
Kinematic-Model-Free Control for Space Operations
with Continuum Manipulators

Chase Frazelle and Ian Walker
ECE Department

Clemson University
Clemson, SC USA 29630

{cfrazel,iwalker}@clemson.edu

Ahmad AlAttar and Petar Kormushev
Dyson School of Design Engineering

Imperial College London
London, UK SW7 2DB

{a.alattar19,p.kormushev}@imperial.ac.uk

Abstract—Continuum robots have strong potential for applica-
tion in Space environments. However, their modeling is chal-
lenging in comparison with traditional rigid-link robots. The
Kinematic-Model-Free (KMF) robot control method has been
shown to be extremely effective in permitting a rigid-link robot
to learn approximations of local kinematics and dynamics (”kin-
odynamics”) at various points in the robot’s taskspace. These
approximations enable the robot to follow various trajectories
and even adapt to changes in the robot’s kinematic structure. In
this paper, we present the adaptation of the KMF method to a
three-section, nine degrees-of-freedom continuum manipulator
for both planar and spatial task spaces. Using only an external
camera, we show that the KMF method allows the continuum
robot to converge to various desired set points in the robot’s
taskspace, avoiding the complexities inherent solve this problem
using traditional inverse kinematics. The success of the method
shows that a continuum robot can ”learn” enough information
from an external camera to reach and track desired points
and trajectories, without needing knowledge of exact shape or
position of the robot. We apply the method in a simulated
example of a continuum robot performing an inspection task on
board the ISS.

TABLE OF CONTENTS

1. INTRODUCTION . 1
2. METHODS . 2
3. EXPERIMENTAL VALIDATION . 4
4. DISCUSSION . 7
5. CONCLUSION . 9
ACKNOWLEDGMENTS . 9
REFERENCES . 9
BIOGRAPHY . 10

1. INTRODUCTION
Rigid-link robots are, as the name suggests, traditionally
comprised of rigid bodies connected through a finite series of
joints. While this makes for tractable dynamics and permits
reasonable controllability, this form of structure does not
lend itself well to cluttered environments or scenarios in
which collisions, even minor, can result in damage to the
robot and environment. Conversely, continuum robots, which
can bend at any point along their continuous backbones, are
designed to be compliant, and in cluttered environments are
able to experience contacts without causing damage. The
compliant nature of continuum robots makes them ideal
for inspection and sensing in restricted environments, such
as cluttered cargo areas and hard-to-reach areas of inter-
est. Unfortunately, this increase in compliance also carries
an increase in the complexity of the robot’s dynamics and

978-1-7281-7436-5/21/$31.00 ©2021 IEEE

inverse kinematics, especially in the case of a redundant
continuum manipulator. In this paper, we propose the use
of a model learning algorithm to replace the use of dynamics
and kinematics in guiding a continuum robot’s end-effector
through space.

Continuum manipulators manifest a theoretically infinite
number of Degrees-of-Freedom (DoF), distinctly different
from even hyper-redundant rigid-link robots, such as snake
robots [1]. The ability of continuum robots to adapt to their
environments and maneuver in cluttered spaces has moti-
vated their application in Space applications [2], [3]. There
is by now a fairly extensive literature on continuum robot
kinematics, many of which constrain these infinite DoF to
ideal assumptions about the robot and its environment. Given
these ideal conditions, the constant curvature based kinematic
models [4], [5] have proven effective for approximating the
shape of continuum systems and the location of end-effectors
in open space. Further works have expanded into modeling
non-constant curvature bending of continuum robots that are
subject to internal and external loads [1], [6], [7], or collisions
with the environment [8], [9]. These more realistic models,
while better at approximating shape and predicting output
under load, require significantly more information about the
continuum system and do not lend themselves well to invert-
ibility or the added complexity of implementation on multi-
section continuum manipulators. Neither of these classes of
kinematic models have proven trivial for the execution of task
space path planning and following.

Likewise, dynamic modeling for continuum robot systems
has received notable attention, especially of late [10], [11],
[12], but the complexity of these systems, especially those
composed of multiple sections, often proves to be unwieldy
without making numerous simplifying assumptions. Indeed,
our own recent approximate models [13], [14] are still com-
putationally intensive even after removing the complexity of
continuum mechanics and settling for approximate rigid-link
models. Coupled with the effects of gravity, achieving motion
along a desired path is dependent on reliable modeling and
sufficient feedback. With respect to continuum robots in
practical applications, the states of such solutions are often
inherently unobservable, under-actuated, or both, without the
implementation of computationally expensive sensor arrays
or a suite of external cameras to extract full robot shape while
avoiding occlusion.

In considering the complexity of kinematic and dynamic
models for continuum robots, it is easy to see why the
relatively few works that explore motion planning with con-
tinuum manipulators have relied on simplification of these
models or reduction in the number of DoF. This simplification
allows implementation of some of the popular motion plan-
ning methods used for rigid-link robots, such as RRT [15],
[16] and reinforcement learning methods [17], [18].

1

In this paper, we explore the application of Kinematic-Model-
Free (KMF) robot control as a potential solution for the many
challenges facing task space path planning and automation
of continuum robots, while simultaneously reducing the need
for complex sensors or extensive knowledge about the contin-
uum robot. In previous works by the authors [19], [20], [21],
the KMF method has been shown to be extremely effective in
permitting a rigid-link robot to learn approximations of local
kinematics and dynamics (termed ”kinodynamics”) at various
points in the robot’s taskspace. These approximations then
enabled a robot to follow various trajectories and even adapt
to changes in the robot’s kinematic structure. The approach
learns the local kinodynamics through a series of exploratory
actuation primitives and a k-Nearest Neighbor algorithm. The
algorithm can predict what inputs to the robot’s actuators will
result in a motion towards a desired set point. A major ad-
vantage of this approach is the simplification of the feedback
system: only a camera is needed to track the location of the
end-effector relative to the location of the desired set point.

The paper is organized in the following order: Section 2
reviews the architecture of KMF and the steps taken in this
work to adapt KMF to continuum robots. Section 3 describes
the experimental setup and results of using KMF with an
extensible continuum manipulator. Discussion concerning
the potential of KMF for continuum robots, especially consid-
ering a continuum manipulator deployed with KMF to enable
ISS exploration is given in Section 4. Finally, conclusions are
offered in Section 5.

2. METHODS
This section gives an overview of the established KMF
method, detailing the overall structure of the algorithm and
the specific details we utilize in our realization. Further, we
present a series of mappings that convert actuation primitives
from KMF into universal actions for continuum manipulators
by exploiting ideal kinematics.

KMF Algorithm

As detailed in [19], [20], and [21], KMF operates on a
learn-as-you-go premise by providing a robot with test mo-
tions, or actuation primitives, and then recording the re-
sulting motion of the end-effector after the primitives are
applied. A collection of these exploratory primitives across
the robot’s work-space can then be used to approximate the
local kinematics and dynamics of the system and provide
a best-fit approximation of what actuation would provide
desired motion. After the conclusion of each motion, the
resulting movement is compared to the anticipated motion
of the end-effector in order to evaluate the accuracy of the
approximated ”kinodynamic” model. If significant difference
exists between expectation and reality, the algorithm triggers
a new exploratory phase in order to better sample the local
space.

In this work, we use a slightly modified implementation of
that proposed in the original KMF works. First, we start with
the premise of actuation primitives: a control signal τ(t), in
this case either a voltage or pressure, that varies as a function
of time:

τ(t) =

{
τp if t ∈ [t0, t0 + dp)
0 if t ∈ (−∞, t0) ∪ (t0 + dp,∞) , (1)

where τp is defined to be the magnitude of the actuation
primitive and dp is the duration of the primitive. The value t0

denotes the start time of the action. In this implementation,
the value dp is constant at 1s throughout execution, and all in-
dividual actuation primitives share the same start value t0 for
each separate motion. Throughout the execution of KMF, the
controller is recording the set pi of all meaningful actuation
primitives executed on the robot, including primitives from
both exploration behavior and model predicted behavior.

Next, we describe the process of using the collected data set
pi to produce desirable actuation primitives that will drive
the end-effector to a goal location. In this implementation,
we will generalize the dimension of our actuator primitives,
and subsequent results, to match our later implementation on
hardware. To begin, let p̂ be an actuation primitive whose
parameters τ(p̂) will cause the end-effector to move towards
a desired goal. We assume no knowledge about the robot’s
kinematics or dynamics, and given this, we must estimate the
values τ(p̂) that will give us the desired motion. The desired
primitive consists of n elements – one for each DoF:

b1 =


τ1p (p̂)
τ2p (p̂)

...
τnp (p̂)

 . (2)

For traditional rigid-link robots, the number of elements in
the primitive is also equivalent to the number of actuators. In
this implementation, as with the initial implementation, the
estimation of p̂ is to be determined as a linear combination
of the k-nearest neighbor (k-NN) primitives previously ex-
ecuted and saved in the controller’s memory. These k-NN
primitives are selected according to the distance between the
current end-effector location and the starting position of each
primitive executed in memory. The resulting k-NN primitives
are labeled as p1. . .pk. The linear combination of these k-NN
primitives can be expressed in the matrix form:

A1x = b1 (3)

where x = [x0, x1, . . . , xk]T , is an as yet unknown weight
vector. The matrix A1 contains the parameters of the k-NN
primitives:

A1 =


1 τ1p (p1) τ1p (p2) . . . τ1p (pk)
1 τ2p (p1) τ2p (p2) . . . τ2p (pk)

...
1 τnp (p1) τnp (p2) . . . τnp (pk)


n×(k+1)

, (4)

where τp(pi) is the magnitude of the i-th actuation primi-
tive. We solve for the unknown coefficients xi using readily
available information concerning the results of our previously
experienced k-NN actuation primitives. We thus describe the
matrix:

A2 =


1 ∆x(p1) ∆x(p2) . . . ∆x(pk)
1 ∆y(p1) ∆y(p2) . . . ∆y(pk)

...
1 ∆z(p1) ∆z(p2) . . . ∆z(pk)


3×(k+1)

,

(5)

in which [∆x(pi)∆y(pi)∆z(pi)]
T is the relative displace-

ment experienced by the end-effector upon execution of the
primitive pi. Utilizing knowledge of both the manipulator’s

2

current end-effector location and the location of the goal
destination, we can choose a simple desired displacement for
the end-effector to move towards the goal. If the distance
between the end-effector is sufficiently small, we can choose
the next desired motion to move directly to the desired goal
or take an incremental step towards our goal. Regardless, the
desired motion is summarized as a relative displacement of
the end-effector in global coordinates:

b2 =

∆x(p̂)
∆y(p̂)
∆z(p̂)

 (6)

After designating our desired motion, we can calculate the
coefficients {xi} by solving for x in the equation:

A2x = b2 (7)

As discussed in [19], the rank of matrix A2 is not guaranteed
to be full, allowing variability in the solution for x. We
once again solve this problem using least squares regression
to find a best-fit approximation for x. Once calculated, we
can use equation 4 to find the desired primitive parameters
τp(p̂) in b1. One final adjustment is the weighting of the k-NN
primitives according to the distance between the current end-
effector location and the starting location of each primitive.
By adding this set of weights, wi. . .wk, we obtain a weighted
least squares solution when solving 7. Thus, equations 4 and
7 are adjusted as follows:{

A1Wx = b1
A2Wx = b2

, (8)

where W = diag(1,w1, w2, . . . , wk).

Continuum OctArm Implementation

The OctArm, illustrated in Figure 1, is a 3-section, 9 DoF
continuum robot, actuated by pneumatically driven McK-
ibben actuators. Pressuring the McKibben muscle creates
extension along the length of an individual muscle. By
connecting three of these muscles (or sets of them at equal
pressures) in parallel to form a continuum section, we can
extend said section by pressurizing all muscles simultane-
ously by the same amount or create bending by differentially
pressurizing the muscles. The OctArm is then comprised of
three of these serially connected sections, with each section
actuated by three independently controlled pressures, and
capable of independent extension and two DoF of spatial
bending, providing the OctArm 9 DoF overall. The overall
length of the OctArm can range from 1.07m to 1.38m.

In this work, we choose to model the continuum kinematics
using the model described in [5]. This constant-curvature
model describes a single extensible continuum section using
3 values: 2 bending magnitudes u and v, and arc-length s.
The bending magnitudes convey bending along two orthog-
onal axes, u about the local X-axis, and v about the local
Y-axis. The combined magnitude of u and v gives the overall
bending magnitude of the section and their relative value
gives the direction of bending as described by φ = tan−1(v

u).
We choose this kinematic description from among the other
valid models due to the simplicity of mapping from kinematic
values to actuator values, as provided in [22] and reproduced

Figure 1. OctArm Continuum Manipulator

below:

l1 = s(t)− d · v(t) (9)

l2 = s(t) +
d · v(t)

2
+

√
3d · u(t)

2
(10)

l3 = s(t) +
d · v(t)

2
−
√

3d · u(t)

2
(11)

KMF for continuum manipulator

As outlined in the initial development of KMF, the action
primitives, τ(t), supplied by the method are not limited by
action type or actuation method. When adapted to continuum
robots, there are two main types of actuation to be considered:
tendon driven devices actuated through electric motors and
pneumatically driven artificial muscles. The cases of both
extensible and non-extensible manipulators also need to be
taken into account. In considering non-extensible, tendon
driven robots, one cannot simply pull on a single tendon

3

and achieve desired motion without first or simultaneously
letting all opposing tendons go slack or at least reduce tension
in an amount proportional to the tendon being pulled on.
This means that for fixed length robots, we need to address
coupling for the robot by applying differential actuation.

Following from this idea of differential actuation, we make
use of the kinematics mentioned in equations 9-11 to relate
individual actuator values to KMF primitives. Here, for both
extensible and non-extensible continuum robots, we can map
one primitive to the kinematic value u to cause differential
bending along the local Y-axis, as related by the sign change
of the coefficient for u in actuators 2 and 3. Likewise, we
can map another primitive to the value v to drive differential
bending along the local X-axis. Exclusively for extensible
continuum manipulators, a final primitive can be mapped
to the arc-length value s that is present for all actuators.
More explicitly for the OctArm, we can increase and decrease
pressure to respective muscles using the following equations:

p1 =

∫
τs(t)dt− d

∫
τv(t)dt (12)

p2 =

∫
τs(t)dt+

d

2

∫
τv(t)dt+

√
3d

2

∫
τu(t)dt (13)

p3 =

∫
τs(t)dt+

d

2

∫
τv(t)dt−

√
3d

2

∫
τu(t)dt (14)

where pi is the pressure value for muscle i in a section, and
τu, τv , and τs are the primitives mapped to the kinematic
values u, v, and s, respectively.

Mapping KMF to OctArm DoF

In order to implement KMF for the 9 DoF OctArm and
observe the efficacy of the method, we began with a sim-
plified mapping of KMF primitives to OctArm DoF. Here,
we present 3 mappings of KMF primitives to OctArm DoF,
gradually increasing the complexity and redundancy of the
system in order to assess KMF.

Mapping 1: 3 DoF— In this first mapping, we treat the
OctArm as a single continuum section, providing identical
inputs to muscle 1 of each section, and the same setup for
muscles 2 and 3. Given that the OctArm is extensible by
design, we can use the primitive mapping described for the
basic extensible continuum section:

[τ1, τ2, τ3] = [τu, τv, τs] (15)

This mapping accentuates the under-actuated nature of con-
tinuum robots by displaying non-constant curvature. Non-
constant curvature will be especially prevalent in the proximal
(base) section, which must support the load of both the
middle and distal sections. Even in this reduced number
of DoF, traditional task-space planning and control methods
potentially suffer from modeling and sensing errors.

As noted when first reporting KMF, the order in which the
primitives are arranged in this mapping, and subsequent map-
pings, is not important to the method. The order provided is
simply for reporting purposes and for clarity of the mapping.

Mapping 2: 4 DoF—For the second mapping, we treat the
OctArm as a non-extensible, 2 section continuum manipula-
tor. We accomplish this by treating the base and mid-sections

-0.3 -0.2 -0.1 0 0.1 0.2

X-Axis [m]

0

1

2

Y-Axis [m]

-0.9

-0.85

-0.8

Z
-A

x
is

 [
m

]

(a) Line path in Kinect coordinate system

-0.15 -0.1 -0.05 0 0.05 0.1 0.15
X-Axis [m]

0
0.5
1

1.5

Y-Axis [m]

-0.88

-0.86

-0.84

-0.82

Z
-A

x
is

 [
m

]

(b) Proposed lemniscate path in Kinect coordinate
system

Figure 2. Nominal Trajectories for End-effector tracing

of the OctArm as one section, receiving matching inputs to
each of the muscle groups as in the first mapping. To sim-
ulate non-extensibility, we initialize each OctArm section to
their respective mid-range extension value, essentially half-
way between their minimum and maximum pressure. After
initialization, only differential inputs utilizing u and v are
given to the system. This provides the system with 4 DoF,
with the primitive vector:

[τ1, τ2, τ3, τ4] = [τub
, τvb , τut

, τvt] (16)

The second mapping serves to demonstrate using KMF in the
non-extensible class of continuum robots. It also serves to
introduce redundancy into the system.

Mapping 3: 6DoF—The final mapping makes use of each
section of the OctArm independently of the others. As with
the second mapping, we model the sections as constant length
and provide only differential inputs to each section, giving the
system a total of 6 DoF. Our primitive vector for this case is:

[τ1, τ2, τ3, τ4, τ5, τ6] = [τub
, τvb , τum

, τvm , τut
, τvt] (17)

This mapping represents a 3-section non-extensible contin-
uum robot, and implements the largest degree of redundancy
explored in this work.

3. EXPERIMENTAL VALIDATION
In evaluating the efficacy of KMF across the different map-
pings, we consider two paths in the OctArm’s taskspace for
the end-effector to follow. As part of a class of robots whose
hardware naturally traces curves and bending motions, one of
the most difficult motions for a continuum robot to perform
for the end-effector is a straight line. Consequently, the first
path we test is a straight line that runs through the taskspace,
parallel to the x-axis. The path can be seen in Figure 2a.
The exact path is a series of 9 points spaced evenly between
[x,y,z] = [-0.2m,0.95m,-0.85m] and [0.2m,0.95m,-0.85m] in
the camera’s coordinate frame. In executing the path, the
OctArm must travel to the start point (x=0.2m) then follow
the full length of the path and back again to the start of the
line.

4

The second path considered is a planar lemniscate path sitting
a plane that is parallel, but offset, from the OctArm’s local
XZ-plane. The path consists of 19 discrete points (the start
and stop point are the same), shown in Figure 2b, and spaced
approximately 5cm apart. For both paths, the end-effector
must arrive within 2cm of error (as depicted in the plots by
the green region) of the current goal point before moving to
the next. An example of the OctArm executing both the line
and lemniscate path can be seen in Figure 3.

Tracking of the OctArm end-effector along the desired tra-
jectories is achieved through the use of a Microsoft Kinect
[23] to track the center of the OctArm end-effector using hue
filtering. We then use the Kinect API to map color pixel
coordinates to depth values and consequently to real-world
coordinates. Goal points along the desired paths are provided
through a MATLAB script, with the coordinates themselves
set with respect to the Kinect coordinate system. Kinect
tracking is implemented in C++ using Visual Studio 2015,
and the same program also sends the end-effector coordinates
to a Simulink model via network socket. A second Simulink
model is responsible for integrating the actuation primitives
into pressure values that drive the pressure regulators control-
ling the OctArm. Finally, the MATLAB script that provides
the goal locations as the end-effector moves through the task
space also hosts the core KMF algorithm by receiving end-
effector location, calculating and recording primitives and
motions, and providing primitives to the Simulink model
driving the OctArm.

(a) OctArm following line path through task space.

(b) OctArm following lemniscate path in task space.

Figure 3. OctArm Manipulator tracing paths in work space.

Results: 3 DoF Mapping

In implementing the first mapping, the KMF method was
tasked with solving what would ideally be a relatively simple
mapping of 3 DoF to 3 dimensions of movement for the end-
effector. In reality, and as mentioned briefly when introducing
the mapping, the compliance of the OctArm and the fact
that the system is under the effects of gravity makes this a
difficult problem to model, much less solve. In observing
robot performance under KMF, seen in Figures 4 and 5, it
can be seen that with sufficient exploration time the method
is able to track both test trajectories in Figure 2 well and in
reasonable time.

For the line trajectory, as seen in Figure 4a, starting from the
time of arrival at the first point, KMF actuates the robot to
step along the remaining 16 consecutive points with little to
no error outside of the 2cm limit in under 3 minutes. This
value is more impressive when considering that the system
is paused (not a result of KMF) 3 seconds between reaching
each goal point and starting to move to the next point on the
path (1 second to ensure that system is settled, 2 seconds of
clarity of the result).

20 40 60 80 100 120 140 160

Time [s]

-1

-0.5

0

0.5

1
P

o
s
it
io

n
 [
m

]

ee
x

ee
y

ee
z

goal
x

goal
y

goal
z

(a) 3DoF end-effector and goal position while
following line path

-1.05

-1

-0.95

-0.9

-0.85

-0.8

-0.75

1.2

-0.7

Z
-A

xi
s

[m
]

Y-Axis [m]

1

X-Axis [m]

0.30.20.8 0.10-0.1-0.2-0.3

(b) Measured end-effector location while following
line path (3DoF)

Figure 4. 3DoF OctArm line following

The 3 DoF mapping also proves capable of completing the
lemniscate path, which requires additional motion compen-

5

sating against gravity. Here, we see more travel outside
of the nominal path we expect between consecutive points,
but still have eventual recovery and convergence to each
point. The travel outside the nominal path could potentially
be improved either through smaller steps along the path or
providing further exploration in this region of the taskspace.

0 50 100 150 200 250

Time [s]

-1

-0.5

0

0.5

1

P
o
s
it
io

n
 [
m

]

ee
x

ee
y

ee
z

goal
x

goal
y

goal
z

(a) 3DoF end-effector and goal position while
following lemniscate path

-1

-0.95

-0.9

-0.85

-0.8

1.2

-0.75

Z
-A

xi
s

[m
]

Y-Axis [m]

1

X-Axis [m]

0.20.10.8 0-0.1-0.2-0.3

(b) Measured end-effector location while following
lemniscate path (3DoF)

Figure 5. 3DoF lemniscate path following

Results: 4 DoF Mapping

In implementing the second mapping, there was uncertainty
about how introducing redundancy would impact the perfor-
mance of the algorithm. In observing the results in Figures
6 and 7, we can clearly see that, at least for these two
paths, the addition of another DoF did not greatly hinder the
performance. While not shown in these snapshot results, it
was noticeable during training that it took longer for the 4
DoF mapping to obtain enough experience to traverse the
space intentionally. This is due in part to the fact that the
4-dimensional exploration primitives, even when orthogonal,
could not guarantee a diverse set of motion in the task-
space. The same can be said for the previous 3 DoF mapping
given the non-linearity of the system, but the extra degree of
redundancy does not appear to help exploration.

When comparing the results of the 3 and 4 DoF mappings at
following the line path, there is little discernible difference

between the two performances. In general, we observe that
both mappings can still make inaccurate predictions at times,
depending on the closest neighbor candidates at each given
point, but both have similar completion time.

20 40 60 80 100 120 140 160

Time [s]

-1

-0.5

0

0.5

1

P
o
s
it
io

n
 [
m

]

ee
x

ee
y

ee
z

goal
x

goal
y

goal
z

(a) 4DoF end-effector and goal position while
following line path

-1.05

-1

-0.95

-0.9

-0.85

-0.8

1.1

-0.75

Z
-A

xi
s

[m
]

Y-Axis [m]

1

X-Axis [m]

0.30.20.9 0.10-0.1-0.2-0.3

(b) Measured end-effector location while following
line path (4DoF)

Figure 6. 4DoF line following

Likewise for the lemniscate path, we see similar times of
completion and accuracy of performance between the 3 and 4
DoF mappings. It is worth noting for later discussion that
both mappings appear to deviate less from the acceptable
region of error in the left loop of the path.

6

0 50 100 150 200 250 300

Time [s]

-1

-0.5

0

0.5

1

P
o
s
it
io

n
 [
m

]

ee
x

ee
y

ee
z

goal
x

goal
y

goal
z

(a) 4DoF end-effector and goal position while
following lemniscate path

-0.95

-0.9

-0.85

-0.8

-0.75

-0.7

1.5

-0.65

Z
-A

xi
s

[m
]

Y-Axis [m]

1

X-Axis [m]

0.20.10.5 0-0.1-0.2-0.3

(b) Measured end-effector location while following
lemniscate path (4DoF)

Figure 7. 4DoF lemniscate following

Results: 6 DoF Mapping

As with the 4 DoF mapping, it was unknown exactly what
impact the extra redundancy would have on the performance,
though it was anticipated that 6 DoF would be a greater
challenge in generating a solution than the 4 DoF mapping,
as is the case with most cases in motion planning involving
increased degrees of freedom. As can be seen in Figure 8a,
the first notable impact is on completion time. The result
seen here is one of faster examples we recorded using this
mapping, but is still 4-5 times slower than the 3 and 4 DoF
mappings. In observing Figure 8b, it becomes apparent that a
large portion of that time difference is spent re-exploring and
miscalculating primitives in an already explored region.

The 6 DoF mappings suffers from the same issue observed
in the 4 DoF mapping in that there is no guarantee of suffi-
cient taskspace exploration to use for predictions when given
a diverse, or even orthogonal, set of actuation primitives.
Predictably, where the 6 DoF mapping appears to suffer
more than the 4 DoF mapping relates to the extra increase in
redundancy. The extra redundancy increases the chance that
two neighboring primitives could have been sampled from
very different and relatively remote regions of the robot’s
configuration space.

Fortunately, KMF has already been shown to be able to adapt

to changes in kinematics while actively tracking and learning.
This is evidenced by the fact that the 6 DoF mapping is still
able to converge to each point along the path, even if taking a
different path between each point.

Given the difficulty of solving the line path after several learn-
ing trials in this example, we forgo attempting to trace the
lemniscate path with the 6 DoF mapping for this reporting.

100 200 300 400 500 600 700 800 900

Time [s]

-1

-0.5

0

0.5

1

P
o
s
it
io

n
 [
m

]

ee
x

ee
y

ee
z

goal
x

goal
y

goal
z

(a) 6DoF end-effector and goal position while
following line path

-1.1

-1

-0.9

-0.8

-0.7

-0.6

-0.5

2

-0.4

Z
-A

xi
s

[m
]

Y-Axis [m]

1

X-Axis [m]

0.30.20 0.10-0.1-0.2-0.3

(b) Measured end-effector location while following
line path (6DoF)

Figure 8. 6DoF line following

4. DISCUSSION
In [20], the authors explored how KMF is capable of over-
coming various unknown kinematic constraints and adjust-
ments. In this work, we did not actively pursue adding
unmodeled constraints to our assessment, but during our final
testing the OctArm developed a considerable leak in muscle
1 of the distal section. The leak results in a considerable
curve in the section when prior to the leak the section would
be straight. Normally, such a leak would be catastrophic to
control systems and models and prevent proper function, but
in the case of KMF, this leak did not prove detrimental to the
performance.

In this initial reporting, the results demonstrate the capability
of KMF to track end-effector locations along a path without
placing limitations on memory. In practice, we allowed

7

the method to keep all attempted primitives, regardless of
whether they acted as predicted or not. Thus, the results
presented here contain memory from a number of ”good”
and ”bad” motions, collected over a series of attempts. The
build-up of memory over multiple trials corresponded to
a decrease in time of execution, meaning that with more
memory and more diverse primitives, the OctArm traversed
the paths faster, until the path could be traveled with little
to no miss-steps. As such, the number of primitives and the
density of the primitives available varied by both the path,
number of completions, and the number of DoF. For example,
the 3 DoF line path could be traversed with only a couple
hundred primitives in memory surrounding the volume of the
path while the lemniscate path takes several hundred more
for execution. However, execution time for both paths greatly
reduced when traversing the path multiple times. Future work
will look to limit memory density across the entire taskspace
by either replacing old primitives or by adding primitives that
increase the diversity of motions in localized volumes of the
taskspace.

With regards to increasing redundancy in our results, KMF
proved to be able to enable the OctArm manipulator to
arrive at points in the task space regardless of the number
of DoF. Where redundancy does become a factor is in the
transitioning between two consecutive points, which can vary
depending on the configuration of the OctArm at the start of
the motion. In the case of 3 DoF and 4 DoF, we observe
desirable motion between discrete points in both paths, gen-
erally staying within the desired error. For 6 DoF, we observe
greater variation in the motion between points and the config-
urations themselves at each point in time. While this trend is
to be expected for more complex scenarios, we still observe
the ability of KMF to improve performance as the system
explores more of the taskspace. This is another example of
KMF adapting to new changes in the local kinodynamics of
the OctArm, as a new arrival at the same point in the task-
space no longer means the same kinematic structure of the
OctArm. Future work will explore the use of time based
memory to give more weight to more recent primitives as well
as location in space, as these could be more relevant to the
current robot configuration.

One challenge to this work, and to tracking end-effector’s
from a single camera in general, was the need to avoid
occlusion of the end-effector from the Kinect camera. We
accomplish this by implementing artificial bending limits at
the actuator level, while still allowing KMF to be unaware
of the system state. The limit itself is created by applying
a dynamic saturation level for the maximum and minimum
pressure for muscles 2 and 3, respectively. Since muscles
2 and 3 are responsible for bending towards and away from
the camera, this dynamic saturation limit essentially prevents
muscle 2 from being pressurized significantly greater than
muscle 3 and likewise prevents muscle 3 from reducing
pressure to be significantly below that of muscle 2. In future
applications, this challenge of occlusion could be solved by
using an array of cameras to track the end-effector.

As alluded to when introducing the respective mappings for
the OctArm, part of the aim of this work is to display the
applicability of KMF to continuum robotics beyond the Oc-
tArm. The results here show that KMF is capable of handling
both the theoretical hyper-redundancy of continuum robots
as well as designed redundancy of continuum manipulators
with multiple sections. These results also lend credit to the
idea that KMF primitives could be used as torque inputs to
tendon driven continuum robots that only have the ability to

bend and thus any inputs must be simultaneously pulling and
releasing tendon.

Benchmarking KMF for Continuum Robots

In providing comparison for KMF performance to more tradi-
tional methods for closed-loop control of continuum robots,
we present a collection of results from literature that highlight
both the success of KMF robot control in this paper and
the difficulty of trying to directly compare the success with
other methods on both the OctArm and similar hardware.
To begin, we look at two works that explore the accuracy
of forward kinematic models with respect to end-effector
location explicitly performed on the OctArm manipulator.
In [24], a series of forward kinematic models based upon
constant curvature assumptions are directly compared for
accuracy relative to real-world measurements of the Oc-
tArm’s end-effector. The results here show that while some
models perform better than others, the greatest accuracy seen
across the samples of the robot workspace was in excess
of 5% (as measured with respect to the OctArm’s overall
length), or over 5cm. These models also rely on the internal
measurement of the OctArm’s shape, giving no direct way
to accurately relate assumption based measurements to real-
world coordinates. In [25], the work compares the accuracy
of constant curvature kinematics to statics-based models that
are derived to be geometrically exact and provide a relation-
ship between input pressure and end-effector location for the
OctArm. In this work, the geometrically exact models prove
to be better at predicting gravity related deflections for the
OctArm than constant curvature models, but still provides
approximately 5% error between the predicted and actual
end-effector locations, and does not provide a means for
mapping real-world coordinates to actuator inputs for control.

Next, we present a series of works that explore predicting and
controlling end-effector locations of continuum robots, both
in static and dynamic experiments. The works utilize various
continuum robots with a variety of material and dynamic
model related parameters. In [26], a combination of variable
curvature Cosserat-rod based static and Lagrange dynamic
models are presented to provide control for a two-section
continuum manipulator that is similar in composition to the
OctArm, containing a mixture of rigid and soft materials and
using pneumatic actuation. While reporting much improved
accuracy for their model in comparison to the previous state
of the art, they report 6-8% error in static experiments and
excess of 16% error in dynamic motions of the manipula-
tor’s end-effector. Another relevant work, [27], describes
the statics and dynamics of a tendon driven robot with a
flexible backbone through a combination of Cosserat-rod and
Cosserat-string models. This work reports a 1.7% error
between the predicted and measured end-effector location in
static experiments for a single-section continuum robot, but
does not provide a method for predicting actuator inputs for
a desired end-effector location, which is likely not a unique
solution for multi-section continuum robots. Finally, in [28],
a non-dynamic model based approach based on forward and
inverse kinematics coupled with an adaptive neural network
control is tested. The combination of forward kinematics
and the adaptive neural control provide for approximately 1%
error in end-effector location when tracking paths multi-point
paths. The paths are created using the robot’s forward kine-
matics and are well suited for a continuum robot’s inclination
for following curved paths.

In all, these results from literature, among others, show
various results in the ¡10% error range with respect to robot
length but also carry higher computational, sensing, and

8

modeling costs. Thus, KMF robot control presented here
establishes that reasonable tracking error for notably difficult
motions and static end-effector location control (¡2%) can be
obtained with this class of robot with a simple input-output
framework and end-effector tracking through a 3D camera or
network of standard cameras.

Expanding KMF to Space Deployment

One of the many potential advantages of KMF with respect
to continuum robot automation, and robot automation in
general, derives from the simplicity of the system required to
implement it. Traditional robot control and planning relies on
sensing, often on-board, to close the control loop and provide
the system state to various models. In long-term deployment
environments such as the International Space Station (ISS),
the future Lunar Gateway, or even extra-planetary bodies,
critical sensor malfunctions can be catastrophic to a mission.

In the case of our ongoing research, one specific continuum
robot in our lab, the Tendril robot [29], is designed for
applications concerning inspection and monitoring in Space
operations. One of the target scenarios for this robot is
deployment on the ISS for automated inspection of hard-
to-reach locations and commensurately reducing astronaut
workload. An example simulation of this scenario with
Tendril deployed in and looking around the ISS can be seen
in Figure 9. The simulated Tendril actuation has been driven
by the KMF approach reported herein. Both aboard the ISS
and the future Lunar Gateway, there are potential times when
a deployed robot cannot be serviced, even for a faulty sensor,
endangering mission success. KMF offers an alternative loop
for maintaining these automated systems.

Figure 9. Tendril Continuum Manipulator in Simulated
Inspection Task on ISS

5. CONCLUSION
Continuum robots, via their inherent compliance and ability
to change shape throughout their structure, have the po-
tential to perform tasks in congested and sensitive Space
environments that are beyond the capabilities of traditional
rigid-link robots. However, their dynamics and modeling
are more complex than traditional robots, which complicates
their modeling, sensing, planning, and control.

We report on experiments extending the Kinematic-Model-
Free (KMF) robot control method to continuum robots, and
highlight its ability to capture the kinodyamics of a contin-

uum robot system in various parts of the taskspace. We
demonstrate the strong relationship between the length of
memory of the method and significant decreases in conver-
gence time with a specified goal. The success of the method
shows that a continuum robot can ”learn” enough information
from an external camera to reach and track desired points
and trajectories, without needing knowledge of exact shape
or position of the robot. Experiments with a three section,
nine Degree of Freedom (DoF) continuum robot are sup-
ported by simulations of continuum robot inspection on the
International Space Station (ISS).

ACKNOWLEDGMENTS
This research was supported by NASA Space Technol-
ogy Research Fellowship contract 80NSSC17K0173, and by
the U.S. National Science Foundation under grants CMMI-
1924721 and IIS-1718075.

REFERENCES
[1] G. Chirikjian and J. Burdick, “A modal approach to

hyper-redundant manipulator kinematics,” IEEE Trans.
Robot. Autom., vol. 10, no. 3, pp. 343–354, Jun. 1994.

[2] I. Walker, “Continuum robot appendages for traversal
of uneven terrain in in-situ exploration,” in Proc. IEEE
Aerospace Conf., Big Sky, MT, 2011, pp. 1–8.

[3] D. Nahar, P. Yanik, and I. Walker, “Robot tendrils:
Long, thin continuum robots for inspection in space
operations,” in Proc. IEEE Aerospace Conference, Big
Sky, MT, 2017, pp. 1–8.

[4] B. Jones and I. Walker, “Kinematics for multisection
continuum robots,” IEEE Trans. Robot., vol. 22, no. 1,
pp. 43–57, Feb. 2006.

[5] W. Felt, M. T. andT. Allen, G. Hein, J. Pompa, K. Al-
bert, and D. Remy, “An inductance-based sensing sys-
tem for bellows-driven continuum joints in soft robots,”
in Robotics: Science and Systems, The Hague, Nether-
lands, 07 2017.

[6] T. Mahl, A. Hildebrandt, and O. Sawodny, “A variable
curvature continuum kinematics for kinematic control
of the bionic handling assistant,” IEEE Transactions on
Robotics, vol. 30, no. 4, pp. 935–949, 2014.

[7] I. Gravagne and I. D. Walker, “Manipulability, force,
and compliance analysis for planar continuum manipu-
lators,” IEEE Trans. Robots. Autom., vol. 18, no. 3, pp.
263–273, Jun. 2002.

[8] D. Rucker and R. Webster III, “Deflection-based force
sensing for continuum robots: A probabilistic ap-
proach,” in Proc. IEEE/RSJ Int. Conf. Intel. Robot. Syst.,
San Francisco, CA, 2011, pp. 3764–3769.

[9] D. C. Rucker, B. A. Jones, and R. J. Webster III,
“A geometrically exact model for externally loaded
concentric-tube continuum robots,” IEEE Transactions
on Robotics, vol. 26, no. 5, pp. 769–780, 2010.

[10] S. Sadati, Y. Noh, S. Naghibi, and A. Althoefer, “Stiff-
ness control of soft robotic manipulators for minimally
invasive surgery (mis) using scale jamming,” in Int.
Conf. Rob. and Autom., Amsterdam, The Netherlands,
2015, pp. 141–151.

[11] W. S. Rone and P. Ben-Tzvi, “Continuum robot dy-
namics utilizing the principle of virtual power,” IEEE

9

Transactions on Robotics, vol. 30, no. 1, pp. 275–287,
2013.

[12] E. Tatlicioglu, I. Walker, and D. Dawson, “Dynamic
modeling for planar extensible continuum robot manip-
ulators,” Int. Jour. Robot. Autom., vol. 24, no. 4, pp.
1087–1099, Apr. 2009.

[13] C. Wang, J. Wagner, C. G. Frazelle, and I. D. Walker,
“Continuum robot control based on virtual discrete-
jointed robot models,” in IECON 2018-44th Annual
Conference of the IEEE Industrial Electronics Society.
IEEE, 2018, pp. 2508–2515.

[14] C. Wang, C. G. Frazelle, J. R. Wagner, and I. Walker,
“Dynamic control of multi-section three-dimensional
continuum manipulators based on virtual discrete-
jointed robot models,” IEEE/ASME Transactions on
Mechatronics, 2020.

[15] A. Kuntz, A. W. Mahoney, N. E. Peckman, P. L. An-
derson, F. Maldonado, R. J. Webster, and R. Alterovitz,
“Motion planning for continuum reconfigurable inci-
sionless surgical parallel robots,” in 2017 IEEE/RSJ
International Conference on Intelligent Robots and Sys-
tems (IROS). IEEE, 2017, pp. 6463–6469.

[16] A. Ataka, P. Qi, H. Liu, and K. Althoefer, “Real-
time planner for multi-segment continuum manipula-
tor in dynamic environments,” in 2016 IEEE Interna-
tional Conference on Robotics and Automation (ICRA).
IEEE, 2016, pp. 4080–4085.

[17] S. Satheeshbabu, N. K. Uppalapati, G. Chowdhary, and
G. Krishnan, “Open loop position control of soft contin-
uum arm using deep reinforcement learning,” in 2019
International Conference on Robotics and Automation
(ICRA). IEEE, 2019, pp. 5133–5139.

[18] T. G. Thuruthel, E. Falotico, F. Renda, and C. Laschi,
“Model-based reinforcement learning for closed-loop
dynamic control of soft robotic manipulators,” IEEE
Transactions on Robotics, vol. 35, no. 1, pp. 124–134,
2018.

[19] P. Kormushev, Y. Demiris, and D. G. Caldwell, “En-
coderless position control of a two-link robot manipu-
lator,” in Proc. IEEE Int. Conf. Robot. Autom., Seattle,
Washington, 2015, pp. 943–949.

[20] ——, “Kinematic-free position control of a 2-dof planar
robot arm,” in Proc. IEEE/RSJ Int. Conf. Intel. Robot.
Syst., Hamburg, Germany, 2015, pp. 5518–5525.

[21] A. AlAttar and P. Kormushev, “Kinematic-model-free
orientation control for robot manipulation using locally
weighted dual quaternions,” Robotics, vol. 9, no. 4,
p. 76, 2020.

[22] C. G. Frazelle, A. D. Kapadia, and I. D. Walker, “A
haptic continuum interface for the teleoperation of ex-
tensible continuum manipulators,” IEEE Robotics and
Automation Letters, vol. 5, no. 2, pp. 1875–1882, 2020.

[23] Microsoft. (2020, October) Kinect for
windows. Https://developer.microsoft.com/en-
us/windows/kinect/.

[24] A. Chawla, C. Frazelle, and I. Walker, “A comparison
of constant curvature forward kinematics for multisec-
tion continuum manipulators,” in 2018 Second IEEE
International Conference on Robotic Computing (IRC).
IEEE, 2018, pp. 217–223.

[25] D. Trivedi, A. Lofti, and C. Rahn, “Geometrically exact
dynamic models for soft robotic manipulators,” in Proc.

IEEE/RSJ Int. Conf. Intel. Robot. Syst., San Diego, CA,
2007, pp. 1497–1502.

[26] S. M. H. Sadati, S. E. Naghibi, I. D. Walker, K. Althoe-
fer, and T. Nanayakkara, “Control space reduction and
real-time accurate modeling of continuum manipulators
using ritz and ritz–galerkin methods,” IEEE Robotics
and Automation Letters, vol. 3, no. 1, pp. 328–335,
2018.

[27] D. C. Rucker and R. J. Webster III, “Statics and dy-
namics of continuum robots with general tendon routing
and external loading,” IEEE Transactions on Robotics,
vol. 27, no. 6, pp. 1033–1044, 2011.

[28] A. Melingui, O. Lakhal, B. Daachi, J. B. Mbede, and
R. Merzouki, “Adaptive neural network control of a
compact bionic handling arm,” IEEE/ASME Transac-
tions on Mechatronics, vol. 20, no. 6, pp. 2862–2875,
2015.

[29] M. Wooten, C. Frazelle, I. D. Walker, A. Kapadia,
and J. H. Lee, “Exploration and inspection with vine-
inspired continuum robots,” in 2018 IEEE Interna-
tional Conference on Robotics and Automation (ICRA).
IEEE, 2018, pp. 1–5.

BIOGRAPHY[

Chase Frazelle received his B.Sc. and
M.S. degree in electrical engineering
from Clemson University, Clemson, SC,
in 2015 and 2017, respectively, and is
currently pursuing his PhD in electrical
engineering at Clemson. His research is
focused on the control and modeling of
extensible continuum robots with the aim
to improve the reliability and automation
of such manipulators for space explo-

ration and investigation. Other research interests include
human-robot interfacing, embedded systems, and interaction
with distributed systems.

Ian D. Walker received the B.Sc. De-
gree in Mathematics from the University
of Hull, England, in 1983 and the M.S.
and Ph.D. Degrees in Electrical and
Computer Engineering from the Univer-
sity of Texas at Austin in 1985 and 1989,
respectively. He is currently a Pro-
fessor in the Department of Electrical
and Computer Engineering at Clemson
University. Professor Walker’s research

centers on robotics, particularly novel manipulators and
manipulation. His group conducts basic research in the con-
struction, modeling, and application of biologically inspired
”trunk, tentacle, and worm” robots.

Petar Kormushev holds a PhD in Com-
putational Intelligence from Tokyo In-
stitute of Technology, an MSc in Artifi-
cial Intelligence, an M.Sc. in Bio- and
Medical Informatics, and a B.Sc. in
Computer Science. Dr Kormushev’s re-
search interests include machine learn-
ing and robot learning algorithms, espe-
cially reinforcement learning for intelli-
gent robot behavior.

10

Ahmad AlAttar completed his Bach-
elor’s degree with Honours in Mecha-
tronic Systems Engineering in Simon
Fraser University, Canada, in 2017 and
his M.S. in Electronic Engineering with
Management at King’s College London
in 2019. He is currently pursuing a
PhD at Imperial College London and
his research interests are robot learning,
model-free control, and deep reinforce-

ment learning.

11

