

Abstract—This paper reports on development of an open
source dynamic simulator for the COmpliant huMANoid robot,
COMAN. The key advantages of this simulator are: it generates
efficient symbolic dynamical equations of the robot with high
degrees of freedom, it includes a user-defined model of the
actuator dynamics (the passive elasticity and the DC motor
equations), user defined ground models and fall detection. Users
have the freedom to choose the proposed features or include
their own models. The models are generated in Matlab and C
languages, where the user can leverage the power of Matlab and
Simulink to carry out analysis to parameter variations or
optimization and also have the flexibility of C language for real-
time experiments on a DSP or FPGA chip. The simulation and
experimental results of the robot as well as an optimization
example to tune the ground model coefficients are presented.
This simulator can be downloaded from the IIT website [

1].

INTRODUCTION

EVELOPMENT of a realistic and mathematical model of
humanoid robots motion plays a key role in design and
testing of controllers and trajectory generators. The

desired simulator for COMAN should include the direct and
inverse dynamics, forward and inverse kinematics, actuator
dynamic models, series elastic elements, ground model with
friction, and good computational speed. Among the
simulators for humanoid robots Open Dynamic Engine
(ODE) [2], Webots [3], Open HRP [4], SL [5], Adams [6],
RoboWorks [7], SimMechanics, MapleSim [8], player/stage,
Gazebo, SAI (Simulation & Active Interface) [9] developed
in Stanford University and the simulators developed by
Honda and Sony are the most well known. However, some of
these simulators are commercial or not fully open source
which is problematic when testing and debugging the
controllers, since not all their details are accessible or
customizable to suit a particular robot.

Adams is a powerful commercial multibody dynamics
software which is widely used in industry and some
universities. However it is not open source, which makes it

H. Dallali, M. Mosadeghzad, G. A. Medrano-Cerda, Z. Li, N. Tsagarakis

and D. G. Caldwell are with the Dept. of Advanced Robotics, Istituto
Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy (emails:
[houman.dallali, mohamad.mosadeghzad , gustavo.cerda, petar.kormushev,
nikos.tsagarakis, zhibin.li, darwin.caldwell]@iit.it). M. Mosadeghzad is also
affiliated with the faculty of engineering, university of Genoa.

N. Docquier is with the centre for research in mechatronics (CEREM),
universite catholique de Louvain. Place du Levant 2, bte L5.04.02, B-1348
Louvain-la-Neuve, Belgium (email: nicolas.docquier@uclouvain.be).

difficult to share the simulator among research groups who
work in humanoid robotics. Moreover, Adams generates the
equation of motion or kinematics numerically as opposed to
the symbolic approach. OpenHRP and SL are strong
simulation tools to validate control algorithms for stiff robots
since they support rigid body dynamics, but they miss the
significant actuator dynamics present in flexible joint robots
such as COMAN. ODE is an open source library created for
modeling rigid body robots, but does not satisfy all the
contact dynamic requirements that are needed in creating a
realistic walking simulator. Also, important dynamic and
kinematic information such as Jacobian and linearization
information has to be computed manually. Webots is a
commercial robotic simulation tool which provides a user
interface to the ODE.

A strong multi-body modeling tool is Robotran [10] which
is used to model COMAN due to the following advantages
and based on the previous work presented in [11]. It
generates the mathematical equations of the robot
symbolically as opposed to numerical models which are less
efficient and more sensitive to numerical errors. Then, in the
Robotran approach, the implementation of application
specific features is left to the user. However, to assist the
user, Robotran framework provides predefined templates to
add actuator dynamics, constraints, external forces on any
point on the robot, as well as sensors with symbolic
expressions to acquire kinematic information such as
Jacobian, linear and angular position, velocity and
acceleration of any point of interest on the multibody system.
All equations are generated in both C and Matlab languages
to leverage the power of Matlab in the development stage and
the flexibility of C in the final dissemination and real-time
experimentation stage. The symbolic models and dynamic
parameters are stored separately which makes it convenient
for updates and modifications. The parameters of COMAN
used in the simulations are obtained from the CAD data and
catalogue of the actuators. System identification is not in the
scope of this paper.

The main contribution of this paper is the development of a
compliant humanoid robot simulator based on efficient
symbolic dynamic models. The symbolic models are
generated once and simplified with up to 30% fewer
equations using Robotran engine. The complete open source
code of the simulator is available for download from the IIT
website [1] for research purposes under GNU license. The

Development of a Dynamic Simulator for a Compliant Humanoid
Robot Based on a Symbolic Multibody Approach

Houman Dallali, Mohamad Mosadeghzad, Gustavo A. Medrano-Cerda, Nicolas Docquier, Petar
Kormushev, Nikos Tsagarakis, Zhibin Li, Darwin Caldwell

D

978-1-4673-1388-9/13/$31.00 ©2013 IEEE 598

simulator is developed in both Matlab and Simulink. The
Matlab/Robotran version uses m-files and ODE solvers. On
the other hand, the Simulink/Robotran version uses Simulink
S-functions with all direct dynamics and actuator models
compiled in C, as a mex file which speeds up the simulations
considerably. This simulator can use all the power of Matlab
to carry out analysis on the performance and optimization on
the control software and all design parameters. Furthermore,
the generated C code can be executed in Windows or Linux
operating systems independent from Matlab and Simulink for
real-time experiments on a DSP or FPGA.

This paper is organized as follows. Section II gives an
overview of COMAN, describes the mathematical walking
model and the Robotran features as well as the method of
developing the floating base walking model. In addition, the
linear and nonlinear ground contact models and integration of
the equations of series elastic actuators into the simulator are
described. Section III presents the simulation and the
experimental results. Finally, the conclusions and future work
are discussed in Section IV.

COMAN’S MODEL BASED ON ROBOTRAN

A. Overview of COMAN Robot
COMAN is a humanoid robot (Fig. 1), powered by series
elastic actuators, and is being developed within the AMARSI
European project [12], at the Italian Institute of Technology
(IIT) as a derivative of the original iCub, and cCub [13]
which added passive compliance in the major joints of the
legs. The use of passive compliance will provide shock
protection, robust locomotion, safer interaction and
potentially energy efficient locomotion.

Currently COMAN has 23 DoF, where the pitch joints in the
legs, the waist, the shoulders and the shoulder roll joints have
passive compliance. In addition, the robot uses brushless DC
motors and harmonic drives, controlled with PID position

control, which are modeled in the Robotran simulator. Further
details about previous prototype of COMAN, cCub are
available in [13] with the major kinematic difference that the
ankle and waist roll-pitch order is swapped.

B. Floating Base Humanoid Model

The proposed COMAN dynamic simulator is based on the
floating base representation of legged robots as proposed in
the literature [14-16]. A floating base has its base body free to
move rather than being fixed in space. The free motion of the
base is represented by a 6 DoF attached between the
humanoid robot and the world inertial frame to describe the
free motion of the humanoid with respect to the inertial frame
(Fig. 2). The 6 DoF consist of three translational joints and
three rotational joints about the XYZ axis. This formalism
unifies all the phases of legged locomotion, including single
support, double support and flight phase, as well as the falling
phase into one single model, and simplifies the simulation
models by removing the switches between various phases of
walking. Since the floating base joints are un-actuated, the
ground model has a significant role in the robots balance and
locomotion. The ground models are explained in Section
II.D.

C. COMAN Model in the Robotran Environment

Robotran is a general purpose multibody software

developed at the Université catholique de Louvain [10]. It
relies on a symbolic approach dedicated to mechanical
systems. The Robotran engine concentrates on the symbolic
generation of the motion equations, which is a common task
to any kind of mechanical system. Then, in the Robotran
philosophy, the specific work such as writing the constitutive
law of an actuator or implementing a ground contact model
are delegated to the user.

Robotran has three main components, the graphical user
interface (MBsysPad), a symbolic equation generator

Fig. 2. COMAN’s floating base kinematic model.

Fig. 1. COMAN humanoid robot.

599

(MBsysTran) and a simulation environment for
Matlab/Simulink (MBsysLab). The kinematic and dynamic
parameters of the robot are entered via the java based
MBSysPad editor (Fig. 3), and stored in an XML file.

This editor relies on a 2-D diagram representation of the
system as illustrated in Fig. 3, which gives a complete and
straightforward overview of the 3-D mechanical model’s
topology. The rectangular shapes represent each body of the
robot as a point mass with inertia, centre of mass and suitable
dimensions. Robotran defines six simple joints with 1 DOF:
three rotational joints about XYZ axis represented by R1, R2,
R3 and three translational joints along XYZ are represented
by T1, T2, and T3. These joints can be combined in many
ways for introducing more complex joints (universal joints,
spherical joints, etc). For instance, the six DoF floating base
placed between the base (the gray rectangle in Fig. 3) and the
waist of the robot is obtained by combining the six simple
joints.

Specific points on the system are introduced using anchor
points attached to a given body and depicted by arrows in the
2-D diagram (Fig. 3). An anchor point is defined by three
constant coordinates with respect to the body fixed frame.
Then, they are used to define the position of joints, sensors or
external forces. Each sensor is denoted by the symbol S
which gives the symbolic kinematic information such as
position, orientation, Jacobian matrix, linear/angular
velocities and linear/angular accelerations of a given body
with respect to the base frame.

Once the system topology and parameters have been
completely introduced in MBsysPad, the symbolic equation
generator is accessed online via the Robotran web server. The
symbolic equations are generated in a few seconds, either in
Matlab language or in C language and they are then
downloaded to the project folder as a set of Matlab M-files or
C-files. Robotran can generate both direct dynamics
(calculation of the trajectory for given actuator torque) and
inverse dynamics (calculation of the actuator torque for a
given trajectory) models. Once the models are generated, the
symbolic files are completely independent from the symbolic
engine and can be used in any simulation or control
environment, or transferred to a DSP or FPGA, which make
the model very portable. Subsequently, the user has to
implement the relevant actuator dynamics or external forces.
This approach makes the software really open and flexible
instead of reducing the possibilities to a limited set of
predefined functionalities.

For the simulation, the Robotran framework comes with
the MBsysLab environment which provides functionalities for
performing the dynamic analysis (equilibrium, time
simulation, modal analysis, etc.) in Matlab and/or Simulink.
The model can also be coupled with the control facilities of
Simulink. A 3D visualization tool is available in MBsysPad,
which can be used to animate the result of a simulation as
shown in the accompanying video. Details of how modules of
Robotran are interconnected are given in the Appendix (Fig.
10).

D. Ground Contact Model
The ground models are introduced in COMAN simulator

using linear and nonlinear spring-damper models with
realistic friction to allow slippage on the floor as well as
producing normal ground reaction forces. This is compared in
Section III with the experimental data.

In the tangential directions X and Y, both models have two

regimes. One is the sticking (coulomb friction) mode and the
other is the sliding mode. The resolution between the two
modes is done as follows. Assuming that the foot is in
sticking mode the tangential friction force are computed and
compared against the μFz where μ is the ground friction
coefficient (for instance μ=0.7) and Fz is the normal force. If
the sticking force is greater than μFz (tangential force is
outside the friction cone), the friction is set equal to μFz and
the contact point is allowed to slip, otherwise the tangential
force is kept as initially computed using the spring-damper
model. In linear model, the normal force is calculated based
on linear spring and damper:

Fig. 3. Floating base model of COMAN in Robotran.

600

0 0
0z

z
F

K z D z z
>

=  + ≤ 
(1)

where z denotes the contact point penetration in the ground.
However, in nonlinear model, the normal force is formulated
as proposed in [17]:

3 1
2 2

0 0

0
z

n n

z
F

K z D z z z

>= 
 + ≤ 

(2)

where Kn and Dn are nonlinear spring and damper coefficients
which are obtained using an integral over the contact surface
area according to Hertz’s theory. These models are
programmed as external forces acting on the feet bodies
(user_ExtForces template of Robotran package, see Fig. 10 in
the Appendix). It should be noted that this method is one way
of modeling the contacts, while the user can alternatively
model the contacts using constraints [18]. Also, the user can
choose to model soft or hard contacts, depending on his
application. In Section III.C, a reinforcement learning based
optimization, as proposed in [19], is used to automatically
tune the linear ground model based on the experimental data.

E. Actuator Dynamics

Actuator dynamics have a significant effect on the overall
dynamics of COMAN which should be modeled. This can be
added to the multibody model in Robotran as additional user
derivatives (ordinary differential equations introduced in the
user_Derivatives template in the Robotran framework).
Furthermore the coupling torque between the motors and the
multibody system, due to transmission is added to the
mechanical model as a joint torque (user_JointForces
template). This is given in (5). The overall model of series
elastic actuator connected to the multibody model system is:

() (,) LM q q C q q τ+ =  (3)

m m L TJq Dq V uτ+ + =  (4)

() ()L s m s mD q q K q q Cqτ = − + − −   (5)
where, J is motor inertia, D includes the motor back EMF
constant and the rotor friction, Ks and Ds are passive stiffness
of damping of all joints, C is the viscose damping on the link
side, τL is the coupling torque between the motor and the
joint, VT is voltage to torque ratio, and u is the control voltage
signal calculated using a PD controller. The left hand side of
(3) is generated symbolically with Robotran which gives the
nonlinear mass-inertia matrix, coriolis and gravity matrices
(mbs_DirDyna function in Fig. 10, either in Matlab or C
code).

F. Collision and Fall Detection

The Robotran’s sensor feature and event detection in
Matlab are combined in order to detect a fall and stop the
simulation. The sensor which is placed on the waist of the
robot is called by Matlab ODE solver at each time step to

monitor the height of the robot and an event related to falling
is produced when the waist height is lower than a certain
value, for instance 30 (cm).

In addition, basic self collision detection can be added to
the program by using the position information of the sensors
which are placed at the centre of gravity of each body (Fig.
3). A neighborhood of each centre of gravity can be
monitored by Matlab ODE solver to produce an event in the
case of self-collision. In the Section III, simulation and
experimental results of COMAN are presented.

SIMULATION AND EXPERIMENTAL RESULTS

In this section, initially a single joint test (on right knee) is

done to compare the control signals. In addition, the results of
simulating a lateral sway are presented and compared with
experimental data from the robot. The corresponding tracking
errors and ground reaction forces are presented. The
integration method used is ODE45 in Matlab with a variable
step time.

G. Control Signal Comparison

Intrinsic characteristic of joints namely passive stiffness,
viscose friction, and stiction are estimated by simulator using
a single joint (right knee) experiment. In this test, COMAN is
suspended in the air by ropes and a smooth reference position
from 0 to 90 degree (bending a knee) is sent to the joint, as
shown in Fig. 4. The PD controller of the knee joint has a
proportional value of Kp = 200 (V/rad), and derivative value
of Kd =10 (V.sec/rad).

After adding the effects of link viscose damping (estimated as
8 (Nm.sec/rad)), damping across the spring (0.8
(Nm.sec/rad)) and stiction (estimated as 0.6 (V)), simulated
voltage shows a good agreement with the experimental
voltage (Fig. 4). However, still voltages in steady state do not
fully match, as there is a 0.6 (V) difference. This is mainly
due to the actual stiction level and the mass of the plastic
covers of the robot which are not included in the simulation at
this stage. In the rest of this paper, the results of the lateral
sway are discussed.

H. Trajectory Tracking

Link and motor positions, velocities and tracking errors of
all joints are computed from the mathematical models in the
simulation. In this section, the tracking errors of right hip and

Fig. 4. A smooth trajectory sent to the right knee joint.

601

ankle lateral joints during the sway motion are shown in Fig.
6. The left hip has a mirror image of the presented results.
The torques are not measured but the control voltages are
generated by PD control with proportional value of Kp =150
(V/rad), and derivative value of Kd =10 (V.sec/rad), which
will be applied to the tracking errors illustrated in Fig. 6.

I. Ground Reaction Force
As mentioned in Section II.C, two linear and nonlinear

ground models are used in the simulator. The reinforcement
learning based on particle filtering algorithm (RLPF)
presented in [19] was used to automatically tune the stiffness
and damping coefficients of the linear model. This
optimization was performed in 100 trials to tune the
parameters and the final result is shown in Fig. 7. The RMS
error between the simulated linear ground model and the
experimental data while the robot is moving is about 50.4
(N). This error is partly due to the weight of the covers and
mass distribution of the robot, but more importantly due to
the approximation of the foot contact with 5 single points
instead of an area.

The stiffness and damping was chosen as 203600 (N/m)
and 1006 (N.sec/m) according to the optimization shown in
Fig. 7. The linear model produces faster simulations
compared with the nonlinear model.

Simulation of the nonlinear ground model is shown in Fig.
8. It can be seen that the initial contact with the ground is
damped rapidly and the overall profile of the simulation
agrees with the experiment. In terms of computational time,
the nonlinear model is slower. The stiffness and damping
coefficients chosen for the nonlinear model are 400K (N/m)
and 400 (N.sec/m). The experimental data for the ground

reaction force is measured using six DoF force/torque
sensors, installed under the feet of the robot.

Moreover, this simulator was used to tune walking
trajectories for 15 DoF model of the robot (excluding the
torso and the arms) where the reinforcement learning based
on particle filtering (RLPF) algorithm was used to tune the
ZMP walking trajectories. After using few hundreds of trials,
several stable and dynamic walking gaits were obtained [20].
This is an example of how the simulator can benefit from the
power of Matlab for analysis and optimization. As a further
illustration of COMAN simulator, a walking gait was chosen
and applied to the robot and the simulation which produced
stable walking in both simulation and real-world as shown in
the accompanying video [21], which shows the robot in actual
time.

CONCLUSIONS AND FUTURE WORK

This paper presented an open source, floating base whole-
body dynamic simulator for the compliant humanoid robot,
COMAN including the series elastic actuator dynamics and
realistic ground models. The presented results show one of
the few open source and fully customizable simulators which
works both in Matlab and C languages. The simulation
predictions were compared with a single joint test, an

Fig. 8. Simulated nonlinear ground reaction force against experiment.

Fig. 7. Color coded stiffness and damping parameters of the linear

ground model, with optimum values shown in red spectrum.

Fig. 6. Tracking errors during simulation and experiment.

Fig. 5. The corresponding control signals of the right knee joint.

602

experimental sway data on COMAN and also walking tests on
the COMAN prototype, cCub. This simulator can be used to
test and develop new control methods for COMAN. As an
example, a reinforcement learning algorithm was applied to
tune the parameters of the linear ground model. The simulator
is available for download from the IIT website [1].

As a future work, this simulator will be used to test and
verify future walking controllers for uneven terrains. In
addition, further optimizations will be carried out to tune the
model parameters.

APPENDIX
The detailed diagram of how Robotran modules are related

is illustrated in the Fig. 10. Detailed description and
documentation about Robotran package is available at [22].

ACKNOWLEDGMENT
This work is supported by the European Commission FP7,
“AMARSI” Project ICT-2009-4. The authors would like to
thank Prof. Paul Fisette for his support.

REFERENCES

[1] (2012) Instituto Italiano di Technologia, COmpliant HuMANoid
Platform (COMAN), http://www.iit.it/en/advr-labs/humanoids-a-human-
centred-mechatronics/advr-humanoids-projects/compliant-humanoid-
platform-coman.html.
[2] R. Smith. (2012), Open Dynamics Engine (ODE), http://www.ode.org/.
[3] O. Michel, "Webots: Professional Mobile Robot Simulation," Int. J. of
Advanced Robotic Systems, vol. 1, pp. 39-42, 2004.
[4] F. Kanehiro, H. Hirukawa, and S. Kajita, "OpenHRP: Open Architecture
Humanoid Robotics Platform," The Int. J. of Robotics Research, vol. 23, pp.
155-165, February 2004.
[5] S. Schaal, "The SL simulation and real-time control software package,"
University of Southern California, 2001.
[6] (2012) Adams Multibody Dynamics Simulation Software.
http://www.mscsoftware.com/Products/CAE-Tools/Adams.aspx
[7] (2012), RoboWorks http://www.newtonium.com/index.html.
[8] (2012), MapleSim: high-performance physical modelling and simulation
software. http://www.maplesoft.com/products/maplesim/.
[9] (2012), simulation & active interfaces (SAI)
http://ai.stanford.edu/~conti/sai.html.
[10] J. C. Samin and P. Fisette, Symbolic Modelling of Multibody
Systems, Solid Mechanics and its Applications, 1st ed.: Kluwer Academic
Publishers, 2003.
[11] G. A. Medrano-Cerda, H. Dallali, M. Brown, N. G. Tsagarakis, and D.
G. Caldwell, "Modelling and Simulation of the Locomotion of Humanoid
Robots," in the UK Automatic Control Conference, Coventry, UK, 2010.
[12] AMARSI, Adaptive Modular Architectures for Rich Motor Skills,
http://www.amarsi-project.eu/.
[13] N. G. Tsagarakis, Z. Li, J. Saglia, and D. G. Caldwell, "The design of
the lower body of the compliant humanoid robot cCub," in IEEE Int. Conf.
on Robotics & Automation, Shanghai, China, 2011, pp. 2035-2040.
[14] J. Buchli, M. Kalakrishnan, M. Mistry, P. Pastor, and S. Schaal,
"Compliant Quadruped Locomotion Over Rough Terrain," in IEEE/RSJ Int.
Conf. on Intelligent Robots & Systems, St. Louis, USA, 2009, pp. 814-820.
[15] R. Featherstone, Rigid Body Dynamics Algorithms 1st ed. New York:
Springer Science+Business Media, LLC, 2008.
[16] M. Mistry, J. Nakanishi, G. Cheng, and S. Schaal, "Inverse kinematics
with floating base and constraints for full body humanoid robot control," in
IEEE-RAS Int. Conf. on Humanoid Robots, Daejeon, Korea, 2008, pp. 22-
27.
[17] M. Azad and R. Featherstone, "Modeling the contact between a rolling
sphere and a compliant ground plane," in ACRA, Brisbane, Australia, 2010.
[18] S. Nakaoka, S. Hattori, F. Kanehiro, S. Kajita, and H. Hirukawa,
"Constraint-based dynamics simulator for humanoid robots with shock
absorbing mechanisms," in IEEE/RSJ Int. Conf. on Intelligent Robots &
Systems, IROS, San Diego, CA, USA, 2007, pp. 3641-3647.
[19] P. Kormushev and D. G. Caldwell, "Simultaneous Discovery of
Multiple Alternative Optimal Policies by Reinforcement Learning," in the
IEEE Int. Conf. on Intelligent Systems, Sofia, Bulgaria, 2012, pp. 202-207.
[20] H. Dallali, P. Kormushev, Z. Li, and D. Caldwell, "On Global
Optimization of Walking Gaits for the Compliant Humanoid Robot,
COMAN Using Reinforcement Learning," Int. J. of Cybernetics &
Information Technologies, vol. 12, no. 3, pp. 39-52, 2012.
[21] COMAN Simulation Accompanying Video. http://goo.gl/G6s8X .
[22] (2012) Robotran Homepage. http://www.robotran.be/.

Fig. 10. Function diagram of the direct dynamics simulation

environment of MBsysLab.

603

Powered by TCPDF (www.tcpdf.org)

