
On-line Identification of Autonomous Underwater Vehicles Through

Global Derivative-free Optimization

George C. Karras1, Charalampos P. Bechlioulis1, Matteo Leonetti2, Narcı́s Palomeras3,

Petar Kormushev2, Kostas J. Kyriakopoulos1 and Darwin G. Caldwell2

Abstract— We describe the design and implementation of
an on-line identification scheme for Autonomous Underwater
Vehicles (AUVs). The proposed method estimates the dynamic
parameters of the vehicle based on a global derivative-free
optimization algorithm. It is not sensitive to initial conditions,
unlike other on-line identification schemes, and does not depend
on the differentiability of the model with respect to the
parameters. The identification scheme consists of three distinct
modules: a) System Excitation, b) Metric Calculator and c)
Optimization Algorithm. The System Excitation module sends
excitation inputs to the vehicle. The Optimization Algorithm
module calculates a candidate parameter vector, which is fed
to the Metric Calculator module. The Metric Calculator module
evaluates the candidate parameter vector, using a metric based
on the residual of the actual and the predicted commands.
The predicted commands are calculated utilizing the candi-
date parameter vector and the vehicle state vector, which is
available via a complete navigation module. Then, the metric
is directly fed back to the Optimization Algorithm module,
and it is used to correct the estimated parameter vector. The
procedure continues iteratively until the convergence properties
are met. The proposed method is generic, demonstrates quick
convergence and does not require a linear formulation of the
model with respect to the parameter vector. The applicability
and performance of the proposed algorithm is experimentally
verified using the AUV Girona500.

I. INTRODUCTION

Underwater vehicles usually operate under difficult cir-

cumstances and perform complex tasks such as ship hull

inspection, surveillance of underwater facilities (e.g oil plat-

forms) and handling of underwater equipment (e.g control

panels, valves, etc.). These tasks require motion and force

control schemes with enhanced robustness. In order to design

such schemes, a suitable dynamic model of the vehicle must

first be considered and identified. The complexity of the

dynamic model may vary depending of the vehicle configu-

ration, actuation capabilities, operating speed and planes of

symmetry [1].

System identification can be either an off-line or on-line

procedure. Off-line identification involves the acquisition of

This work was supported by the EU funded project PANDORA: Persistent
Autonomy through learNing, aDaptation, Observation and ReplAnning”,
FP7-288273, 2012-2014.

1School of Mechanical Engineering, National Technical Univer-
sity of Athens, Athens 15780, Greece {karrasg, chmpechl,
kkyria}@mail.ntua.gr

2Department of Advanced Robotics, Istituto Italiano di Tecnologia,
via Morego 30, 16163 Genova {matteo.leonetti,
petar.kormushev, darwin.caldwell}@iit.it

3University of Girona, Edifici Politecnica IV, Campus Montilivi, Girona
17071, Spain {palomer@eia.udg.edu

Heave (w)

Surge (u)Sway (υ)

Yaw (r)

Pitch (q) Roll (p)

Fig. 1. The Girona500 AUV. Blue color indicates actuated DoFs. Red
color indicates under actuated DoFs.

large amount of input-output data sets, which are appropri-

ately filtered and fed to high computational power processing

units. On the contrary, on-line identification is an on-the-

fly process, where the estimation of the dynamic parameters

occurs concurrently with the data acquisition process during

the real-time operation of the system. Thus, the dynamic

model of the system can be automatically updated by the

estimation algorithm, and modified for optimal performance

according to the task and the operational environment.

Many works can be found in the literature regarding

the identification of underwater robotic vehicles. Ridao et

al. [2] presented a comparison between two methods for

off-line identification of an Unmanned Underwater Vehicle

(UUV). The first method is based on minimization of the

acceleration prediction error, while the second one is based

on minimization of the velocity prediction error. Caccia et

al. presented a Least-Squares (LS) based identification of a

lumped parameter model of an open-frame UUV, where the

effects of propeller-hull and propeller-propeller interactions

are considered. Furthermore, Panagou et al. [3] presented

the identification of the dynamic model of an under-actuated

underwater vehicle, through an off-line LS technique con-

sidering the presence of slowly varying unknown distur-

bances. Most of the aforementioned off-line techniques can

provide sufficiently accurate results, but they usually require

a large amount of data, expensive sensor suites and dedicated

experimental setups. Generally, off-line identification is a

time consuming process that takes place in-situ and if the

configuration of the vehicle changes (i.e addition or removal

of sensors or tools) the procedure must be repeated.

Smallwood and Whitcomb [4] describe an on-line adaptive

technique for the identification of finite dimensional dynam-

ical models of dynamically positioned underwater robotic

vehicles. Furthermore, Van de Ven et al. [5] discuss the use

of neural networks in the identification of models for under-

water vehicles. The most efficient methods for on-line system

identification are based on the augmentation of the well

known Unscented Kalman Filter (UKF) algorithm for state

estimation [6]. A description of UKF’s applicability for the

state and parameter estimation of non–linear systems, as well

as an analytical justification of the superiority of the UKF

over the Extended Kalman Filter (EKF) parameter estimation

techniques are provided by der Merwe and Wan [7], and

VanDyke et al. [8]. Finally, Karras et al. [9] described a dual

UKF algorithm for the on-line state and parameter estimation

of an underwater vehicle. Although UKF-based algorithms

can prove quite efficient, they are extremely sensitive to the

initialization of the parameter vector. Indeed, the filter may

diverge very fast in case the initial vector is chosen far from

the real parameter values. Thus, a rough approximation of

the system parameters must be known a priori, to ensure

convergence of the filter, which reduces the applicability of

these algorithms.

In this paper, we present a novel method for the on-line

identification of underwater robotic vehicles. The method

is based on a global derivative-free optimization algorithm.

The optimization algorithm has three key characteristics

that enhance its applicability in identification schemes: it

is global, derivative-free and iterative. Since it is a global

algorithm, unlike UKF and EKF it does not depend on the

initialization and does not require the designer to know a

good starting point. On the other hand, if the designer does

know a good parameter vector, the algorithm can benefit from

it. Since it is derivative-free, unlike LS and EKF, it does not

necessitate that the dynamic system should be either linear

or differentiable with respect to the parameter vector. Finally,

since it is an iterative algorithm, it can be easily integrated in

an on-line identification scheme, as the one we implemented

for the AUV Girona500 (see Fig. 1).

II. PRELIMINARIES

A. AUV Kinematics and Dynamics

The prior step before system identification is the mod-

eling of the underwater vehicle. According to the standard

underwater vehicles’ modeling properties [1], the vehicle can

be modeled as a rigid body subject to external forces and

torques:

Mv̇+C (v)v+D(v)v+g(η) = τ
η̇ = J (η)v

(1)

where:

• M = MRB + MA, where MRB and MA are the inertia

matrix for a rigid body and added mass respectively;

• C (v) =CRB (v)+CA (v) , where CRB (v) and CA (v) are

the Coriolis and centripetal matrix for a rigid body and

added mass respectively;

• D(v) = Dquad (v) + Dlin (v) , where Dquad (v) and

Dlin (v) are the quadratic and linear drag matrix respec-

tively;

• g(n) is the hydrostatic restoring force vector;

• J (η) is the Jacobian matrix transforming the velocities

from the body-fixed to the earth-fixed frame;

• η = [x y z φ θ ψ]T is the pose (position and orienta-

tion) vector;

• v= [u v w p q r]T is the body velocity vector;

• τ is the input (force/torque) vector.

The dynamic model of the vehicle can be written in the

following generic form:

τ = Y(η ,v, v̇,π) (2)

where the elements of the vector π involve the unknown

parameters of the inertia matrix M, the Coriolis and cen-

trifugal matrix C (v), the drag matrix D(v) as well as of the

hydrostatic force vector g(n). Depending on the configuration

of the vehicle, existing planes of symmetry and operational

speed, the parameter vector π may have fewer elements.

Nevertheless, in either case any underwater vehicle can be

presented by Eq. 1 or equivalently by Eq. 2.

B. Navigation Module

The navigation module estimates the vehicle position

([x y z]) and linear velocity ([u v w]). The fusion algorithm

in charge of merging all the navigation sensor measurements

is an extended Kalman filter (EKF) [10]. Vehicle orientation

([φ θ ψ]) and angular velocity ([p q r]) are not estimated but

directly measured by an Inertial Measurement Unit (IMU).

Details of the EKF implementation are presented in the

following.

1) State vector: The information to be estimated by the

EKF algorithm is stored in the following state vector:

xk = [x y z u v w]T (3)

where ([x y z]) represents the vehicle position in the world

coordinate frame and ([u v w]) is the vehicle linear velocity

represented in the vehicle coordinate frame.

2) System model: A constant velocity kinematics model

is used to determine how the vehicle state will evolve from

time k−1 to k. The following prediction equation is used:

x−k = f (xk−1,nk−1,uk, t). (4)

x−k =



















xk−1

yk−1

zk−1



+R(φkθkψk)









uk−1

vk−1

wk−1



 t +





nuk−1

nvk−1

nwk−1





t2

2





uk−1 +nuk−1
t

vk−1 +nvk−1
t

wk−1 +nwk−1
t















(5)

where t is the time period, u = [φ θ ψ] is the control

input determining the current vehicle orientation and n =

[nu nv nw] is a vector of zero-mean white Gaussian noise

Fig. 2. On-line identification scheme based on an optimization algorithm.

representing vehicle accelerations. Finally, the covariance

values of the noise, represented by the system noise matrix

Q = diag(σ2
nu
,σ2

nv
,σ2

nw
), were set empirically.

3) Measurements: Two linear measurement updates are

applied in the filter: pose and velocity updates. Both updates

follow equation:

xk = x−k +Kk(zk −Hx−k) (6)

where Kk is the Kalman gain, zk is the measurement itself

and H is the observation matrix.

Two sensors provide pose information: the global posi-

tioning system (GPS) gives the vehicle position in the plane

(x, y) while the vehicle is at the surface, and the pressure

sensor transforms pressure values into depth measurements

(z). Velocity updates are provided by a doppler velocity log

(DVL). This sensor is able to measure linear velocities with

respect to the sea bottom or the water around the vehicle.

Hence, we obtain:

zk = [xgps ygps zdepth udvl vdvl wdvl] (7)

H = I6×6 (8)

where I6×6 denotes the 6×6 identity matrix. If only the GPS

or the depth sensor data is available, zk and H have to be

properly arranged.

III. METHODOLOGY

The on-line identification method is based on a global

derivative-free optimization algorithm, and unlike other on-

line identification schemes it is not sensitive to the initial-

ization vector. The identification scheme consists of three

distinct modules: a) System Excitation, b) Metric Calcula-

tor and c) Optimization Algorithm. The System Excitation

module sends excitation inputs (sinusoidal, ramp, step) to

the vehicle in the form of body forces and torques. Concur-

rently, the Metric Calculator and the Optimization Algorithm

modules operate in a closed loop form. More specifically,

the Optimization Algorithm calculates a candidate parameter

vector that is fed to the Metric Calculator. Then, the Metric

Calculator evaluates the candidate parameter vector using

a metric based on the residual of the actual and predicted

commands. The predicted commands are calculated through

Eq. 2 utilizing the candidate parameter vector and the vehicle

state vector (output). The state vector is obtained from the

aforementioned navigation module (the sensor suite and the

optimal estimation state filter). This metric is directly fed to

the optimization algorithm to be used for the correction of

the estimation and the calculation of a new parameter vector.

The procedure continues iteratively until the optimization

algorithm meets its convergence properties. The process is

depicted in Fig. 2. Each module is described in detail in the

following subsections.

A. Excitation Module

This module is responsible for providing the appropriate

excitation inputs to the vehicle in the form of body force

and torque commands. These commands are transformed

to thruster commands through the thruster allocator matrix

which is implemented in the control software of the vehicle.

The excitation forces and torques τ are of two different types:

• Various step inputs for the identification of the linear

and quadratic drag coefficients.

• Various sinusoidal inputs (different amplitudes, frequen-

cies, single sinuses, sum of sinuses) for the identification

of the inertial and Coriolis/centripetal coefficients.

Finally, it should be noted that the identification of the

unknown parameters can be performed only in the actuated

DoFs of the vehicle.

B. Metric Calculator

This module is responsible for evaluating the parameter

vector provided by the Optimization Algorithm module. The

Metric Calculator module samples the input and output data

sets and stores them to separate buffers. Each output set

(buffer) contains measurements of the state vectors n, v, v̇,

as provided by the navigation module. The output data sets

are then filtered using a Savitzky-Golay smoother to remove

any noise and prepare the data for the evaluation process.

After filtering, the buffers:

• nb for the 3D position and orientation

• vb for the 3D linear and angular velocities

• v̇b for the 3D linear and angular acceleration

• τb for the input body forces and torques

are created for each data set. More specifically, for the jth

data set the following buffers are created:

nb
j =

[

n
j
0 n

j
1 ... n

j
n

]T

vb
j =

[

v
j
0 v

j
1 ... v

j
n

]T

v̇b
j =

[

v̇
j
0 v̇

j
1 ... v̇

j
n

]T

τb
j =

[

τ
j
0 τ

j
1 ... τ

j
n

]T

(9)

While collecting the subsequent data set j+1th, the previous

and the already preprocessed output data set are used in

combination with the π̂ parameter vector estimated by the

optimization algorithm, to calculate the predicted input set

τ̂b
j =

[

τ̂
j
0 τ̂

j
1 ... τ̂

j
n

]T

, where:

τ̂
j
0= Y

(

n
j
0, v

j
0, v̇

j
0, π̂

)

τ̂
j
1= Y

(

n
j
1, v

j
1, v̇

j
1, π̂

)

...

τ̂
j
n= Y

(

n
j
n, v

j
n, v̇

j
n, π̂

)

(10)

and Y(·) is the function that describes the dynamics of the

vehicle as described in Eq. 2. The evaluation metric for the

estimated parameter is given by the norm of the residual:

R2
j =

∥

∥

∥
τb

j − τ̂b
j

∥

∥

∥

2

. (11)

Subsequently, this evaluation metric is fed to the Optimiza-

tion Algorithm module in order to correct the estimated

parameter vector.

The evaluation process is significantly accelerated since

it is carried out asynchronously with the data acquisition

session. Every new parameter estimate is evaluated with

the previous input/output datasets while simultaneously new

data sets are stored in the background for future evaluations.

Thus, the evaluation can be performed immediately after a

new parameter estimate vector arrives from the Optimization

Algorithm module, which is computationally inexpensive as

discussed in the next section.

C. Optimization algorithm

We introduce in system identification a global derivative-

free black-box optimization algorithm, borrowed from pol-

icy search in reinforcement learning [11]. The algorithm

is a composition of a global and a local derivative-free

method, designed for the optimization of non-linear, multi-

modal, multi-variate functions. We chose to employ this

algorithm because of its theoretical properties, for it is:

global, derivative-free, and iterative (i.e., suitable for on-line

identification). We consider the problem

min
θ∈D

J(θ)

of minimizing a cost function J over a convex set D ⊂ R
n.

From this point onward we indicate by n the number of

dimensions of the domain. The algorithm is divided into

two phases: a controlled global random-search phase, and

a deterministic local line-search phase. The algorithm used

in the global phase has been introduced by Brachetti et al.

[12], and we report it in Algorithm 1.

The global phase is population-based, and the initial popu-

lation is drawn at random over D (line 3). It is also possible to

add to the initial population any good point known in advance

by the designer. The population at any time is composed by

the best m points ever sampled, where m is a parameter of

the algorithm. The bigger m, the more likely the algorithm

is to avoid non-global minima. The algorithm terminates

when the difference between the best and the worst point of

the population is less then the parameter ε . The population

evolves by sampling a random family of n+ 1 points from

the population itself, and computing the weighted centroid

(lines 9–10). The next trial point is computed as a weighted

Algorithm 1 Controlled Random Search Phase

1: Input: a positive integer m ≥ n+1, ε > 0

2: k = 0

3: compute the initial set: Sk = {θ k
1 , . . . ,θ

k
m} where the

points θ k
i , i = 1, . . . ,m are chosen at random over a box

D

4: evaluate J at each point θ k
i , i = 1, . . . ,m.

5: determine the points θ k
max, θ k

min and the values Jk
max,

Jk
max such that: Jk

max = J(θ k
max) = max

θ∈Sk
J(θ) and Jk

min =

J(θ k
min) = min

θ∈Sk
J(θ)

6: if Jk
max − Jk

min ≤ ε then

7: STOP

8: end if

9: choose at random n+ 1 points θ k
i0
,θ k

i1
, . . . ,θ k

in
over Sk,

where J(θ k
i0
)≥ J(θ k

i j
), j = 1, . . . ,n

10: determine the centroid ck = ∑n
j=0 wk

jθ
k
i j

11: determine the trial point θ̄ k given by

θ̄ k = ck −αk(θ k
i0
− ck)

where

wk
j =

ηk
j

∑n
r=0 ηk

r
, ηk

j =
1

J(θ k
i j
)−Jk

min+φ k
,

αk = 1−
J(θ k

i0
)−∑n

j=0 wk
jJ(θ

k
i j
)

Jk
max−Jk

min+φ k

and

φ k = n
(Jk

max − Jk
min)

2

J0
max − J0

min

;

12: if θ̄ k /∈ D then

13: go to 9

14: else

15: compute J(θ̄ k)
16: end if

17: if J(θ̄ k)≥ Jk
max then

18: Sk+1 = Sk, k = k+1, go to 9

19: else

20: Sk+1 = Sk ∪ {θ̄ k} − {θ k
max}, k = k+1, go to 5

21: end if

reflection of the worst point of the population with respect

to the weighted centroid (line 11).

This algorithm has been proved to converge to the global

minimizer if uniform random sampling is performed together

with the weighted centroid reflection [12]. Since this step

guarantees the convergence in the limit by assigning a non-

zero probability to the neighborhood of any point on the

domain, it often compromises the performance on most

functions in practice. Therefore, we chose not to perform the

uniform sampling, and to rely only on the heuristic provided

by the centroid reflection. This approach has been extensively

numerically evaluated in the literature [11], [12], [13].

We followed the approach presented by Leonetti et al. [11]

and combined this global search with a deterministic local

2000 2100 2200 2300 2400 2500 2600 2700 2800 2900
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

R
2

u
= 0.785

t(sec)

u(t)

û(t)

Fig. 3. Validation in surge velocity.

search. Therefore, instead of employing Algorithm 1 with

a very small ε (typically in the order of 10−6) we let

ε = 10−2, and performed a deterministic local search in the

neighborhood represented by the population at the time the

global search is terminated. While global stochastic search is

a powerful method to avoid being trapped in local minima,

the random nature of its sampling makes it less effective

when the region of the global minimizer has been identified.

Thus, the best point from the first global phase is used as the

starting point of the following local search, which employs a

coordinate-search algorithm with line-search expansions [14]

reported in Algorithm 2.

Algorithm 2 Line Search Phase

1: Input: θ 0 ∈ R
n, α̃0

1 , . . . , α̃
0
2n > 0, σ ∈ (0,1), γ ∈ (0,1),

δ > 1, ε > 0

2: k = 0

3: if max
i=1,...,2n

{α̃k
i } ≤ ε then

4: STOP

5: end if

6: i = 1, yk
1 = θ k, xk = θ k

7: if J(yk
i + α̃k

i ei)≤ J(yk
i)−γ(α̃k

i)
2 and J(yk

i + α̃k
i ei)< J(xk)

then

8: αk
i = α̃k

i , xk = yk
i +αk

i ei

9: while J(yk
i + δαk

i ei) ≤ J(yk
i)− γ(δαk

i)
2 and J(yk

i +
δαk

i ei)< J(xk) do

10: αk
i = δαk

i , xk = yk
i +αk

i ei

11: end while

12: α̃k+1
i = αk

i

13: else

14: αk
i = 0

15: α̃k+1
i = σα̃k

i

16: end if

17: yk
i+1 = yk

i +αk
i ei

18: if i < 2n then

19: i = i+1, go to 7

20: end if

21: θ k+1 = xk, k = k+1, go to 3

The algorithm uses positive step sizes α j, j = 1, . . . ,2n

along the cardinal directions {e1, . . . ,en,−e1, . . . ,−en} to

1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

R
2

v
= 0.759

t(sec)

v(t)

v̂(t)

Fig. 4. Validation in sway velocity.

search for a point that improves the current best point starting

from θ 0. If the largest step maxi=1,...,2n{α̃k
i } is smaller than

the parameter ε the algorithm terminates (line 3). Trial points

are subsequently generated, along the direction ei and with

steps αi. If a point along a direction ei starting at yk
i improves

yk
i of at least γ·(αk

i)
2, and also improves the current best

point xk
i , then αk

i is increased by a factor δ , and a farther

point along ei is tried (lines 7–12). This is the expansion

phase. If the trial point is not sufficiently improving, αk
i is

reduced by a factor σ in a contraction phase (lines 14–15),

and other directions are polled. Typically δ = 2 and σ = 1/2.

When all the directions have been contracted up to ε the

algorithm terminates. Coordinate-search algorithms poll the

function on a finite number of points, and are guaranteed to

provide a locally optimum value at the required precision ε .

No point closer to the current best point than ε is polled.

IV. EXPERIMENTAL RESULTS

In order to prove the effectiveness of the proposed method-

ology, the on-line identification procedure was carried out for

the AUV Girona500 (see Fig. 1). According to the method

analyzed in Section III, we provide sinusoidal and step

excitation inputs in the form of body forces and torques

in the Excitation Module. The vehicle’s state vector is

measured via the Navigation Module presented in Subsection

II-B. The identification scheme was applied on-line with the

Metric Calculator and the Optimization Algorithm modules

cooperating in a closed loop form.

The vehicle is under-actuated about surge axis (roll).

Also, in this work we consider no actuation about the

sway axis (pitch) because large pitch angles may cause the

Navigation Module (Section II-B) to diverge, due to false

DVL measurements. Thus, with the existing setup we cannot

provide adequate excitation inputs to properly identify the

vehicle in pitch either. However, the vehicle is statically

stable, so without actuation about surge and sway axes the

roll and pitch angles are always close to zero. According to

the configuration of the vehicle, existing planes of symmetry

and operational speed, we can safely assume that Girona500

can be described by the following dynamic model:

0 100 200 300 400 500 600 700 800
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

R
2

w
= 0.737

t(sec)

w(t)

ŵ(t)

Fig. 5. Validation in heave velocity.

muu̇−mvvr+mwwq+(W −B)sin(θ)−Xuu−X|u|u|u|u = X (12)

mvv̇−mwwq+muur− (W −B)cos(θ)sin(φ)−Yvv−Y|v|v|v|v = Y (13)

mwẇ−muuq+mvvp− (W −B)cos(θ)cos(φ)−Zww−Z|w|w|w|w = Z (14)

mr ṙ− (mu −mv)uv−Nrr−N|r|r|r|r = N (15)

The dynamic model is highly non-linear and can be written

in the generic form as described in Eq. 2 where X , Y , Z, N

are the input commands, mu, mv, mw, mr, W −B, Xu, X|u|u, Yv,

Y|v|v, Zw, Z|w|w, Nr, N|r|r correspond to the unknown parame-

ters and u, v, w, p, q, r, φ , θ are provided by the navigation

module. The optimization algorithm has been executed with

the nominal parameter values as presented in the previous

section, with bounds [−1000,1000] for all the unknown

parameters, and converged to the following values: mu =
249.5384, mv = 367.7126, mw = 659.9799, mr = 74.9024,

W − B = −37.3058, Xu = −42.4181, X|u|u = −125.3578,

Yv =−75.7673, Y|v|v =−447.6195, Zw =−44.0561, Z|w|w =
−325.0138, Nr = −20.5833, N|r|r = −60.9373. In order to

prove the accuracy of the estimated parameters, an additional

input/output data set was acquired to be used for validation

purposes only. Using the estimated parameters and applying

the validation inputs X , Y , Z, N, we solved the differential

Equations 12–15 to calculate the predicted states û, v̂, ŵ,

r̂. The yielded responses are given in Figures 3–6 along

with the corresponding measured signals u, v, w, r. As it

can be seen, satisfactory coefficients of determination R2

are calculated for all DoFs. Finally, it should be noted that

the values of the estimated parameters are reasonable in

engineering terms, since (added) masses and (added) inertias

were found positive as well as greater than the vehicle’s mass

(≈ 175kgr). The hydrodynamic friction coefficients of first

and second order were correctly found negative.

V. CONCLUSIONS

We presented an on-line identification scheme for au-

tonomous underwater vehicles, that estimates the unknown

dynamic parameters based on a global derivative-free op-

timization algorithm. The proposed algorithm has the fol-

lowing significant attributes in comparison to other on-

line identification schemes: a) it is not sensitive to initial

conditions, b) it does not depend on the differentiability

750 800 850 900 950 1000 1050 1100 1150 1200 1250 1300
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

R
2

r
= 0.857

t(sec)

r(t)

r̂(t)

Fig. 6. Validation in yaw velocity.

of the model with respect to the parameters, and does not

require a linear formulation, c) demonstrates quick conver-

gence. The applicability and performance of the proposed

algorithm were experimentally verified with the Autonomous

Underwater Vehicle Girona500.

REFERENCES

[1] T. Fossen, “Guidance and control of ocean vehicles,” Wiley, New York,
1994.

[2] P. Ridao, A. Tiano, A. El-Fakdi, M. Carreras, and A. Zirilli, “On the
identification of non-linear models of unmanned underwater vehicles,”
Control Engineering Practice 12, 2004.

[3] D. Panagou, G. Karras, and K. Kyriakopoulos, “Towards the stabi-
lization of an underactuated underwater vehicle in the presence of
unknown disturbances,” MTS/IEEE OCEANS, 2008.

[4] D. Smallwood and L. Whitcomb, “Adaptive identification of dynami-
cally positioned underwater robotic vehicles,” IEEE Transcactions on

Control Systems Technology, pp. 505–515, 2003.
[5] P. van de Ven, T. Johansen, A. Sorensen, C. Flanagan, and D. Toal,

“Neural network augmented identification of underwater vehicle mod-
els,” Control Engineering Practice 15, 2007.

[6] S. Julier and J. Uhlmann, “A new extension of the kalman filter to
nonlinear systems,” Proc.of the Int. Symp. Aerospace/Defense Sensing,

Simul. and Controls, 1997.
[7] R. V. der Merwe and E. Wan, “The square-root unscented kalman filter

for state and parameter-estimation,” IEEE International Conference on

Acoustics, Speech, and Signal Processing, pp. 3461–3464, 2001.
[8] M. VanDyke, J. Schwartz, and C. Hall, “Unscented kalman filtering

for spacecraft attitude state and parameter estimation,” Advances in

the Astronautical Sciences, pp. 217–228, 2004.
[9] G. Karras, S. Loizou, and K. Kyriakopoulos, “Towards semi-

autonomous operation of under-actuated underwater vehicles: sensor
fusion, on-line identification and visual servo control,” Autonomous

Robots, pp. 67–86, 2011.
[10] G. Welch and G. Bishop, “An introduction to the kalman filter,”

University of North Carolina at Chapel Hill, Chapel Hill, NC, USA,
Tech. Rep., 1995.

[11] M. Leonetti, P. Kormushev, and S. Sagratella, “Combining local and
global direct derivative-free optimization for reinforcement learning,”
Cybernetics And Information Technologies, vol. 12, no. 3, pp. 53–65,
2012.

[12] P. Brachetti, M. De Felice Ciccoli, G. Di Pillo, and S. Lucidi, “A new
version of the price’s algorithm for global optimization,” Journal of

Global Optimization, vol. 10, no. 2, pp. 165–184, 1997.
[13] W. Price, “Global optimization by controlled random search,” Journal

of Optimization Theory and Applications, vol. 40, no. 3, pp. 333–348,
1983.

[14] S. Lucidi and M. Sciandrone, “On the global convergence of
derivative-free methods for unconstrained optimization,” SIAM Journal

of Optimization, vol. 13, no. 1, pp. 97–116, 2002.

