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Abstract—In this paper we propose covariance analysis as a
metric for reinforcement learning to improve the robustness of
a learned policy. The local optima found during the exploration
are analyzed in terms of the total cumulative reward and the
local behavior of the system in the neighborhood of the optima.
The analysis is performed in the solution space to select a policy
that exhibits robustness in uncertain and noisy environments.
We demonstrate the utility of the method using our previously
developed system where an autonomous underwater vehicle
(AUYV) has to recover from a thruster failure. When a failure is
detected the recovery system is invoked, which uses simulations
to learn a new controller that utilizes the remaining functioning
thrusters to achieve the goal of the AUV, that is, to reach a target
position. In this paper, we use covariance analysis to examine
the performance of the top, n, policies output by the previous
algorithm. We propose a scoring metric that uses the output of
the covariance analysis, the time it takes the AUV to reach the
target position and the distance between the target position and
the AUV’s final position. The top polices are simulated in a noisy
environment and evaluated using the proposed scoring metric to
analyze the effect of noise on their performance. The policy that
exhibits more tolerance to noise is selected. We show experimental
results where covariance analysis successfully selects a more
robust policy that was ranked lower by the original algorithm.

I. INTRODUCTION

Most search algorithms are designed to locate a single
optimal policy, which does not match the way humans learn
skills [1]. Search procedures in reinforcement learning (RL)
rely on expectation-maximization procedure to iteratively up-
date a policy. The policies produced by RL algorithms maxi-
mize the long term reward, that is, the cumulative reward of
a policy, but it does not consider the behavior of the system
in the presence of noise in the environment. Analyzing how
sensitive a policy is to noise will allow the RL algorithm to
find solutions that exhibit robustness in uncertain and noisy
environments.

Learning policies that produce an accurate and robust skill
is a challenging task. It is possible to learn a policy that
is precise, yet at the same time a small noise in the input
parameters can cause a catastrophic failure. Often, in the real
world the parameter space is noisy. Hence, a method that
helps in selecting a policy that finds a comprise between
accuracy and robustness can be useful. In this paper we
propose covariance analysis as a metric to asses the robustness
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Fig. 1. The Girona 500 AUV.

of a policy. The technique is very generic and would be
applicable also to a wide range of other domains, provided
that there are multiple possible policies in the solution space
and a covariance matrix can be computed for them.

As part of the PANDORA project [2], [3] we use recovery
from a failure of a thruster in an autonomous underwater
vehicle (AUV) to demonstrate the utility of the proposed
method. AUVs need to operate in harsh underwater environ-
ments where recovery from a system failure is critical in the
recovery and return of the AUV back to the base. We extend
our previous work [4], in which, at the point of failure the
robot uses RL to find a policy that will achieve the goal of
the robot using its current assets. This allows the AUV to
operate persistently. When a failure is identified, the robot uses
simulations to learn a policy that uses the remaining thrusters
to achieve its goal. In this paper, we modify the method by
adding an extra step. Once the RL algorithm terminates, we
select the top, n, policies and run them in simulation, in a
noisy environment and perform covariance analysis. We also
propose a score metric that uses the output of the covariance
analysis to evaluate the performance of a policy. The scoring
metric combines the time it takes to reach the goal, the distance
from the goal and the time it takes to reach the goal. The policy
with the highest score is then selected as the candidate policy
to be executed by the AUV.

To test the method we used the model of the Girona 500 [5]
AUV in an underwater simulator! (UWSim). Fig. 1 shows the
Girona 500 AUV. It is a reconfigurable AUV, we used a layout
that has 5 thrusters: two vertical thrusters for the heave, one
lateral for the sway, and two horizontal for the yaw and surge.

'UWSim — an UnderWater Simulator for marine robotics research and
development, http://www.irs.uji.es/uwsim/.



II. BACKGROUND

Robotic systems are of high-dimensionality, having many
degrees of freedom, continuous states and actions, and high
noise. Consequently, traditional reinforcement learning (RL)
approaches such as Markov decision process and partially
observable Markov decision process do not scale up to work in
robotics. They suffer severely from the curse of dimensionality.
Some success was achieved with the function approximation
techniques, however, it was the development of policy-search
methods that allowed successful application of RL to robotics
problems.

In policy-search, instead of working in the larger state/action
spaces, a smaller policy space is used. Thus, reducing the
dimensionality and increasing the convergence speed. Well
established approaches for implementing policy-search RL [6]
include policy-gradient algorithms such as episodic natural
actor-critic eNAC [7]. However, these algorithms are sensitive
to the learning rate and the exploratory variance parameters
which must be provided by the user. An alternative approach
based on expectation-maximization method has been pro-
posed [8]. A major advantage of this approach over policy-
gradient approach is that it does not require a learning rate
parameter.

Several search algorithms from the field of stochastic op-
timization have recently been successfully used for iterative
policy improvement. Examples of such approaches are the
cross-entropy method [9] and the covariance matrix adaptation
evolution strategy [10]. Although these algorithms come from
a different domain and are not well-established in RL research,
they seem to be a viable alternative for direct policy search
RL, as some recent findings suggest [11].

Only having a good policy-search RL algorithm is not
enough for solving robotic problems. Before any given RL
algorithm can be applied to learn a task on a robot, an
appropriate policy representation (also policy encoding) needs
to be devised. The choice of policy representation determines
what can be learned. In addition, the policy representation can
have significant influence on the RL algorithm itself, that is, it
can help or impede the convergence or influence the variance
of the generated policies. Kormushev et al. [12] analyze in
detail the challenges for creating a good policy representation.

Most search algorithms discussed find one single optimal
point. However, these methods do not consider the robustness
of the policy to noises in the parameters.

III. THEORETICAL CONCEPT

Covariance information can serve several purposes. First, it
can guide the exploration by defining an adaptive exploration-
exploitation trade-off. Second, it conveys important informa-
tion about the neighborhood of the policy solutions, e.g.,
shape, total surface, principal directions, and curvature. In
some tasks, the immediate neighborhood of the solution
manifold has different curvature for different local optima,
making some regions more tolerant to errors than others. Fig. 2
illustrates a parameter space with two local optima. A standard
gradient-ascent optimization process would converge to one of
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(a) Side view: A plot of the surface and the contours of a bimodal reward
function.
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(b) Top view: contours of the reward function.

Fig. 2. An illustration of a solution space with multiple local optima, where
0, and 6, are the parameters of the policy and r(®) is the reward function.
A standard gradient-ascent process would converge to one of the two peaks.
The peak with the distribution .#"(u1,Y ;) has a higher reward value, however,
compared to the peak with the distribution .4#"(12,Y,), a small change the
parameter space can reduce the reward value significantly.

the two peaks. The peak with the distribution .4 (u;,Y) has
a higher reward value, however, compared to the peak with the
distribution A4 (U,Y ), a small change the parameter space
can reduce the reward value significantly.

Therefore, the robustness of a policy cannot be determined
based on the reward information only, but it is the spread, that
is, the covariance of the policy output when evaluated in the
presence of noise that determines the best solution that one
can reach.



IV. COVARIANCE ANALYSIS APPLIED TO ON-LINE
RECOVERY FROM A THRUSTER FAILURE

The proposed method is tested using our previously devel-
oped system [4], where we use reinforcement learning (RL)
to recover from a thruster failure in an AUV. In this section
we give a brief description of the system and explain how
covariance analysis is applied.

A. Problem Description

A failure in the thrusters of an AUV can have catastrophic
consequences such as loss of the AUV in deep waters. We
use RL to perform a model based policy search that helps
the robot to reach a target position. When a thruster failure
is detected and isolated by the system, the on-line failure
recovery system is invoked. To recover from the failure, the
controller system switches from the normal controller to the
fault-tolerant controller. The robot uses simulations to learn a
policy that produces thruster commands. These simulations use
a dynamics model of the system to discover an optimal policy
to overcome the thruster failure. In our previous work [4]
we investigated three different policy representations, which
include constant policy, time-dependent policy, and state-
dependent policy. For the problem at hand, we found that
time-dependent policy is more flexible than the constant pol-
icy representation. Also, compared to state-dependent policy
representation it has less optimization parameters. Hence, it
is a good compromise between flexibility and computational
cost. Consequently, in this paper we use the time-dependent
policy representation.

B. Methodology

We frame the problem as a model-based direct policy search
reinforcement learning [13]. In this framework the problem
is represented by a dynamic model of the vehicle, a policy
representation, a cost function, and an optimization algorithm.

1) Dynamic Model: The model of the AUV is represented
as a rigid body subject to external forces and torques. The
6 degree-of-freedom equations of the AUV are given by:

Mv+C(V)v+D(v)v+g(n)=r7

n=J(n)v 1)
T=Bu

where M is the mass matrix; C is the Coriolis matrix; D, is
the drag matrix; g(n) is the hydrostatic restoring force vector;
J(m) is the Jacobian matrix transforming the velocities from
the body-fixed to the earth-fixed frame; n =[x y z ¢ 6 ]’ is
the pose (position and orientation) vector; v=[u v w p q r]
is the body velocity vector; 7 is the force/torque vector; u is the
input vector and B is the thruster reconfiguration matrix. The
hydrodynamics parameters of the AUV are identified using an
on-line identification algorithm [14], [15].

2) Policy representation: The policy is represented with a
linear function approximator that depends only on time, ¢:

u(t) = m(t]6) = 679 (1)

where u is the control input in Equation 1, the functions
¢;(t) are called basis functions, or features. We used a third
order Fourier basis function. There are eight optimization
parameters for each thruster. In the scenario considered, there
are two thrusters that can be controlled to reach the target
position. Hence, we have sixteen parameters in total.

3) Cost function: The cost function is represented by:

1=

J(0)= ) ci(m)

=0 m(t]6)

where ¢, is the immediate cost, and depends on the current
state, which in turn is determined by the policy and its
parameters. The aim of the agent is to tune the policy’s
parameters in order to minimize the cumulative cost J over
a horizon T.

We use the following definition of the immediate cost:

ift<T
ift=T
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where the state y, = (p;,v;) is composed by position and
velocity at time ¢, p, is the desired location, v, is the desired
velocity and w weighs the velocity objective with respect to
the positional one. The secondary objective is considered only
at the final state (t =T).

4) Optimization algorithm: We use a derivative-free op-
timization algorithm because in this case in policy gradient
approaches the estimation of the derivatives is computationally
expensive. Furthermore, in our previous work [16] we studied
three different derivative-free algorithms. The results show that
the differential evolution [17] needs fewer number of function
evaluations and can reach better objective values. Hence, we
use the differential evolution algorithm for optimization.

5) On-line policy search: When a thruster fault is detected,
a function J is created to represent the cost of a path to the
target location. The optimization algorithm is then instantiated
to compute the minimal policy that takes the AUV as close as
possible to the target location using only the working thrusters.
The top n policies, where in our experiments n =5, are stored
and later used for covariance analysis, which will be described
in the next section.

C. Covariance Analysis

The policies in the previous section were learned in a
noiseless environment. Often, the real world has noises that
have not been accounted for in the simulation. As a result
a policy must be tested for robustness against such noises.
The policy with the highest reward is not necessarily the most
robust policy. We use this scenario as an example to show
how covariance analysis can be used to select a robust policy.
In order to perform covariance analysis, the robot picks the
top policies from the noiseless simulations and runs them in
a noisy simulation. In our experiments the noise is introduced
by adding a Gaussian noise to the input of the thrusters. Each
policy is run thirty times and scored using the proposed scoring
metric, which will be described in the rest of this section.
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Fig. 3. The positions reached by the robot during a noisy simulation. Policy
1 had the highest reward, while Policy 5 was the fifth ranking policy.

The covariance, Q, of k variables is a k x k matrix that
is calculated from N samples using (3), where x,; is the n'h
sample from the i'" variable, and qjm is the covariance between
7 and m'" variables.

N
qjm = Nl_lg(x,‘j—fj)(xim—fm) Vijime 1<k (3
We use (3) to calculate the covariance matrix using the
thirty samples with two variable: x and y position of the AUV.
As illustrated in (4), for each policy, p, we extract a single
value, Cp, from the covariance matrix, Qixx, by taking the
product of the diagonal of the matrix. Any other metric such
as summation of the diagonals can also work.

k
C,=[]2% )
i=1

The reward for the scoring metric is calculated using (5).
It takes into account two factors: the time, t, it takes to reach
the target, and the distance, d, from the target. We want to
make sure that a policy that cannot reach, or takes a long
time to reach the target position is penalized. Therefore, a
policy is scored using the formula in (6), where I?p and C‘p
are normalized reward and covariance of a policy, and o
determines the compromise between accuracy and robustness.

Rp = E[d(xAUV7xtarget)] + E[ttarget} (5)
score = aR,+(1—a)C, (6)
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Fig. 4. Simulation results showing the effect of noise on top five policies. The

policies are ranked according their reward. The figures illustrate that policies
with higher ranking are not necessarily robust to noise in the environment.

V. RESULTS

Fig. 3 shows the results of running the top five polices in a
noisy environment. The figure plots the final destination of the
robot and the target position. We also mark the area around
the target position that is within the tolerance, €, of acceptable
error between the target position and the robot’s position. In
our experiments, € was set to 2 cm. It is evident that the
robustness to noise is not necessarily correlated to the ranking
of a policy in the noiseless simulation. We also notice that the
highest ranking policy is performing worse than lower ranking
policies.

Fig. 4 shows the path taken by each policy when executed
in a noisy environment. The figures display paths for both
noiseless and noisy environments. We observe that the top
policy exhibits an erratic behavior when it fails, taking longer



TABLE 1
POLICY SELECTION AS THE VALUE OF ¢ IS CHANGED
o 0| 025 | 050 | 0.75 | 1.00
Policy 5 5 5 2 2

Thruster command
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Fig. 5. The thruster commands. The blue curve is the command for the surge
thruster and the red curve is the command for the sway thruster. The figure
shows that in our experiments, the sway thrusters reach saturation.

paths and performing loops. Other policies are also affected
by noise. However, Policy 2 and Policy 5 are still able to reach
the target position. While the two policies perform similarly
when only target position is considered, Policy 5 performs
better on the distance measure.

We also evaluated the effect of the & on the scoring. Table I
shows the results of the scoring policy. Not surprisingly, for
an o value of upto 0.5, the scoring selects policy 5, which
reflects our visual analysis of the policies.

We also noticed an unexpected behavior in the data. Since
we add a Gaussian noise, we expected the paths in the noisy
environment to have a Gaussian distribution around the path in
the noiseless environment. Our investigations revealed that this
is due to the hardware limitations. Fig. 5 shows the commands
sent to the thrusters. The blue curve is the command for
the surge thruster and the red curve is the command for the
sway thruster. The thruster commands are produced by the
learned policy. However, the thrusters only operate in the range
[-1,1] and [-0.5,0.5] for surge and sway thrusters, respectively.
As shown in Fig. 5, in our experiments, the sway thrusters
sometimes reach saturation. Therefore, in the robustness test
simulations, adding noise to the already saturated thruster has
no effect unless the addition of the noise moves the thruster
away from saturation. We also observe that the curve does not
have a zero mean, hence, the saturation affects the negative
thruster values more. Thereby, the AUV has a tendency to
sway more towards the positive direction, which explains the
bias noticed in our data.

VI. CONCLUSIONS

In this paper we have presented a theoretical framework for
covariance analysis as a metric to evaluate the performance
of a policy learned using reinforcement learning. We have
also proposed a scoring metric that uses the output of the
covariance analysis to evaluate the performance of a policy. We
have shown a real-world application by applying the method

to the problem of a thruster failure in an AUV. We show that

using the proposed analysis, we have discovered a policy with
better performance in the presence of environmental noise.

The method is not limited to underwater robotic problems.
It can be applied to other problems where there are multiple
possible policies in the solution space and a covariance matrix
can be computed for them.
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