
 

 
 

 

 

Abstract—This paper reports on development of an open 
source dynamic simulator for the COmpliant huMANoid robot, 
COMAN. The key advantages of this simulator are: it generates 
efficient symbolic dynamical equations of the robot with high 
degrees of freedom, it includes a user-defined model of the 
actuator dynamics (the passive elasticity and the DC motor 
equations), user defined ground models and fall detection. Users 
have the freedom to choose the proposed features or include 
their own models. The models are generated in Matlab and C 
languages, where the user can leverage the power of Matlab and 
Simulink to carry out analysis to parameter variations or 
optimization and also have the flexibility of C language for real-
time experiments on a DSP or FPGA chip. The simulation and 
experimental results of the robot as well as an optimization 
example to tune the ground model coefficients are presented. 
This simulator can be downloaded from the IIT website [

 

1]. 
 

INTRODUCTION 

EVELOPMENT of a realistic and mathematical model of 
humanoid robots motion plays a key role in design and 
testing of controllers and trajectory generators. The 

desired simulator for COMAN should include the direct and 
inverse dynamics, forward and inverse kinematics, actuator 
dynamic models, series elastic elements, ground model with 
friction, and good computational speed. Among the 
simulators for humanoid robots Open Dynamic Engine 
(ODE) [2], Webots [3], Open HRP [4], SL [5], Adams [6], 
RoboWorks [7], SimMechanics, MapleSim [8], player/stage, 
Gazebo, SAI (Simulation & Active Interface) [9] developed 
in Stanford University and the simulators developed by 
Honda and Sony are the most well known. However, some of 
these simulators are commercial or not fully open source 
which is problematic when testing and debugging the 
controllers, since not all their details are accessible or 
customizable to suit a particular robot.  

Adams is a powerful commercial multibody dynamics 
software which is widely used in industry and some 
universities. However it is not open source, which makes it 
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difficult to share the simulator among research groups who 
work in humanoid robotics. Moreover, Adams generates the 
equation of motion or kinematics numerically as opposed to 
the symbolic approach. OpenHRP and SL are strong 
simulation tools to validate control algorithms for stiff robots 
since they support rigid body dynamics, but they miss the 
significant actuator dynamics present in flexible joint robots 
such as COMAN. ODE is an open source library created for 
modeling rigid body robots, but does not satisfy all the 
contact dynamic requirements that are needed in creating a 
realistic walking simulator. Also, important dynamic and 
kinematic information such as Jacobian and linearization 
information has to be computed manually. Webots is a 
commercial robotic simulation tool which provides a user 
interface to the ODE.  

A strong multi-body modeling tool is Robotran [10] which 
is used to model COMAN due to the following advantages 
and based on the previous work presented in [11]. It 
generates the mathematical equations of the robot 
symbolically as opposed to numerical models which are less 
efficient and more sensitive to numerical errors. Then, in the 
Robotran approach, the implementation of application 
specific features is left to the user. However, to assist the 
user, Robotran framework provides predefined templates to 
add actuator dynamics, constraints, external forces on any 
point on the robot, as well as sensors with symbolic 
expressions to acquire kinematic information such as 
Jacobian, linear and angular position, velocity and 
acceleration of any point of interest on the multibody system. 
All equations are generated in both C and Matlab languages 
to leverage the power of Matlab in the development stage and 
the flexibility of C in the final dissemination and real-time 
experimentation stage. The symbolic models and dynamic 
parameters are stored separately which makes it convenient 
for updates and modifications. The parameters of COMAN 
used in the simulations are obtained from the CAD data and 
catalogue of the actuators. System identification is not in the 
scope of this paper. 

The main contribution of this paper is the development of a 
compliant humanoid robot simulator based on efficient 
symbolic dynamic models. The symbolic models are 
generated once and simplified with up to 30% fewer 
equations using Robotran engine. The complete open source 
code of the simulator is available for download from the IIT 
website [1] for research purposes under GNU license. The 
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simulator is developed in both Matlab and Simulink. The 
Matlab/Robotran version uses m-files and ODE solvers. On 
the other hand, the Simulink/Robotran version uses Simulink 
S-functions with all direct dynamics and actuator models 
compiled in C, as a mex file which speeds up the simulations 
considerably. This simulator can use all the power of Matlab 
to carry out analysis on the performance and optimization on 
the control software and all design parameters. Furthermore, 
the generated C code can be executed in Windows or Linux 
operating systems independent from Matlab and Simulink for 
real-time experiments on a DSP or FPGA. 

This paper is organized as follows. Section II gives an 
overview of COMAN, describes the mathematical walking 
model and the Robotran features as well as the method of 
developing the floating base walking model. In addition, the 
linear and nonlinear ground contact models and integration of 
the equations of series elastic actuators into the simulator are 
described. Section III presents the simulation and the 
experimental results. Finally, the conclusions and future work 
are discussed in Section IV.  
 

COMAN’S MODEL BASED ON ROBOTRAN 
 
A. Overview of COMAN Robot 
COMAN is a humanoid robot (Fig. 1), powered by series 
elastic actuators, and is being developed within the AMARSI 
European project [12], at the Italian Institute of Technology 
(IIT) as a derivative of the original iCub, and cCub [13] 
which added passive compliance in the major joints of the 
legs. The use of passive compliance will provide shock 
protection, robust locomotion, safer interaction and 
potentially energy efficient locomotion.  

 
Currently COMAN has 23 DoF, where the pitch joints in the 
legs, the waist, the shoulders and the shoulder roll joints have 
passive compliance. In addition, the robot uses brushless DC 
motors and harmonic drives, controlled with PID position 

control, which are modeled in the Robotran simulator. Further 
details about previous prototype of COMAN, cCub are 
available in [13] with the major kinematic difference that the 
ankle and waist roll-pitch order is swapped. 
 
B. Floating Base Humanoid Model 

The proposed COMAN dynamic simulator is based on the 
floating base representation of legged robots as proposed in 
the literature [14-16]. A floating base has its base body free to 
move rather than being fixed in space. The free motion of the 
base is represented by a 6 DoF attached between the 
humanoid robot and the world inertial frame to describe the 
free motion of the humanoid with respect to the inertial frame 
(Fig. 2). The 6 DoF consist of three translational joints and 
three rotational joints about the XYZ axis. This formalism 
unifies all the phases of legged locomotion, including single 
support, double support and flight phase, as well as the falling 
phase into one single model, and simplifies the simulation 
models by removing the switches between various phases of 
walking. Since the floating base joints are un-actuated, the 
ground model has a significant role in the robots balance and 
locomotion. The ground models are explained in Section 
II.D. 

 
C. COMAN Model in the Robotran Environment 

 
Robotran is a general purpose multibody software 

developed at the Université catholique de Louvain [10]. It 
relies on a symbolic approach dedicated to mechanical 
systems. The Robotran engine concentrates on the symbolic 
generation of the motion equations, which is a common task 
to any kind of mechanical system. Then, in the Robotran 
philosophy, the specific work such as writing the constitutive 
law of an actuator or implementing a ground contact model 
are delegated to the user.  

Robotran has three main components, the graphical user 
interface (MBsysPad), a symbolic equation generator 

 
Fig. 2.  COMAN’s floating base kinematic model. 

 

 

 
 

Fig. 1. COMAN humanoid robot. 
 

599



 

 
 

 

(MBsysTran) and a simulation environment for 
Matlab/Simulink (MBsysLab). The kinematic and dynamic 
parameters of the robot are entered via the java based 
MBSysPad editor (Fig. 3), and stored in an XML file.  

This editor relies on a 2-D diagram representation of the 
system as illustrated in Fig. 3, which gives a complete and 
straightforward overview of the 3-D mechanical model’s 
topology. The rectangular shapes represent each body of the 
robot as a point mass with inertia, centre of mass and suitable 
dimensions. Robotran defines six simple joints with 1 DOF: 
three rotational joints about XYZ axis represented by R1, R2, 
R3 and three translational joints along XYZ are represented 
by T1, T2, and T3. These joints can be combined in many 
ways for introducing more complex joints (universal joints, 
spherical joints, etc). For instance, the six DoF floating base 
placed between the base (the gray rectangle in Fig. 3) and the 
waist of the robot is obtained by combining the six simple 
joints. 

Specific points on the system are introduced using anchor 
points attached to a given body and depicted by arrows in the 
2-D diagram (Fig. 3). An anchor point is defined by three 
constant coordinates with respect to the body fixed frame. 
Then, they are used to define the position of joints, sensors or 
external forces. Each sensor is denoted by the symbol S 
which gives the symbolic kinematic information such as 
position, orientation, Jacobian matrix, linear/angular 
velocities and linear/angular accelerations of a given body 
with respect to the base frame. 

Once the system topology and parameters have been 
completely introduced in MBsysPad, the symbolic equation 
generator is accessed online via the Robotran web server. The 
symbolic equations are generated in a few seconds, either in 
Matlab language or in C language and they are then 
downloaded to the project folder as a set of Matlab M-files or 
C-files. Robotran can generate both direct dynamics 
(calculation of the trajectory for given actuator torque) and 
inverse dynamics (calculation of the actuator torque for a 
given trajectory) models. Once the models are generated, the 
symbolic files are completely independent from the symbolic 
engine and can be used in any simulation or control 
environment, or transferred to a DSP or FPGA, which make 
the model very portable.  Subsequently, the user has to 
implement the relevant actuator dynamics or external forces. 
This approach makes the software really open and flexible 
instead of reducing the possibilities to a limited set of 
predefined functionalities. 

For the simulation, the Robotran framework comes with 
the MBsysLab environment which provides functionalities for 
performing the dynamic analysis (equilibrium, time 
simulation, modal analysis, etc.) in Matlab and/or Simulink. 
The model can also be coupled with the control facilities of 
Simulink. A 3D visualization tool is available in MBsysPad, 
which can be used to animate the result of a simulation as 
shown in the accompanying video. Details of how modules of 
Robotran are interconnected are given in the Appendix (Fig. 
10). 

D. Ground Contact Model 
The ground models are introduced in COMAN simulator 

using linear and nonlinear spring-damper models with 
realistic friction to allow slippage on the floor as well as 
producing normal ground reaction forces. This is compared in 
Section III with the experimental data.  

  
In the tangential directions X and Y, both models have two 

regimes. One is the sticking (coulomb friction) mode and the 
other is the sliding mode. The resolution between the two 
modes is done as follows. Assuming that the foot is in 
sticking mode the tangential friction force are computed and 
compared against the μFz where μ is the ground friction 
coefficient (for instance μ=0.7) and Fz is the normal force. If 
the sticking force is greater than μFz (tangential force is 
outside the friction cone), the friction is set equal to μFz and 
the contact point is allowed to slip, otherwise the tangential 
force is kept as initially computed using the spring-damper 
model. In linear model, the normal force is calculated based 
on linear spring and damper: 

 

 
Fig. 3.  Floating base model of COMAN in Robotran. 
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where z denotes the contact point penetration in the ground. 
However, in nonlinear model, the normal force is formulated 
as proposed in [17]: 
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where Kn and Dn are nonlinear spring and damper coefficients 
which are obtained using an integral over the contact surface 
area according to Hertz’s theory. These models are 
programmed as external forces acting on the feet bodies 
(user_ExtForces template of Robotran package, see Fig. 10 in 
the Appendix).  It should be noted that this method is one way 
of modeling the contacts, while the user can alternatively 
model the contacts using constraints [18]. Also, the user can 
choose to model soft or hard contacts, depending on his 
application. In Section III.C, a reinforcement learning based 
optimization, as proposed in [19], is used to automatically 
tune the linear ground model based on the experimental data. 
 
E. Actuator Dynamics 

Actuator dynamics have a significant effect on the overall 
dynamics of COMAN which should be modeled. This can be 
added to the multibody model in Robotran as additional user 
derivatives (ordinary differential equations introduced in the 
user_Derivatives template in the Robotran framework). 
Furthermore the coupling torque between the motors and the 
multibody system, due to transmission is added to the 
mechanical model as a joint torque (user_JointForces 
template). This is given in (5). The overall model of series 
elastic actuator connected to the multibody model system is: 

 
( ) ( , ) LM q q C q q τ+ =   (3) 

m m L TJq Dq V uτ+ + =   (4) 

( ) ( )L s m s mD q q K q q Cqτ = − + − −    (5) 
where, J is motor inertia, D includes the motor back EMF 
constant and the rotor friction, Ks and Ds are passive stiffness 
of damping of all joints, C is the viscose damping on the link 
side, τL is the coupling torque between the motor and the 
joint, VT is voltage to torque ratio, and u is the control voltage 
signal calculated using a PD controller. The left hand side of 
(3) is generated symbolically with Robotran which gives the 
nonlinear mass-inertia matrix, coriolis and gravity matrices 
(mbs_DirDyna function in Fig. 10, either in Matlab or C 
code). 
 
F. Collision and Fall Detection 

The Robotran’s sensor feature and event detection in 
Matlab are combined in order to detect a fall and stop the 
simulation. The sensor which is placed on the waist of the 
robot is called by Matlab ODE solver at each time step to 

monitor the height of the robot and an event related to falling 
is produced when the waist height is lower than a certain 
value, for instance 30 (cm).  

In addition, basic self collision detection can be added to 
the program by using the position information of the sensors 
which are placed at the centre of gravity of each body (Fig. 
3). A neighborhood of each centre of gravity can be 
monitored by Matlab ODE solver to produce an event in the 
case of self-collision. In the Section III, simulation and 
experimental results of COMAN are presented. 
 

SIMULATION AND EXPERIMENTAL RESULTS 
 
In this section, initially a single joint test (on right knee) is 

done to compare the control signals. In addition, the results of 
simulating a lateral sway are presented and compared with 
experimental data from the robot. The corresponding tracking 
errors and ground reaction forces are presented. The 
integration method used is ODE45 in Matlab with a variable 
step time. 
 
G. Control Signal Comparison 

Intrinsic characteristic of joints namely passive stiffness, 
viscose friction, and stiction are estimated by simulator using 
a single joint (right knee) experiment. In this test, COMAN is 
suspended in the air by ropes and a smooth reference position 
from 0 to 90 degree (bending a knee) is sent to the joint, as 
shown in Fig. 4. The PD controller of the knee joint has a 
proportional value of Kp = 200 (V/rad), and derivative value 
of Kd =10 (V.sec/rad). 

 
After adding the effects of link viscose damping (estimated as 
8 (Nm.sec/rad)), damping across the spring (0.8 
(Nm.sec/rad)) and stiction (estimated as 0.6 (V)), simulated 
voltage shows a good agreement with the experimental 
voltage (Fig. 4). However, still voltages in steady state do not 
fully match, as there is a 0.6 (V) difference. This is mainly 
due to the actual stiction level and the mass of the plastic 
covers of the robot which are not included in the simulation at 
this stage. In the rest of this paper, the results of the lateral 
sway are discussed. 
 
H. Trajectory Tracking 

Link and motor positions, velocities and tracking errors of 
all joints are computed from the mathematical models in the 
simulation. In this section, the tracking errors of right hip and 

 
Fig. 4. A smooth trajectory sent to the right knee joint. 
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ankle lateral joints during the sway motion are shown in Fig. 
6. The left hip has a mirror image of the presented results. 
The torques are not measured but the control voltages are 
generated by PD control with proportional value of Kp =150 
(V/rad), and derivative value of Kd =10 (V.sec/rad), which 
will be applied to the tracking errors illustrated in Fig. 6. 

 

 
 

I. Ground Reaction Force 
As mentioned in Section II.C, two linear and nonlinear 

ground models are used in the simulator. The reinforcement 
learning based on particle filtering algorithm (RLPF) 
presented in [19] was used to automatically tune the stiffness 
and damping coefficients of the linear model. This 
optimization was performed in 100 trials to tune the 
parameters and the final result is shown in Fig. 7. The RMS 
error between the simulated linear ground model and the 
experimental data while the robot is moving is about 50.4 
(N). This error is partly due to the weight of the covers and 
mass distribution of the robot, but more importantly due to 
the approximation of the foot contact with 5 single points 
instead of an area.  

The stiffness and damping was chosen as 203600 (N/m) 
and 1006 (N.sec/m) according to the optimization shown in 
Fig. 7. The linear model produces faster simulations 
compared with the nonlinear model.  

Simulation of the nonlinear ground model is shown in Fig. 
8. It can be seen that the initial contact with the ground is 
damped rapidly and the overall profile of the simulation 
agrees with the experiment. In terms of computational time, 
the nonlinear model is slower. The stiffness and damping 
coefficients chosen for the nonlinear model are 400K (N/m) 
and 400 (N.sec/m). The experimental data for the ground 

reaction force is measured using six DoF force/torque 
sensors, installed under the feet of the robot. 

Moreover, this simulator was used to tune walking 
trajectories for 15 DoF model of the robot (excluding the 
torso and the arms) where the reinforcement learning based 
on particle filtering (RLPF) algorithm was used to tune the 
ZMP walking trajectories. After using few hundreds of trials, 
several stable and dynamic walking gaits were obtained [20]. 
This is an example of how the simulator can benefit from the 
power of Matlab for analysis and optimization. As a further 
illustration of  COMAN simulator, a walking gait was chosen 
and applied to the robot and the simulation which produced 
stable walking in both simulation and real-world as shown in 
the accompanying video [21], which shows the robot in actual 
time.  

 
 

 
 

CONCLUSIONS AND FUTURE WORK 
 

This paper presented an open source, floating base whole-
body dynamic simulator for the compliant humanoid robot, 
COMAN including the series elastic actuator dynamics and 
realistic ground models. The presented results show one of 
the few open source and fully customizable simulators which 
works both in Matlab and C languages. The simulation 
predictions were compared with a single joint test, an 

 
Fig. 8. Simulated nonlinear ground reaction force against experiment. 

 
Fig. 7. Color coded stiffness and damping parameters of the linear 

ground model, with optimum values shown in red spectrum. 

 
Fig. 6. Tracking errors during simulation and experiment. 

 
Fig. 5. The corresponding control signals of the right knee joint. 
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experimental sway data on COMAN and also walking tests on 
the COMAN prototype, cCub. This simulator can be used to 
test and develop new control methods for COMAN. As an 
example, a reinforcement learning algorithm was applied to 
tune the parameters of the linear ground model. The simulator 
is available for download from the IIT website [1]. 

As a future work, this simulator will be used to test and 
verify future walking controllers for uneven terrains. In 
addition, further optimizations will be carried out to tune the 
model parameters. 

APPENDIX 
The detailed diagram of how Robotran modules are related 

is illustrated in the Fig. 10. Detailed description and 
documentation about Robotran package is available at [22]. 
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Fig. 10.  Function diagram of the direct dynamics simulation 

environment of MBsysLab. 
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