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Abstract

This paper presents modular dynamics for dual-arms, expressed in terms of the kinematics
and dynamics of each of the stand-alone manipulators. The two arms are controlled as a
single manipulator in the task space that is relative to the two end-effectors of the dual-
arm robot. A modular relative Jacobian, derived from a previous work, is used which is
expressed in terms of the stand-alone manipulator Jacobians. The task space inertia is
expressed in terms of the Jacobians and dynamics of each of the stand-alone manipulators.
When manipulators are combined and controlled as a single manipulator, as in the case
of dual-arms, our proposed approach will not require an entirely new dynamics model for
the resulting combined manipulator. But one will use the existing Jacobians and dynamics
model for each of the stand-alone manipulators to come up with the dynamics model of the
combined manipulator. A dual-arm KUKA is used in the experimental implementation.
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1. Introduction

Nowadays, robots become much more complicated compared to their single-arm, stand-
alone manipulator predecessor. And because of the need for them to interact more with
humans, robots take on biological forms like humans themselves, e.g., dual-arms and hu-
manoids, and in many cases like animals, e.g., dog-, cheetah-, gecko-, spider-, snake-
robots, etc. In most cases, these robots in biological forms are combined manipulators.
That is, they are created by combining two or more stand-alone manipulators in parallel
or series connection or both. Normally, their degrees of freedom (DOFs) are much higher.
For dual-arms (as shown in Fig. 1) and humanoids, the DOFs are: 25 for Compliant Hu-
manoid (CoMan) [1], 34 for Honda Asimo’s P2 [2], 41 for iCub upper body [3], 43 for
DLR’s dual-arm [4], and 51 for mobile humanoid Rollin’ Justin [5], to name a few.

It is well-known that for complex robots interacting with their environments, the dy-
namics model provides an optimal controller in real-time [6]. For combined manipulators,
their much more complex structures necessitate a dynamics model in order to simulate
their physical behavior and subsequently gain a much better understanding of their physi-
cal characteristics. This is crucial in the design of their appropriate controllers [7]. Thus,
until at the very recent, the dynamics model of combined manipulators is still actively
studied. For humanoids, these studies include the effects in modelling and simulating a
human or a humanoid [8], task and whole body motion coordination with active force
control [9], a dynamics simulator for humanoid robots [10, 11], dynamic balance force
control for determining full body joint torques [12, 13], sequential optimization for impact
motions of humanoid robots [14], human-humanoid postures with external disturbances
[15], centroidal dynamics of humanoids [16], humanoid complete dynamics [17], and de-
coupled dynamics for NASA-JSC Valkyrie [18]. For dual-arm robots, studies on their
dynamics model include dynamics of a flexible dual-arm robot using Lagrange formula-
tion [19], modular dynamics with inertias expressed at the joint-space level [20], dynamics
of a dual-arm space robot [21, 22], dynamics of a dual-arm robot for load transport under
sliding mode control [23, 24], dynamics with elasticity at the joints [25], and dynamics of
rigid dual-arms carrying a flexible load [26].

However for combined manipulators, their complete dynamics formulation can be pro-
hibitively complicated. One way to address this complexity is to simplify the dynamics
model by modularizing it. That is, we use the existing dynamics model of each of the
stand-alone manipulators and combine them together to form the dynamics model of the
entire system. In this way, one will not need to derive an entirely new dynamics expression
because the existing dynamics expression from the stand-alone manipulators can still be
utilized. To formulate the modular dynamics of combined manipulators, we need to con-
sider two fundamental types of connections: parallel (dual-arm) and series (macro-mini)
connections.
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Figure 1: A KUKA dual-arm setup in a chain-cleaning task. The left hand is equipped with a gripper tool
(Barrett hand), while the right hand (with a force/torque sensor) is attached with a sponge cleaning tool. A
vision module determines the location for gripping and cleaning.

This paper aims to derive the modular dynamics formulation of a parallel-connected
combined manipulator, a dual-arm, controlled as a single manipulator with single end-
effector. The treatment of a dual-arm as a single end-effector manipulator through the
use of the relative Jacobian [27–29] affords a drastic increase in the null-space dimen-
sion and lesser constraints in the task space. It considers the relative motion between the
end-effectors such that one end-effector (tool end-effector) moves relative to another end-
effector (reference end-effector). The relative motion of the tool end-effector with respect
to the reference end-effector is considered to be the single end-effector motion for the
dual-arm. Absolute motion can be imposed on the reference end-effector. This work ex-
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Figure 2: An schematic of the dual-arm setup. Arm A (reference arm) is attached with a gripper, and Arm
B (tool arm) is attached with a cleaning tool. Corresponding positions and orientations with respect to the
attached reference frames {1}, {2}, {3}, and {4} are shown.

tends the use of modular relative Jacobian for dual arms [29] by incorporating the modular
dynamics into the kinematics model.

2. The Relative Jacobian

A modular relative Jacobian is shown in [29] and is stated here for convenience. First
let us consider the dual-arm setup shown in Fig. 1 where the left (reference) arm grips
a chain model, while the right (tool) arm cleans the chain model with a sponge tool. Its
corresponding frame assignment is shown in Fig. 2. Given the stand-alone Jacobian of the
reference robot (arm A), JA, and the stand-alone Jacobian of the tool robot (arm B), JB,
the modular relative Jacobian, JR, expressed with respect to the frame assignment shown
in Fig. 2 can be expressed as

JR =
[
QA JA QB JB

]
(1)

where

QA = −
[
I −S (2p3)
0 I

] [2R1 0
0 2R1

]
and QB =

[2R4 0
0 2R4

]
(2)

4



such that position vector ip j, and rotation matrix iR j are expressed with respect to the
reference frames {i} and { j}. A wrench transformation matrix 2Ψ3 is defined as

2Ψ3 =

[
I −S (2p3)
0 I

]
. (3)

The symbol S (2p3) is a skew symmetric matrix with vector input 2p3 defined as

2p3 =
2R1

1p4+
2R4

4p3− 2R1
1p2. (4)

The relative task-space velocity for the dual-arm, ẋR, can be expressed as

ẋR =QA ẋA+QB ẋB (5)

where ẋA and ẋB are the task-space velocities of robots A and B, respectively.

3. Modular Dynamics in the Relative Task Space

In this section, we present the modular dynamics of the dual-arm robot in the relative
task space. Let us assign xR to be the relative position and orientation between the end-
effectors, that is, the end-effector of robot B (tool robot) with respect to the end-effector
of robot A (reference robot), as shown in Fig. 2. The rest of the conventions used for
both robots A and B, respectively, are: joint space displacements, qA and qB; joint space
inertias, AA and AB; joint torques, τA and τB; Coriolis and centrifugal forces, hA and hB;
and gravitational terms, gA and gB. A dot or double dot on top of a parameter means its
corresponding first or second derivative, respectively. Given the full dynamics expression
of robot A to be τA = AA q̈A + hA + gA and the full dynamics expression of robot B to
be τB = AB q̈B + hB + gB, the modular dynamics in the relative task space for the dual-
arm robot, formulated based on the operational space formulation [6, 30] but expressed on
terms of the relative Jacobian, can be stated as

τT = JT
R ΛR ẍR + (I−JT

RJ#T
R ) τo − J+RΛR J̇R q̇T +hT +gT (6)

where τT = [τTA τ
T
B]T , q̇T = [q̇T

A q̇T
B]T , hT = [hT

A hT
B]T , gT = [gT

A gT
B]T , and τo is the torque

gradient in the null space. Thus, the modular relative task space inertia, ΛR, is given as

ΛR =Q−1
A J+T

A AA J+A Q−1
A +Q−1

B J+T
B AB J+B Q−1

B . (7)

The superscript “T” means transpose, superscript “+” means pseudoinverse, and super-
script “−1” means inverse. The relative Jacobian, JR, is shown in (1); QA and QB are
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defined in (2); JA and JA are standalone Jacobians of robots A and B; and, AA and AB are
the standalone joint inertias of robots A and B.

The dynamically consistent inverse [6] is defined as

J#T
R = ΛR

[
QA JA A−1

A QB JB A−1
B

]
. (8)

The expression in (6) has a similar form as the standard full dynamics expression for a
single, stand-alone manipulator. Thus the full dynamics expression of the dual-arm now
becomes analogous to the full dynamics of a single end-effector manipulator. This affords
a single manipulator control for the dual-arm. Another advantage of this approach is its
modularity: we use the kinematics and dynamics model of each of the stand-alone manipu-
lators to arrive at the full dynamics expression of the dual-arm. Through this approach, we
do not require to derive a totally new dynamics expression for the dual-arm, but we make
use of existing model of the stand-alone manipulators to come up with the full dynamics
model of the dual-arm.

The next section will shows the derivation of (7) which will imply (8). A non-modular
approach is shown in Appendix A.

4. Derivation of Modular Inertia for Dual-Arm

In this section, we derive the total inertia for dual-arm robot in terms of the joint space
and relative task space. The total joint-space inertia for the dual-arm is labelled AT , and
the relative task-space inertia of the dual-arm is labelled ΛT .

The total joint space kinetic energy of the dual-arm robot, KET , can be expressed as

KET =
1
2

q̇T
T AT q̇T (9)

where q̇T = [q̇T
A q̇T

B]T is the combined joint angles.
The joint space kinetic energy of robot A, KEJA, and the joint space kinetic energy of

robot B, KEJB, can be expressed as

KEJA =
1
2

q̇T
A AA q̇A and KEJB =

1
2

q̇T
B AB q̇B. (10)

Because both joint space kinetic energies are independent of each other, the total joint
space kinetic energy can be added as KET = KEJA+KEJB, that is

KET =
1
2

q̇T
A AA q̇A+

1
2

q̇T
B AB q̇B

=
1
2

[
q̇T

A q̇T
B

] [AA 0
0 AB

] [
q̇A
q̇B

]
=

1
2

q̇T
T

[
AA 0
0 AB

]
q̇T

(11)
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Comparing the above equation to (9), this means that

AT =

[
AA 0
0 AB

]
. (12)

Now, we consider the total task-space kinetic energy for the dual-arm, KEO, stated
below

KEO =
1
2

ẋT
R ΛR ẋR. (13)

We use the general relationship between task-space inertia Λ, joint-space inertia A, and
Jacobian J from [30], that is, Λ = [JA−1 JT ]+. Because robot A moves independent of
robot B, its task-space kinetic energy, KES A, is

KES A =
1
2

ẋT
R

[ [
QA JA 0

] [A−1
A 0
0 0

] [
JT

A QT
A

0T

] ]+
ẋR

=
1
2

ẋT
R

[
QA JA A−1

A JT
A QT

A

]+
ẋR

=
1
2

ẋT
R Q−T

A J+T
A AA J+A Q−1

A ẋR.

(14)

In the same way, robot B moves independent of robot A, thus its task-space kinetic energy,
KES B, is

KES B =
1
2

ẋT
R

[ [
0 QB JB

] [0 0
0 A−1

B

] [
0T

JT
B QT

B

] ]+
ẋR

=
1
2

ẋT
R

[
QB JB A−1

B JT
B QT

B

]+
ẋR

=
1
2

ẋT
R Q−T

B J+T
B AB J+B Q−1

B ẋR.

(15)

Thus, the total task-space kinetic energy of dual-arms is KEO = KES A+KES B,

KEO =
1
2

ẋT
R

[
Q−T

A J+T
A AA J+A Q−1

A +Q−T
B J+T

B AB J+B Q−1
B

]
ẋR, (16)

which means that the modular task-space inertia of a dual-arm, ΛR, is

ΛR =Q−T
A J+T

A AA J+A Q−1
A +Q−T

B J+T
B AB J+B Q−1

B . (17)

5. Dual-Arm Experimental Implementation

We present two sets of experiments using our proposed method. First is a chain-
cleaning task that shows uninterrupted relative chain-cleaning motion of the tool end-
effector, despite real-time displacement of the absolute location of the reference (gripper)
end-effector. Second is an investigative experiment on the effect of the wrench transfor-
mation matrix to the relative Jacobian.
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5.1. Gravity Compensation
The default gravity compensation setting for the KUKA lightweight arm is for the

horizontal floor mounting where gravity vector g = [0,0,−9.81]T . In order to correct the
60 degrees inclination of the torso mounting (and another 30 degrees rotation around the
resulting z-axis), the following gravity compensation corrections were performed: for the
right arm

gr = Rz,30 Ry,−60 g (18)

and the left arm
gl = Rz,−30 Ry,−60 g (19)

where Ra,b is the rotation matrix for a corresponding rotation along the a-axis for b-degree
angle. This results into gr = [−7.36,−4.25,4.91]T and gl = [−7.36,4.25,4.91]T .

5.2. Relative Jacobian Transformations
Here we define the transformation matrices QA and QB shown in (2) of the modular

relative Jacobian. These transformations are characterized on how the bases of robots A
and B are placed with respect to each other.

The rotation matrix 2R1 corresponds to the rotation of the left hand (robot A) end-
effector with respect to its base, RA. The rotation matrix 2R4 =

2R1
1R4 = RA

1R4 such
that

1R4 = Rz,−30 Ry,−120 Rz,150. (20)

The relative position vector between the end-effectors of the two arms shown in (4) can be
expressed as

2p3 = RT
A

1p4+RT
A

1R4 pB−RT
A pA (21)

where vectors pA and pB are the robots A and B end-effector positions with respect to their
corresponding bases. Such that

1p4 = Rz,−30 Ry,−150
1p4 base (22)

where 1p4 base = [0,0,0.22]T m.

5.3. Relative Hybrid Force/Position Controller
This work does not claim contribution on hybrid force/position controller. However,

we present the integration of the controller here for clarity of presentation in the control
implementation.

From (6), ẍR can be replaced by the controller u∗R such that

u∗R = ΩR f∗P + Ω̄R f∗F (23)
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Figure 3: Snapshots of the chain-cleaning task. Horizontal strip 1 shows the cleaning task where the location
of the tool and the gripper are manually placed. Horizontal strip 2 shows the same cleaning task where the
shaving foam is used to assign the chain portion for cleaning and gripping. In horizontal strip 3, disturbance
is introduced to the gripper arm by moving the gripper horizontally along the table. In horizontal strip 4, the
gripper is moved vertically during task execution. And lastly, horizontal strip 5 shows vertical and horizontal
disturbance to the gripper arm, as well as null space posture disturbance.
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where f∗P is the relative position (and orientation) controller, f∗F is the relative force (and
moment) controller, and ΩR and Ω̄R are the corresponding selection matrices where one is
the complement of the other. For simplicity, we refer to the relative position and orienta-
tion controller as relative position controller, and relative force and moment controller as
relative force controller.

Thus the relative position controller can be expressed as

f∗P = ẍRd − kvP(ẋR− ẋRd) − kpP(xR−xRd) (24)

where ẍRd , ẋRd ,xRd are the desired relative task space acceleration, velocity, and displace-
ment, respectively, and parameters kpP and kvP are the proportional and derivative gains
for position control. The relative force controller can be expressed as

f∗F = fRd − kpF (fR− fRd) −
∫ t

0
kiF (fR− fRd) dt (25)

where fRd is the desired relative applied force, fR is the relative force feedback, parameters
kpF and kiF are the relative proportional and integral force control gains, and t is time. The
relative selection matrices can be expressed as follows

ΩR =

(
RT

RΣRRR 0
0 RT

RΣRRR

)
(26)

and

Ω̄R =

(
RT

R Σ̄RRR 0
0 RT

R Σ̄RRR

)
(27)

where ΣR is a diagonal matrix with diagonal elements of zeros and ones which specifies
the desired axes of position control, Σ̄R is the complement of ΣR that specifies the axes of
force control where position is not controlled, and RR is the corresponding rotation matrix
that specifies the direction of the independent axes for force or position control.

5.4. Experiment 1: Chain-Cleaning Task
We implement a hybrid force/position control in a chain-cleaning task, that has a simi-

lar force and motion controller as the aircraft canopy polishing task [31, 32], where its dy-
namics modeling and identification are shown in [33–35]. The purpose of the experiment
is to show how the task coordination between the two end-effectors remain uninterrupted,
as the absolute task location is arbitrarily changed in real-time. In this earlier implementa-
tion of our controller, only the position and force are controlled. Orientation and moment
are not controlled and thus their corresponding controller gains are set to zero.
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For all vectors, the subscripts for the position components are x, y, and z and for the
orientation components are α, β, and γ. For example, xR = [xRx , xRy , xRz , xRα , xRβ , xRγ]

T .
From (23), position is controlled along xRx- and xRz-axes, while force is controlled along
the xRy-axis. Such that the selection matrices have the following diagonal terms diag(ΩR)=
{1,0,1,0,0,0} and diag(Ω̄R) = {0,1,0,0,0,0}. Now we set the values of proportional gains
for position and force. From (24), we set kpP = [100,0,100,0,0,0]T such that the desired
position along xRx-axis is the initial position. The desired position along the xRz-axis is
set to a sinusoidal path xRdz = Asin(ωt), where A = 0.12 m and ω = 1.26 rad/s. From
(25), we set kpF = [0,0.2,0,0,0,0]T such that the desired force along the y-axis is set at
fRdy = 10 N. The kpP values are chosen such that non-zero values are set in the directions
that are position controlled, i.e., along the x− and z− axes. And kpF values are chosen such
that non-zero value is set in the direction that is force controlled, i.e., along the y−axis.
The gains were empirically chosen such that the end-effectors remains stable at the fastest
response. Given the controller information above, and the joint space inertia and gravity
terms for both robots A and B, the task space formulation in (6) is implemented for a dual-
arm KUKA consisting of two LWR robots. Information regarding Coriolis and centrifugal
terms were not available during the experiments. No null-space controller is implemented
thus the torque τo is set to zero.

Snapshots during the chain-cleaning task are shown in Fig. 3. Each horizontal photo
strip shows one case of the chain-cleaning task. Horizontal photo strip 1 shows the clean-
ing task where the location of the gripper and the cleaning tool are manually set. That is,
the operator manually moves the end-effectors to the locations for gripping and cleaning,
then manually attaches the gripper on the chain and manually places the cleaning tool at
its starting cleaning location. Horizontal photo strip 2 shows the same task where a shav-
ing foam is used to specify location on the chain for cleaning or gripping, as detected by
the RGBD sensor. The RGBD sensor is calibrated to identify the location of the shaving
foam: one location for gripping and another for cleaning. At the start of the task, each
end-effector will approach their respective desired locations based on the RGBD sensor
feedback. When the end-effector settles to their desired locations, the operator then man-
ually attaches the gripper and adjusts the cleaning tool to position. The robot response
is shown in Fig. 4, with the relative positions xRx and xRz , the relative force fRy , and the
absolute positions of the gripper (reference) end-effector xAx , xAy , and xAz which remain
stationary.

In the succeeding experiments, the same case applies as in horizontal photo strip 2:
the desired gripping and cleaning locations of the dual-arm end-effectors are determined
by the RGBD sensor feedback. Moreover, disturbances are introduced by the operator by
manually moving the dual-arm end-effectors, in real-time, as the chain-cleaning task is
performed. In horizontal photo strip 3, the chain is dragged together with the reference
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Figure 4: The graphs show the relative position along xRx and xRz and relative force fRy during the chain
cleaning task. The absolute position and orientation of the gripper (reference) end-effector, xA, is arbitrary
and not moving.

end-effector on the table surface. As shown in the horizontal strip the tool end-effector
responded automatically to achieve the desired relative position and force with respect to
the reference end-effector. In horizontal photo strip 4, the reference end-effector is moved
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up and down. The robot response is shown in Fig. 4. And lastly, in horizontal photo strip 5,
the reference end-effector is moved horizontally and vertically, while the null space posture
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of the reference arm is dynamically changed. The response of the robot is shown in Fig. 5.
In both Figs. 4 and 5, the desired force is maintained on the average of around 5 N.

5.5. Experiment 2: The Effect of the Wrench Transformation Matrix
This second experiment will show the effect of the wrench transformation matrix 2Ψ3

on JR. In previous expressions of modular relative Jacobian [36–38], the wrench trans-
formation matrix was considered to be an identity matrix. Here, we refer to such relative
Jacobian as J′R. The dual-arm robot will perform a coordinated independent task with
respect to their relative reference frames. This is shown in Fig 6.

In this experiment robot B is to open and close a cabinet door, while robot A exerts
a normal force on the other cabinet door and moving in an oscillatory manner. Force is
exerted by the tool end-effector along xRy-axis. A desired sinusoidal motion along the
relative xRdz-axis for the tool end-effector is specified as

xRdz = A(cos(ωt)− cos(ωt−ϕ)) (28)

where A= 0.5 m is the desired amplitude, ω= 0.15π rad/s is the desired angular frequency,
t is current time, and ϕ = 10 degrees is the desired phase shift, which determines the
magnitude of the incremental step size. The remaining relative axes are in motion control,
specified to maintain the initial position and orientation. Proportional position gains are
set at 200 while proportional orientation gains are at 100. Proportional force gain is set at
0.2.

Compared to Experiment 1, the Experiment 2 relative position gains can be set higher
because the relative orientation of the tool end-effector is now controlled. However, the
relative force gain is set at the same value as the previous experiment. The amplitude
A is set higher because the tool robot now can move on a much larger surface of the
cabinet door. The period ω is set lower in order to maintain an almost the same speed as
the previous experiment. The offset ϕ of 10 degrees is set in order to allow incremental
sinusoidal motion and thus allowing an arbitrary starting location of the oscillatory motion
of the the tool end-effector.

In Experiment 2 both end-effectors perform different jobs: reference end-effector is
opening and closing a cabinet door, while the tool end-effector is “polishing” the surface of
the other door. The reference end-effector can be thought of as moving in an independent
manner (independent from the task of the tool end-effector) while the tool end-effector
moves with respect to the reference end-effector. However, the motion of the reference
end-effector does not have much effect on the motion of the tool end-effector because the
opening and closing of the door moves along the xRy , which is the force control direction of
the tool end-effector. Thus in this manner, the tasks of both end-effectors can be considered
to be independent of each other. Although the tasks are independent of each other, the
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Figure 6: The KUKA dual-arm manipulator performing a coordinated independent task: robot B opening
and closing a cabinet door by moving along the xRy -axis, and robot A exerting a normal force along xRy -axis
on the other cabinet door while moving along an oscillatory motion along xRz-axis.

role of the unified Jacobian remains the same: it affords drastic increase in the null-space
dimension and allows no restriction on the absolute locations of the task performance,
because the tasks are performed in the relative reference frame. Thus, the base of the dual-
arm can be anywhere with respect to the cabinet doors, but the coordinated independent
tasks can still be performed. Intuitively, this means that the dual-arm base can avoid
obstacles in a dynamically changing environment while the independent tasks of the two
arms are performed in real-time.

The normal force feedback in shown in Fig. 7 and its corresponding position error is
shown in Fig. 8. Because KUKA does not allow access to a low-level, real-time controller
and the sampling frequency is at 125 Hz, the force control is expected to be non-optimal.
To keep the tool end-effector to maintain contact during task execution, we specify a de-
sired normal force of −30 N. For case JR, it is able to exert a normal force in the average
range of around [0,−11] N (Fig. 7A), while case J′R is within the average range of around
[2,−5] N (Fig. 7B) and losing surface contact. As seen in these results, with a much more
complicated task execution between the end-effectors, a much more superior force con-
trol response was shown by JR, exerting around double the maximum force compared to
J′R. At the same time, the latter case consistently loses contact as indicated by an offset
non-contact force of around 2 N. This offset force value was set just before task execution.
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Figure 7: Force sensor feedback expressed with respect to the reference end-effector frame for the coordi-
nated independent tasks experiment. The normal force exerted on the other cabinet door is along xRy . Case
JR is shown in subfigure A and case J′R is shown in subfigure B.

6. Conclusion

This work has shown a modular task-space dynamics formulation for dual arms con-
trolled as one manipulator with a single end-effector. The aim of such an approach is the
ease of implementation, by using the existing kinematics and dynamics model of each of
the stand-alone manipulators to arrive at the overall dynamics of the single end-effector
dual-arm. Thus, when two arms with known Jacobians and dynamics parameters are
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Figure 8: Relative position errors between tool end-effector and reference end-effector during coordinated
independent tasks experiment. The JR case is shown in subfigure A, while J′R case is shown in subfigure B.

combined together, our proposed method will not require to compute and identify new
dynamics for the combined system, but will use the existing information from each of the
standalone components. A derivation of the modular relative task space inertia matrix is
shown, together with a non-modular derivation that was used to verify the non-coupling
effect of the total joint-space inertia of the dual-arm. Two experimental results are shown
using a KUKA dual-arm robot: one performing a chain-cleaning task and another per-
forming a coordinated independent task. Experiments showed superior force control per-
formance of a dual-arm robot when the wrench transformation matrix is considered in the
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modular relative Jacobian.
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Appendix A. Non-modular Derivation of the Total Joint-Space Inertia

This section will verify the non-coupling effect of the total joint space inertia of the
dual-arm, AT , shown in (12), by using the method of joint-space inertia derivation of a
single manipulator.

Given that frame {i−1} is located at the joint of link i and frame {i} is at the tip, such
that link i moves with respect to the z-axis of the {i−1} frame. Further given that the i-th
inertia tensor, Ii, is expressed at frame {i}. The kinetic energy of link i can be expressed as
[39],

KEi =
1
2

q̇T JT
i

[
mi I 0

0 Ri Ii RT
i

]
Ji q̇i (A.1)

where link i Jacobian, Ji, is the manipulator Jacobian J ∈ Rm×n with zeros from column
i+1 to n, that is,

Ji =
[
j(1)
1 . . . j(i)

i 0(i+1) . . . 0(n)
]
, (A.2)

where the column indices are shown as superscripts. The symbol I is the corresponding
identity matrix, and Ri is the rotation matrix corresponding to the rotation of frame {i}
with respect to the base frame of the robot. This means that the task space inertia matrix
of link i, Λi, which is expressed as

Λi =

[
mi I 0

0 Ri Ii RT
i

]
(A.3)

can be perturbed only by joints 1 to i and not by joints i+ 1 to n. The joint space inertia
matrix, A, can be expressed as [39],

A =
n∑

i=1

JT
i Λi Ji. (A.4)

Thus given robot A with manipulator Jacobian JA ∈ Rm×nA , link j Jacobian JA j, and
link j task space inertia matrix ΛA j, the robot A joint space inertia, AA, can be expressed
as

AA =

nA∑
j=1

JT
A jΛA j JA j. (A.5)
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In the same way, given robot B with manipulator Jacobian JB ∈ Rm×nB , link k Jacobian
JBk, and link k task space inertia matrix ΛBk, the robot B joint space inertia, AB, can be
expressed as

AB =

nB∑
k=1

JT
BkΛBk JBk. (A.6)

By following the same analogy, the joint space inertia of the dual-arm robot, AT , can
be computed. Given the dual-arm relative Jacobian, JR ∈ Rm×(nA+nB), the dual-arm link i
Jacobian, JRi, can be expressed as in (A.7)

JRi =


[
j(1)
R1 . . . j(i)

Ri 0(i+1) . . . 0(nA+nB)
]

for i ≤ nA[
0(1) . . . 0(nA) j(nA+1)

R(nA+1) . . . j(i)
Ri 0(i+1) . . . 0(nA+nB)

]
for i > nA

=


QA

[
j(1)
A1 . . . j(i)

A j 0(i+1) . . . 0(nA) 0(nA+1) . . . 0(nA+nB)
]

for i ≤ nA︸                                   ︷︷                                   ︸
JA j

QB
[
0(1) . . . 0(nA) j(nA+1)

B1 . . . j(i)
Bk 0(i+1) . . . 0(nA+nB)

]
for i > nA︸                                             ︷︷                                             ︸

JBk
(A.7)

where i = 1, . . . ,nA+nB, j = 1, . . . ,nA, and k = 1, . . . ,nB. In the second equality of (A.7), for
the case of i ≤ nA, columns 1 to nA represent JA j. For the case of i > nA, columns (nA+1)
to (nA+nB) represent JBk. This means that in accounting for the kinetic energy generated
by the motion of link i of the dual-arm robot, this link i can only be perturbed by either
robot A or robot B, and not both. From (A.4), we set n = nA+nB such that the sum of all
the joint space inertias of the dual-arm is

AT =

nA∑
i=1

JT
RiΛAi JRi +

nA+nB∑
i=nA+1

JT
RiΛB(i−nA) JRi

=

nA∑
j=1

JT
A j

0T

 QT
A ΛA j QA

[
JA j 0

]
+

nB∑
k=1

[
0T

JT
Bk

]
QT

BΛBk QB
[
0 JBk

]
=

∑nA
j=1 JT

A j QT
A ΛA j QA JA j 0
0

∑nB
k=1 JT

Bk QT
BΛBk QB JBk


(A.8)

From the last equality above, we can see that the diagonal terms are equivalent to (A.5)
and (A.6). The existence of QA and QB in the expression takes care of the fact that the link
inertias are expressed at the relative task-space before converting to joint-space inertias.
However, this derivation upholds the non-coupling of the total joint-space inertia of the
dual-arm.
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