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Abstract— Incremental progress in humanoid robot locomo-
tion over the years has achieved important capabilities such
as navigation over flat or uneven terrain, stepping over small
obstacles and climbing stairs. However, the locomotion research
has mostly been limited to using only bipedal gait and only
foot contacts with the environment, using the upper body for
balancing without considering additional external contacts. As a
result, challenging locomotion tasks like climbing over large ob-
stacles relative to the size of the robot have remained unsolved.
In this paper, we address this class of open problems with an
approach based on multi-body contact motion planning guided
through physical human demonstrations. Our goal is to make
the humanoid locomotion problem more tractable by taking
advantage of objects in the surrounding environment instead
of avoiding them. We propose a multi-contact motion planning
algorithm for humanoid robot locomotion which exploits the
whole-body motion and multi-body contacts including both the
upper and lower body limbs. The proposed motion planning
algorithm is applied to a challenging task of climbing over
a large obstacle. We demonstrate successful execution of the
climbing task in simulation using our multi-contact motion
planning algorithm initialized via a transfer from real-world
human demonstrations of the task and further optimized.

I. INTRODUCTION

Research on humanoid robot locomotion has mainly fo-
cused on motion pattern generators for bipedal walking gaits
[1]. Using state-of-the-art bipedal motion pattern generators,
it is now possible to navigate complex scenarios including
negotiate obstacles or rubble mainly through stepping-over
methods, climbing stairs and avoiding obstacles altogether by
circumnavigating them in the environment [2]. The current
state-of-the-art methods only allow humanoids to cross over
obstacles of height less than the knee length of the robot
while avoiding any external contact with the obstacle in
the process. Also, any other contact with the surrounding
environment is strictly avoided during the process and motion
planners explicitly generate paths that incorporate safety dis-
tance margins to avoid such collisions. Due to this, humanoid
robots tend to fall short of the many expectations to execute
tasks as well as humans in disaster situations, for example.

Through multi-body contact locomotion a humanoid robot
can gain instantaneous increase in the stability region for
balancing and manage to overcome large obstacles in the
surrounding environment. The main novelty of our proposed
approach is that the robot would be able to overcome larger

1Department of Advanced Robotics, Istituto Italiano di Tecnologia, Via
Morego 30, 16163 Genova, Italy. pavan.kanajar@iit.it

2Robot Intelligence Lab, Dyson School of Design Engineering, Im-
perial College London, South Kensington, London SW7 2AZ, UK.
p.kormushev@imperial.ac.uk

Fig. 1: The humanoid robot COMAN attempts a climbing
task to get on top of a wooden obstacle.

obstacles than previously possible by climbing and crossing
them over using multi-body contacts, as illustrated in Fig. 1.

Multi-body contact locomotion is a type of locomotion
where the humanoid robot is not restricted to only using its
feet for support, but also can use other body parts for contact
such as hands, elbows and knees. The availability of multiple
degrees of freedom in humanoid robots can be advantageous
if exploited well to effectively overcome obstacles.

The support polygon of the robot increases with every
additional robot foot, hand or other part of the kinematic
chain that is in contact with environment. By defining novel
stability measures for newly made contact similar to friction
cone constraints, we develop a contact motion generation
algorithm with several contact constraints that is able to
overcome and cross a large obstacle in the path of the
humanoid robot. Our approach is bootstrapped by a human
demonstration of a similar climbing task in the real world.

A motion capture experimental setup is used to record the
human motion data for the climbing task, and to specify
and show the task goals for the humanoid robot to be
performed. Through data analysis, rich data about the con-
tact sequence and configuration information is extracted for
solving the motion planning problem. We use the humanoid
robot COMAN (shown in Fig. 2) which has 23 degrees of
freedom (DoFs) for experiments in simulation. The size of
the humanoid robot COMAN approximates the dimensions
of a 4-year-old child. The height of COMAN from the foot
to the center of the neck is 945 mm. The total weight of the
humanoid robot is 31.2 kg with the legs and the waist module



weighting 18.5 kg and the torso and the arms weighting
12.7 kg. One unique feature of COMAN is its passive
compliance in the legs, which makes it more robust but also
more difficult to control. Special care needs to be taken to
adapt the conventional ZMP-based walking generator for the
complaint legs [3].

We propose a multi-contact search algorithm based on
the whole-body control approach which can directly work
with the analyzed human motion data to formulate and guide
the multi-contact search towards the optimal solution while
adapting the human demonstration to the humanoid robot’s
body. This approach allows any robot body part to make
contact with the obstacle, as it only depends on the recorded
data observations.

Fig. 2: The humanoid robot COMAN is shown on the left
side, and on the right is its simulated version in the Gazebo
simulation environment.

II. RELATED WORK

OpenSoT presented a whole-body control library for
humanoid robot to generate whole-body motion for the
Cartesian space tasks. The library implemented a cascade of
Quadratic Programming (QP) problems suitable for solving
hierarchical IK problem on humanoid robot along with
constraints and bounds [4].

Contact-consistent Elastic Strips (CES) framework was
proposed for humanoid locomotion in unstructured envi-
ronments, where the environment scene was scanned for
contacts to choose candidate support regions [5]. In their ap-
proach a global planner was used to guide the initial solution
for the contact planning framework. Here also they restrict
the multi-body contact with environment to only wrists and
feet to increase support during locomotion, whereas we try
to not limit the contact to only a few body parts.

A humanoid robot while maintaining balance on its feet
is taught to complete a board cleaning task through a
kinesthetic demonstration of the task was presented in [6].
The robot learns to produce appropriate interaction forces

with the arm to clean the board. An online optimization
of the footsteps placement for gait generation for humanoid
walking in the presence of external disturbances likes pushes
was presented in [1]. Real-time imitation of full-body motion
of human demonstration on humanoid robot COMAN while
maintaining stability was presented in [13]. The imitation
motions of COMAN where constrained using prioritized task
control to maintain stability.

Igor [7] introduced contact invariant optimization (CIO)
method to synthesize different complex tasks on a humanoid
like character which involved contact with hands and feet
while generating human-like behaviors for getting up, crawl-
ing and climbing tasks via multi-contacts with the objects in
the surroundings environment. Here they already predefine
the surface patches on the humanoid character over which
the contacts can appear or disappear over time during the
tasks.

A humanoid robot learning to perform a forehand swing
with a tennis racket from human demonstrations was pre-
sented in [8]. The demonstrated movement trajectories are
encoded with control policies with a set of nonlinear dy-
namical system. Since these robot programming method by
demonstration only learns control policies in the joint space,
it fails to capture interactions in the Cartesian task space
especially for floating base humanoid robot under multi-
contact in locomotion tasks.

Kuffner [9] presented a dynamical stable motion planning
for a humanoid robot placing foot above an obstacle while
keeping balance of the robot. Here their motion planner
used RRT algorithm to search for a solution path from a
random set of statically-stable configurations which also lies
within the obstacle free configuration space while checking
for the balance of the humanoid robot. Whereas here we get
our set of desired poses from human demonstrations of the
task for searching the optimized solution. Although we only
present a statically stable solution for the climb task over
large obstacle.

Zucker presented a continuous trajectory optimization for
opening a door with a humanoid robot HUBO+. Special
emphasis was placed on generating smooth trajectories to
minimize unnecessary motion of the robot [10].

Robust walking for humanoid robot Atlas through an
online quadratic whole-body optimization generating joint
torque for fast locomotion was presented in [11]. They
incorporated a quadratic convex problem within planner
which optimizes the future steps of the humanoid robot to
generate robust footsteps against external pushes and terrain
variations.

Autonomous planning and control framework for robust
climbing of a general ladder-like structures with humanoid
robot DRC-Hubo where the robot uses arms to support
perturbations while climbing was presented in [12]. In this
framework whole-body motion trajectories were generated
through motion-primitive guided, sampling-based adaptive
planner for climbing the ladder. Also with a comparison
of different ladder climbing strategies like backward facing,
sideway facing and traditional forward facing robot for task



Fig. 3: Shows the demonstration of the climbing task with table as an obstacle. The demonstrator is wearing the Xsens
bodysuit to record movements during the task. In the first picture we notice that the shoulder masses are completely supported
by the elbows. Similarly in last picture we also notice that the upper thigh masses are completely supported by the knees.

execution are presented. In our climb approach over obstacle,
through the demonstration of the task we are inherently
specifying the best strategy to climb over the obstacle while
also maximizing the support region for the robot through
multi-contact during the task.

Kanajar [15] presented a mobile manipulator Neptune, to
help motivate children with motor impairment to interact and
encourage patients to work on their rehabilitation routines
through interactive devices. This work was limited to a
single arm demonstration while the current paper expands
the interactive guidance to a full body humanoid robot.

III. MOTION CAPTURE DATA COLLECTION AND
MOVEMENT PLAYBACK ANALYSIS

We perform a human demonstration of the climbing ob-
stacle task, where we choose a table as an obstacle to climb
on. We select the table with height h = 0.35 m, such that
the person can easily make contact with the table obstacle
using both the arms and legs in the process, in order to
illustrate that usage of additional body contacts can help in
climbing larger obstacles for a humanoid robot. Here the
height of the table is a crucial determining factor such that
both the arms and legs can reach it and also the distance of
the person in front of the obstacle. We then record the human
demonstration of the climbing task with a full-body motion
capture system like Xsens bodysuit. The demonstrations
begin with the person standing in front of the table obstacle
and performs the climb task as shown in Fig. 3.

A. Xsens Bodysuit

We use the Xsens bodysuit to record human demonstra-
tions of the climb task. Xsens bodysuit has 18 motion sensors
each measuring 3 degrees of freedom at each joint link spread
over the bodysuit to capture the movements with a total of 54
DoFs. For mapping the Xsens motion data from the bodysuit
to humanoid robot COMAN requires reduction in the number
of DoFs recorded to 23 DoFs only. We here ignore the DoFs
related to wrists, neck and we combine 9 DoFs in the upper

body as responsible for movement at the pelvis joint to 3
DoFs, which reduces the number of DoFs to 30. Also we can
ignore the additional DoFs in the bodysuit sensors which the
robot joints lack over certain body regions, bringing down
the total recorded DoFs from 54 to 23.

The Xsens motion capture system is setup by providing
human measurements, followed by sensor initialization rou-
tines for accurately recording the movements during the task.
The Xsens movement data acquisition rate is set at 100 Hz.
We then compensate the Xsens movement data (joint angles)
by applying the following computations.

1. Change reference from bodysuit frames to robot link
frames according to sensor placements in the bodysuit.

2. Apply robot joint limits (θmin,θmax) to the recorded
motion angles.

We then use a direct mapping method to map human
demonstrated movements to humanoid robot COMAN as a
direct joint angle mapping.

θXsens→ θCOMAN (1)

B. Playback Movements in Simulation

We use the direct mapping of demonstrated movements
for humanoid robot given by (1) to playback the climbing
task in simulation environment. The environment consists of
an obstacle (wooden cuboid) along with a simulation version
of humanoid robot COMAN as shown in Fig. 1. The robot is
operated in a joint position control mode. The mapped joint
positions from the demonstration is applied as joint position
references to the humanoid robot COMAN. We see that the
robot performs similar movements demonstrated during the
climb task, but the robot does fail sometimes to complete
the task.

This is due to the difference in the physical size between
the humanoid robot and human demonstrator. So we had to
adjust the obstacle height and position of the robot several
times, in order to make sure that both the arms and legs could



make contact with the obstacle during playback of move-
ments from the recorded motions of the climbing task. The
successful attempt of climbing task over a wooden obstacle
during playback of movements on humanoid robot COMAN
in simulation is used to get references for describing the
task. Although the robot nearly completes the task, there
is instability and the robot fails to finish the task just by
playback of the human movements as shown in Fig. 4. Thus,
we need to optimize the contact references and motions for
the task to guarantee successful execution of the climb task.

C. Contact References for Climb Task

We use the data collected like robot positions, joint angles
during the playback of movements in simulation to compute
contact references. Instead of providing continuous joint
angle references for the humanoid robot, we can discretize
the movements in terms of contact position references for
specifying the climb task now.

The humanoid robot links are approximated with geo-
metrical shapes like square, cylinder and spheres, also the
virtual environment objects are approximated with suitable
geometrical shapes. We use off-the-shelf Flexible Collision
Library [14] to detect collisions between two geometrical
bodies.

We read the robot position and links positions at a fixed
time interval 50 ms and compute collision detection for all
robot links against the obstacle. Using this, a list of contact
sequence is compiled with contact states, consisting set of
active contacts and their corresponding contact positions for
entire duration of the task demonstration. If there is a change
in contact state only then we consider it as state in contact
sequence.

We can build a contact sequence by adding active contacts
or removing the inactive contacts as shown below.

State1 State2 State3 State4 State5 State6

Lwrist Lwrist Lwrist Lwrist Lwrist Lwrist
Rwrist Rwrist Rwrist Rwrist Rwrist Rwrist
Lfoot Lelb Lelb Lelb Lelb
Rfoot Relb Relb Relb Relb

Lknee Lknee
Rknee

s > 0 s > 0 s = 0 s > 0 s = 0 s = 0

Here a couple of states are duplicated, because the position
distance between contact states are not ignored and are
encoded as a new state. Whereas here our intention is to
encode only the effective movement responsible for the task,
i.e., a unique set of contact state transitions and references
(although discrete in nature). So here we make use of
additional link (support) position to derive the information
about the absolute stability at the contact state. We eliminate
the duplicated intermediate state, by computing this stability
measure described in the next section. The last row of the
table show the states with stability measure(s) as s = 0 for
absolute stability or else as s > 0, we reduce the set of
contact sequence with only states under absolute stability

to compile our effective contact sequence for executing the
climbing task. Finally we obtain the reduced set of states
containing the contact lists as shown below associated with
contact position references. This reduced set of states are
necessary to describe the climb task for humanoid robot with
our multi-body motion planning algorithm.

State1 State2 State3

Lwrist Lwrist Lwrist
Rwrist Rwrist Rwrist
Lelb Lelb Lelb
Relb Relb Relb

Lknee Lknee
Rknee

s = 0 s = 0 s = 0

IV. MULTI-BODY MOTION PLANNING ALGORITHM

Here we propose a multi-body motion planning algorithm
for optimizing the contact position references for a humanoid
robot over stability and contact constraints for the climb
task. The human motion data collected from observation
serves as an initial solution for our algorithm, which is
used to optimize the contact references for multi-contact
motion planning of the task. Our motion planning algorithm
computes IK solutions using a quadratic programming based
solver (OpenSoT). The steps involved in searching contact
position algorithm are listed below.

1. Inputs: Contact sequence and reference, Posture
(joint configuration) from Xsens bodysuit, initial posi-
tion of the humanoid robot.
2. Pick the next input in the list.
3. Task formulation to get IK solution.
4. Optimize contact references over stability costs,
contact constraints and collision constraints.
5. Update all contact references in the state sequence
by repeating steps from 2 to 4 to get

Each time, the algorithm is called with next of input,
we optimize the contact reference positions while minimiz-
ing stability costs and satisfying contact constraint (i.e., to
maintain contact positions on the top of obstacle ) whereas
collision constraints at contact points on table sides (i.e., to
avoid contact) through obstacle avoidance mechanisms.

A. Task Formulation

The task formulation builds on whole-body control library
[4]. The task formulation process consists of combining
different parts of the robot links with desired contact and
each task is applied with an operational reference position
to satisfy. We focus only on the inverse kinematic solutions,
where each Task Ti is represented with its associated Jacobian
Ji and its reference error function ei. The error in the task
reference is minimized while optimizing the joint solutions.

Ti = (Ji,ei) (4)



Fig. 4: Direct playback of the mapped movements from a human demonstration onto humanoid robot COMAN to perform
the climb task over wooden obstacle in Gazebo simulation. The robot fails to climb on top of the wooden obstacle.

The observed contact sequence is used how to determine
the tasks must be formulated. Using the recorded input con-
tact references, we define a task for each contact reference
as (4). For example if we have contact references at right
wrist (Rwrist) and left wrist (Lwrist), we can denote the
corresponding tasks as TRwrist and TLwrist . If we have contact
references for both wrists at the same time we can combine
the tasks as Tcomb by concatenating their corresponding
Jacobians Ji and errors ei to solve both the tasks at the same
time, which is given as

Tcomb = TRwrist +TLwrist (5)

For every input contact reference we consider current and
previous list of active contacts to guarantee inter-connectivity
between the two postures. We achieve this by computing the
common support link between the adjacent contact sequences
and by using this common support link as a frame of
reference in the task definition. For example with right foot
(R f oot) as common support link, we modify tasks in (5) to
represent the jacobians of the task with R f oot as reference
frame.

Solving IK for a robot with more than 6 DoFs have
many advantages but the most troubling disadvantage is the
certainty of having infinite solutions to choose from, which
can throw off robustness in searching solution for a humanoid
robot. So we use the observed motion data from the Xsens
suit to be applied as a posture hint in our task definition. This
enables us to also mimic the human movements observed
during the demonstrations. The posture task uses the mapped
joint angles as a joint reference and forces the optimizer to
find solution close to it. This can be achieved in two ways:

1. By forcing the posture task to be solved along with all
tasks, where in particular the posture is strictly adhered.

Tcomb = TRwrist +TPosture (6)

2. Prioritizing the tasks over posture allows us to find
unique solutions while staying close to the desired postures
but also meeting the other task reference requirements. Here
the tasks TRwrist and TLwrist are given higher priority than
posture task.

Tcomb = (TRwrist +TLwrist)/TPosture (7)

Prioritizing the tasks in such ways can strictly guarantee
task references solutions with minimal error, for example if

legs are in support its references would take higher priority
over other tasks. We follow these strategies to automati-
cally build the task according to these rules, with some
assumptions like if multiple common supports are present;
we side with some links for common support. Our algorithm
generates task formulations using these set of rules to define
task for any contact sequence list.

B. Cost definition for optimization

In this section we define the costs over which we can
optimize the contact references to efficiently mimic the
human demonstrated multi-contact task, while achieving the
task in a realizable way.

1) Stability Cost: We define stability for contacts in a
geometrical way as shown in Fig. 5 and it can be related
strongly to friction cone definition. For example, if wrist is
in contact with the surface we can ascertain its position is
good enough to support the robot using this cost. We know
that the shoulder is completely supported by wrists only if
its projected position on the inertial frame coincides with the
wrist position. If the contact can support the mass, we call
this as support phase. We use this projection difference as a

Fig. 5: The upper mass represents shoulder and lower mass
is wrist. In (a) the shoulder is fully supported by the wrist, in
(b) only a fraction of the shoulder mass is supported and in
(c) the shoulder mass although supported can slide causing
instability at the contact point if force is exerted.

measure of stability. And if a contact has non zero projection
difference and without sliding if it can be made to support the
shoulder mass, we call this reach-to-supportable phase. Here
we select some body portions to define stability for the entire
humanoid robot, we select shoulders for the upper body parts
(in arms) and we select upper thigh region for lower body
parts (in legs). Although these will not guarantee full stability
of the robot unless we also consider support polygon to be
used in conjunction to these definitions, to check if these



select parts are inside or on the support polygon region. We
use projection of shoulder position over, when wrist or elbow
are in contact with the obstacle and projection of upper thighs
over, when knee or foot are in contact with the obstacle.

We define optimal value for the stability at any contact
using its link length l up to the support mass i.e., either
shoulders or upper thigh position as

lsin(θ) (8)

where θ is the angle measured as shown in the Fig. 5. The
optimal range for the θ to allow contact to support the mass
without slipping is defined as 35◦ ≥ θ ≥ 0◦. The absolute
stability (full support) occurs at 0◦.

2) Collision Cost: As we mention earlier, we approximate
the robot links by simple geometrical objects like cylinders
and spheres to enable quick collision checks. We use flexible
collision library [14] for detecting these collisions, which
outputs the closest points cp1, cp2 on the objects and distance
between them. We define position constraints on our task
references to avoid collision in case of internal collisions by
bounding with threshold εthres < 0.05. The general constraint
is defined as below

‖ cp1− cp2 ‖< εthres (9)

These collision constraints are enforced on the reference task
formulations to find solutions in collision free space. We
define only a minimal set of collision constraints using a
group of selected link bodies for inter-body collisions in the
humanoid robot as follows:

(i) Identical link bodies in the left and right arms.
(ii) Identical link bodies in the left and right legs.

(iii) Elbows and knees on arms and legs.
The last group helps to avoid upper and lower body collisions
sufficiently in our experiments. Collision avoidance with
the obstacle in environments are obtained through surface
bounds defined in the reference optimization section, which
helps to keep limbs from penetrating the surface.

C. Reference optimization

The contact reference positions must be optimized to find
stable contact position references for the humanoid robot to
climb on the obstacle. The contact position references are
defined using configuration of the given robot link repre-
sented in the world frame. Then to impose the desired contact
reference, we define as an equality constraint between two
Cartesian frames, Xi on the robot link i and the desired
contact reference position Xo

i on the obstacle, where X ∈R6

represent the 6D contact vector containing both the position
vector and orientation information as X = [x,y,z,r, p,y]T .
Since we consider multi-contact motion-planning we allow
contacts to take place over several robot links N indicated
by i = {1, ...,N}. We define our cost function L(X) for
optimization of reference contact positions using constraints
and costs defined before as

L(X)i = w1 ‖ Xi−Xo
i |b‖+w2 ‖ Xi−So

i |b‖ (10)

∀i = {1, ...,N}

where Xo
i is the initial reference contact position obtained

from the playback analysis for the robot link i, So
i is the

projected position of the shoulder or upper thigh robot link
depending on the robot link under contact constraint. The
first term imposes the reference contact position and the
second term impose the support constraint which must be sat-
isfied as equality constraints. Whereas the bounds b enforces
the contact points to stay on obstacle surface and within
the obstacle region while optimizing the references. We
introduce weights for these terms to place more importance
on each terms here using w2 ≥ 0 and w1 ≥ 0.

To choose X such as to minimize our cost function L,
we consider the gradient descent algorithm that starts with
an initial guess of reference positions Xo

i obtained from
playback of demonstrated data, and then repeatedly change
this references X to make our cost smaller, until we converge
to a value that minimizes L. And perform the update on X
using the function defined as

Xi := Xi−α
∂L(X)

∂Xi
(11)

Here when we start the search with an initial guess Xo
i ,

we activate only the first term in L by setting w2 = 0, w1 =
0.1 to search only reachable references. Then we solve for
IK solution with task formation as described before using
the contact sequence associated with Xo

i . We then check for
solution error IKerror and perform the update function on X
until the error is minimized as IKerror < 0.01.

Using the joint solution we compute the So
i support link

position for the contact link i and plug into the cost function
L. Next we activate only the second term in L by setting
w1 = 0, w2 = 0.1 to search for stable contact references. We
then update the X and compute the IK solution until L is
minimized sufficiently. We repeat this process of updating all
the contact references in the current contact state. Then we
repeat this for the next set of contact inputs in the sequence
of movements.

D. Search Optimization for intermediate postures
Once we have optimized the desired contact position

references to obtain COMAN keyframes along with the con-
tact equality constraints, inter-connectivity through common
support link between adjacent contact references, stability
costs optimized at the new set of contacts. But the set of
postures (joint configurations) resulting from a mere trajec-
tory interpolation of these adapted COMAN keyframes will
not satisfy the static stability, resulting in unstable motions.

We propose a back-tracking search method which con-
siders the contact position references in reverse order to
search set of intermediate references in the process. This
method reads the last contact reference as input and then
apply contact references from its preceding state to begin
the backward search. We relax the contact constraints at
the input configuration only if those contacts do not appear
at the final configuration. The stability costs are formulated
as constraints and at these the input contact is bounded to
stay in supportable mode. This allows the planner to find
intermediate support location if needed.



Fig. 6: This is a sequence of screenshots taken while the humanoid robot COMAN is climbing on top of the wooden obstacle
in the simulated world.

V. EXPERIMENTAL RESULTS

The multi-contact motion planning algorithm is applied on
the humanoid robot COMAN for the climbing task. In our
experiments we use a Gazebo robot simulator for simulating
COMAN in a virtual world environment. The virtual world
includes a wooden obstacle of cuboid shape used for the
climbing task and the simulated COMAN is placed in front
of this wooden obstacle. The height of the obstacle in the
world is h = 0.275 m, whereas COMAN’s knee height
is slightly higher at 0.291 m. The mismatch in obstacle
heights used in demonstration and simulation are optimized
by our multi-contact motion planner with knowledge about
obstacle height we use in the simulated world. The initial
configuration of COMAN is obtained from simulator and
is used in the search optimization process to eventually
generate a set of statically stable solutions consisting of
sequential robot postures to be executed on the robot. The
stable solutions consists of joint angles positions at each
robot posture; which are interpolated and applied for the
humanoid robot COMAN. The robot uses PID based joint
position controller to track the input joint angle references.

The climbing task was successfully attempted in simula-
tions as shown in Fig. 6. The simulation and optimization
were run on a i7 2.5 GHz processor with 16 GB RAM.
The optimization of the references took less than 5 minutes
with over 300 iterations for each posture generation. Search
optimization for intermediate postures runs with over 50
iterations per posture generation and the entire process took
15 minutes, but it depends on the number of input keyframes
to be converted into set of a statically stable poses. To draw
comparisons in optimization time, for synthesizing various
actions via CIO method needs 250 - 1000 optimization steps
with a simulation time of 2 - 10 minutes [7]. CES Framework
reports only search time for individual configuration poses
as 3.4 s and 7.6 s for two simulation scenarios [5].

Since the solutions are computed off-line and then exe-
cuted on the robot, we observe its influences on the task

execution like contact losses are encountered sometimes and
it does not affect the overall stability of the robot nor impedes
the execution performance due to multi-contact approach of
the task. Our simulation of the robot climbing the obstacle
experiment involves multitude of physical contacts with the
obstacle. Although, due to static nature of the task execution
on the robot the impacts are reduced at the physical contacts
and it supports the robot.

During the simulation we record the robot positions w.r.t.
the world, joint positions, velocities and torques. We compare
these torques against max torque levels at the joints to assess
the feasibility of running the motions. The max allowed joint
torques on humanoid robot COMAN are in the range of 20
- 30 Nm at the peak performance level. We see that these
max permissible torque limits are breached several times
during the playback of movements as shown Fig. 7. These
violations makes it impossible to execute these robot motions
on the actual robot. We now take torque measurements when
optimized solutions are used for the climbing task shown in
Fig. 7. These torques are to ascertain the feasibility of run-
ning optimized solution on the actual robot COMAN. Here
we only show a crucial portion of the torque measurements
since the actual execution time is quite long because we
produce a statically stable solution to the problem.

Here we see that the torque required are well within
permissible level throughout the task execution time. The
source code and supporting materials for the experiment
can be obtained at http://kormushev.com/goto/
ROMAN-2017-Kanajar/.

VI. CONCLUSION

This paper has presented a novel way of climbing over
large obstacles for a humanoid robot through multi-contact
motion planning algorithm. Human demonstration was used
to specify the goals for climbing the obstacle task. We
proposed here a multi-contact motion planning algorithm
which can directly work with the demonstration data.
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Fig. 7: Torques measured at the following joints: left knee (Lknee), right knee (Rknee), left elbow (Lelb) and right elbow
(Relb). The left plot shows the torques measured during playback of movements in simulation. For comparison, right plot
shows the torque measurements using the optimized solutions. We see significant reduction in the torque needs (below
30 Nm) with optimization, making it possible to execute the climb task in simulation.

Our algorithm builds on the whole-body control approach
which formulated the task based on the observed contact
states to generated keyframes for contact positions. Then, we
obtain keyframes consistent with contact sequence through
a reference optimization subject to stability costs, contact
constraints and collision constraints.

Finally, through a search optimization of keyframe ref-
erences with relaxed stability constraint, statically stable
intermediate postures are generated for a humanoid robot.
We applied our approach for the humanoid robot COMAN
to climb on top of a table obstacle and successfully executed
the simulation of climbing task. With this we have extended
the state-of-the-art locomotion to climb over large obstacles
via multi-contact motion planning algorithm. In the future,
we plan to evaluate how our algorithm adapts to changes in
the obstacle size and execute it on the real robot COMAN.
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