ness adjustment problem of SEAs through the active

regulation of the passive compliance in real-time [16].

Variable stiffness regulation plays an important role in

human walking; humans actively change the joint stiff-

ness to explore optimal walking patterns [9, 13]. That

being said, these actuators are still large-sized and may

not be applicable to power humanoids in their cur-

rent form. Therefore, learning variable stiffness for the
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Fig. 16 Right knee springs deflection during walking, mea-
sured in angular offset. Similar deflection variations were also
observed in the left knee joint.

legged robot control will be investigated once the nec-

essary hardware improvements are introduced.

Due to hardware limitations, the current version of

COMAN had passive compliance only in pitch axis knee

and ankle joints. Therefore, the overall energy mini-

mization is provided solely by 4 joints, whereas the rest

of the 8 joints (roll axis joints, yaw axis joints, pitch

axis hip joints) could not contribute to this task due

to the lack of passive compliance. Currently, our design

engineering team is working on the second generation

COMAN bipedal robot which will have passive com-

pliance utilized in all the joints. In principle, the pro-
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Fig. 17 Right ankle springs deflection during walking, mea-
sured in angular offset. Similar deflection variations were also
observed in the left ankle joint.

posed method may perform even better when conduct-

ing walking motion on a robot with passive compliance

in all joints.

In this work, the idea of generating efficient walking

pattern through the use of potential energy manage-

ment has its roots from studies in biomechanics [9,15].

Therefore, we used an abstracted model for the hu-

manoids so as to fully focus our attention to exploit

passive compliance for energy efficiency. At this stage,

While useful in its own right, abstracted models may

have limitations in describing the complete robot be-

havior. With the advent of centroidal dynamics [32], ef-

ficient locomotion controllers were proposed [5,12]. An

extension of centroidal dynamics for robots with pas-

sive compliance may be investigated as a future work

to further improve the performance.

Energy minimization may also be achieved by al-

tering bipedal walking generator parameters. Since the

main focus of this paper was the exploitation of pas-

sive compliance, the additional investigation of energy-

minimization via learning the optimized bipedal walk-

ing parameters will be a future work. That being said,

our research group previously implemented the pro-

posed learning algorithm for the efficient quadruped

gaits. For details refer to [42].

7 Concluding Remarks

We proposed a reinforcement learning approach that

can evolve the policy parametrization dynamically dur-

ing the learning process. We showed that the gradually

increasing representational power of the policy para-

metrization helps to find better policies faster than a

fixed parametrization. We successfully applied it to a

bipedal walking energy minimization task by utilizing

a variable-CoM-height ZMP-based bipedal walking gen-

erator. The method achieved 18% reduction in energy

consumption by learning to use efficiently the passive

compliance of the robot, which is the first reported ex-

perimental walking energy minimization results in the

state-of-the-art humanoid robotics.

As a future work, we plan to extend this work for

more powerful movement representations, based on a

superposition of basis motion fields [23]. Another in-

teresting direction for extension is towards learning of

variable stiffness control, which is of particular interest

in the context of energy minimization.

Appendix: Bipedal Walking Gait Generator

Given the z-axis CoM trajectory, we utilized the ZMP

concept for x-axis and y-axis CoM trajectories, in order

to obtain walking patterns with dynamic balance. To

generate real-time bipedal walking patterns which use

the vertical CoM trajectory generated by the RL com-

ponent, we adopted the resolution method explained

in [17], using Thomas Algorithm [47]. Considering the

one mass model, CoM position and ZMP position are

described as P = (px, py, pz) and Q = (qx, qy, 0), re-

spectively. As described in [6,11,18,44], the abstracted

x-axis ZMP equation takes the following form,

qx = px −
p̈x

p̈z + g
pz, (6)

where g is the gravitational acceleration. The vertical

CoM position (pz) and acceleration (p̈z) are provided

by the learning algorithm for all times as previously

stated. As next step, (6) is discretized for px as follows:

p̈x(t) =
px(i+ 1)− 2px(i) + px(i− 1)

∆t2
, (7)

where ∆t is the sampling period, i is the discrete event.

i starts from 0 to n which is the total number of discrete

events. Inserting (7) into (6), we obtain the following:

px(i+ 1) =
b(i)

c(i)
px(i)− px(i− 1) +

qx(i)

c(i)
; (8)

b(i) = 1− 2c(i); c(i) =
−pz(i)

(p̈z(i) + g)∆t2
. (9)

In order to solve this tridiagonal equation efficiently,

we employ Thomas Algorithm [47]. To do so, initial and

final position of x-axis CoM (px(0) and px(n)) must be

given in advance. Therefore, for a given set of reference

ZMP trajectory, initial conditions, and final conditions,

we are able to calculate CoM trajectory. For that pur-

pose, the tridiagonal equation is re-arranged as below.



Learning to Exploit Passive Compliance for Energy-Efficient Gait Generation on a Compliant Humanoid 15

px(i) = e(i+ 1)px(i+ 1) + f(i+ 1). (10)

In (10), e(i+ 1) and f(i+ 1) can be defined as follows:

e(i+ 1) = − c(i)

c(i)e(i) + b(i)
, (11)

f(i+ 1) =
qx(i)− c(i)f(i)

c(i)e(i) + b(i)
. (12)

Combining (10), (11) and (12), (13) is yielded.

px(i) = − c(i)

c(i)e(i) + b(i)
px(i+ 1) +

qx(i)− c(i)f(i)

c(i)e(i) + b(i)
.(13)

Recall that px(0) = x0 and px(n) = xn, e(1) and

f(1) are determined as 0 and x0, respectively. Utilizing

Thomas Algorithm for the solution of this tridiagonal

equation, we can obtain the CoM trajectory’s x-axis

component. If an identical approach is also executed

for y-axis CoM position, we could derive all the compo-

nents of the CoM trajectory in real-time since vertical

CoM position is previously determined by the RL algo-

rithm.
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