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Model Learning with Backlash Compensation for a
Tendon-Driven Surgical Robot

Francesco Cursi, Member, IEEE, Weibang Bai, Eric M. Yeatman, Fellow, IEEE, Petar Kormushev

Abstract—Robots for minimally invasive surgery are becoming
more and more complex, due to miniaturization and flexibility
requirements. The vast majority of surgical robots are tendon-
driven and this, along with the complex design, causes high non-
linearities in the system which are difficult to model analytically.

In this work we analyse how incorporating a backlash model
and compensation can improve model learning and control. We
combine a backlash compensation technique and a Feedforward
Artificial Neural Network (ANN) with differential relationships
to learn the kinematics at position and velocity level of highly
articulated tendon-driven robots. Experimental results show that
the proposed backlash compensation is effective in reducing
nonlinearities in the system, that compensating for backlash
improves model learning and control, and that our proposed
ANN outperforms traditional ANN in terms of path tracking
accuracy.

Index Terms—Model Learning, Backlash Compensation,
Tendon-driven Robots, Minimally Invasive Surgery

I. INTRODUCTION

IN recent years, a major translation in Robotic Assisted
Minimally Invasive Surgery (RAMIS) has been towards

flexible surgical robots, in order to ensure miniaturization,
flexibility, and precision while navigating inside a confined
human anatomy and performing complicated surgical tasks.
The advancements in design and manufacturing have enabled
the possibility to build highly complex structures such as
highly articulated and parallel robots [1], [2], continuum robots
[3], and soft robots [4]. These structures use complex actuation
mechanisms such as tendon sheath, wire drives, or customized
joint designs which make them very dexterous, flexible, and
well-fitted for navigation during surgical procedures [5], [6].
Despite the promising capabilities of these systems, their ap-
plications in real clinical scenarios are still limited due to many
limitations, such as lack of effective motion control strategies
and proper modelling caused by their high complexities [7].
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Fig. 1: The Micro-IGES robot with: 1a) the robot’s compo-
nents; 1b) experimental setup.

The main modelling difficulties come from the mapping
from actuation to configuration space (such as joint space),
caused by the complex transmission, and from configuration
space to Cartesian space, due to the highly articulated design.

Different works have focused on analytically modelling
and compensating for tendon nonlinearities [8]–[10] by using
friction models such as LuGre or Wouc-Ben. Yet, properly
modelling these nonlinearities is usually not generalizable, as
it requires knowledge about the specific robot design, and it
also requires measuring both motor and joint positions, which
might be tedious for highly articulated systems. Baek et al.
[11] employed computer vision to estimate the joint positions
of a single-segment 2-Degree-of-Freedom (DOF) continuum
robot from camera images and exploit a friction model to
compensate for the system’s nonlinearities. Using cameras,
however, has the major limitation of being highly affected by
light reflection, shadows, and occlusions that might prevent
the approach from properly estimating the robot’s state.

Other researchers have instead focused on offline modelling
approaches, that thus do not rely on any external sensors
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during the operation. In [12] the authors present a simplified
piece-wise linear model to compensate non-linear hysteresis
of both backlash and dead zone together. This approach might
work only for specific systems where such an approximation
is valid. In [13] the authors tackle backlash compensation by
estimating the size of the deadzones, removing the deadzone
jumps, and modelling the remaining mapping from actuation
to configuration space. Similarly to the other works, this
approach was validated on a one-DOF robotic catheter only.

Because of the complexities in modelling such systems,
researchers have also shifted towards using black-box data-
driven approaches. In [14], [15] Long Short-Term Memory
Neural Network (LSTM) is employed, given its capability to
consider sequences of data for model learning. In [14], LSTM
is used in an end-to-end fashion to learn only the forward
kinematics of their one-DOF unidirectional catheter and thus
evaluate how well it can predict the robot’s pose. In [15] it
is used still in end-to-end fashion to learn the robot’s inverse
kinematics, with the model trained on task-specific data. In
[16], instead, the authors used feedforward Artificial Neural
Networks (ANN) to learn directly the inverse kinematics of
their 2-DOF continuum surgical robot and compare the control
results with using the pure learned model or an adaptive
closed-loop PID feedback controller.

Most of the state-of-the-art work have focused on learning
directly the inverse kinematics of their robots, which generally
have low DOFs. Learning the inverse kinematics is a challeng-
ing task as there exist multiple solutions [17], it does not allow
the exploitation of redundancy or including motion constraints
[18], makes it more challenging to control surgical robotic
tools when in conjunction with serial-link manipulators [19],
[20], and it requires information about the robot pose, which
might be unavailable during use due to the lack of sensors, as
in the case of robotic surgery. On the other hand, learning the
forward kinematics of the robot can be beneficial to overcome
these limitations [21], [22].

The common approaches are end-to-end which means that,
if applied to tendon-driven robots, the learning technique
should be able to also learn an intrinsic compensation of
the tendon nonlinearities. Yet, this might make the modelling
more tedious and less accurate. Thus far these nonlinearities
have generally been neglected or treated as unmodelled noise
[23]. Additionally, state-of-the-art learning techniques only
model the mapping between the control variables and the robot
pose, but neglect information that comes from the differential
relationship between positions and velocities. As shown in
[24], [25] including the differential relationships can help
improving robot model learning, but it has never been tested
on highly nonlinear systems like tendon-driven surgical robots.
For these reasons, the contributions of this manuscript are:

• employing a Feedforward ANN architecture (AugNet),
incorporating physical differential relationships during
training to model the forward kinematics of a tendon-
driven surgical robot;

• proposing an offline backlash identification and compen-
sation approach for highly articulated robots with limited
sensor measurements;

• analysing how black-box end-to-end model learning with
ANN compares to modelling with additional a priori
knowledge of the backlash model and compensation.

Compared to the state-of-the-art research, our proposed
approach is here tested on the highly articulated Micro-
IGES tendon-driven surgical robot [26]. The a priori backlash
compensation is used to limit the effects of time and motion-
dependent nonlinearities, aiming to simplify model learning.
We are also carrying out an additional comparison to the re-
sults obtained when controlling the Micro-IGES robot through
LSTM-based inverse kinematics modelling [15].

The manuscript is thus structured as follows. Section II
presents the Micro-IGES robot, describing its design and
kinematic structure. Section III describes the method to iden-
tify and compensate for backlash in the system. Section IV
presents the model learning technique and how it is used to
learn the robot kinematic model with and without backlash
compensation. Section V shows the robot modelling and
experimental control results and, finally, conclusions are drawn
in Section VI.

II. ROBOT DESCRIPTION

In this section, the Micro-IGES surgical robot is presented,
describing its design and its kinematic model.

A. Robot Description

The Micro-IGES (Figure 1 and 2) is a custom-made surgical
robotic tool, composed of a rigid shaft and a flexible section.
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Fig. 2: Micro-IGES kinematic model
In total it has 6 DOF for motion control, with the two elbows

consisting of a pair of coupled joints. As shown in Figure 1a,
the robot’s base is attached to the motor package by means
of pinned connectors. Each motor drives two antagonistic
tendons, which have multiple routings on the capstans. The
coupling of the two pairs of joints of the elbows occurs directly
at the distal driving unit. For a more thorough description,
please refer to [15]. The system is not equipped with any
sensor, except for the motor encoders in the motor pack. Due
to the current setup that prevents the use of the shaft, in this
work only 4 DOF are considered (Elbow 1, Elbow 2, Wrist
Pitch, Wrist Yaw) and the system’s state is hereby expressed by
θ =

[
θe1 θe2 θW θor

]
. Additionally, due to the designed

tendon routing of the robot, backlash effect is predominant
only in these joints.

B. Robot Kinematic Model and Control

In tendon-driven robots, tendons are connected to the motors
on one end and to the joints on the other. The routing of the
tendons inside the robot causes nonlinearities in the mapping
from motor to joint space, described as q = f(θ), being
θ ∈ R4 the vector of motor positions, q ∈ R4 the vector of
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joint positions, and θ̇ ∈ R4 the vector of motor velocities.
The control problem for the Micro-IGES can therefore be
formulated as a function of the motor values, which can be
directly measured and controlled.

Modelling the robot’s inverse kinematics is a tedious task
due to the non convexity of the problem [27]. If a forward
kinematic model outputting the predicted robot’s tip position
P̂ (θ) is available, given a desired Cartesian trajectory spec-
ified by P̃ (t) = P̃ t,

˙̃P (t) = ˙̃P t, the control problem at
each timestep t can be formulated at the velocity level as a
Quadratic Program such that:

θ̇
∗
t = arg min

θ̇

1

2
|| ˙̃P t − Ĵ(θt)θ̇||2

s.t. θm − θt ≤ θ̇∆t ≤ θM − θt
and θt+1 = θt + θ̇

∗
t∆t ,

(1)

where Ĵ = ∂P̂
∂θ , θM ,θm are the motor position bounds, and

∆t is the sampling time. This formulation allows optimally
solving for robot’s redundancies and guarantees satisfaction
of possible motion constraints.

III. BACKLASH COMPENSATION

In this section we present how backlash is identified and
compensated for.

Algorithm 1 Offline procedure to identify deadzone sizes for
each motor.

1: procedure IDENTIFYDEADZONES(Data)
2: t = 0
3: while t <= T do
4: θt, θ̇t ←getMotorValues(Data)
5: P t, Ṗ t ←getTipPosition&Velocity(Data)
6: if |θ̇t| > ε AND ||Ṗ t|| < εv then
7: θinit = θt
8: t = t+ 1
9: while t <= T do

10: θt, θ̇t ←getMotorValues(Data)
11: P t, Ṗ t ←getTipPosition&Velocity(Data)
12: if |θ̇t| >= ε AND ||Ṗ t|| >= εv then
13: θfin = θt
14: break
15: end if
16: t = t+ 1
17: end while
18: δset ← Append (|θfin − θinit|)
19: θset ← Append(θinit)
20: end if
21: t = t+ 1
22: end while
23: return δset, θset
24: end procedure

A. Offline Backlash Identification

The main causes of backlash in tendon-driven robots are
effects like friction, tendon elongation, tendon slacking, which
cause a delay in the motion of the robot whenever there is
a change in motion direction. During the motion reversals,
if the system’s state is in deadzone, the robot would not
move, despite commanding non-null commands. Approaches
to compensate for backlash act in general on the motor to
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of the motor positions.

joint mapping. However, surgical robots do not have any
sensors on the joints, due to sterilization and miniaturization
requirements, and accurately measuring the joint positions by
means of external sensors may be tedious. Similarly to [13],
in this work we use only measurements of the tip position to
estimate the backlash size. For highly articulated robots, the
contribution of each joint can still lead to zero tip’s velocity,
even with non-null motor commands. Therefore, in order to
identify the size of the deadzone for each motor j of the robot
and avoid mis-classifications of deadzones, sinusoidal waves
with linearly varying amplitude are commanded to each motor
independently for a total amount of time T = 500 s. Electro-
magnetic (EM) trackers are here employed to collect the corre-
sponding 3D tip position P , given a desired motor command.
In this work we are assuming a simplified backlash model,

where the deadzones are considered to be only functions of
the current robot’s configuration. To estimate the sizes of the
deadzones, the procedure described in Algorithm 1 is used. We
iteratively search through the collected datapoints to find the
regions where, despite commanding non null motor velocities
(|θ̇j | > ε), the tip is not moving (||Ṗ || < εv). ε and εv are two
user-defined thresholds. Thanks to the design of the Micro-
IGES, all tendons pass through the center of the cross-section
area, thus minimizing crosstalk and motion interference. For
this reason, the identification can be conducted for each motor
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Decoupling
Layer

Output
Layer

P̂

P̂[ [

Derivative
Layer

θ
P̂ϱϱ

θ[ [θ θ

θ

(b) Augmented Neural Network (AugNet)

Fig. 5: The architectures for the two artificial neural network models: 5a) standard feedforward neural network; 5b) augmented
neural network.

independently, neglecting any contribution to the tip motion of
the other motors. The deadzone regions will be identified by
the initial motor position θj,init, when the change of motion
occurs and the tip stops moving, and θj,fin, when instead the
motor goes out of the deadzone and the tip starts moving
again. The size of the deadzone at location θj,i = θj,init
is then computed as δj,i = |θj,fin − θj,init|. Since the
change of motion occurs at different locations, the sizes of the
deadzones and the corresponding motor positions are stored
in δj,set = {δj,i, i = 1 . . . I} and θj,set = {θj,i, i = 1 . . . I},
where I is the number of times deadzones were identified. This
procedure is repeated for each motor independently. Figure 3
shows a represenatation of the identification of the deadzones
for each motor.

B. Backlash Modelling and Compensation

Given the two sets δj,set and θj,set, for each motor j it
is then possible to construct a function to estimate the size
of the deadzone at each motor position δj = δj(θj). In this
work we employed cubic splines to find this mapping, and
results are shown in Figure 4. The obtained function allows
estimating the size of the deadzone at each possible motor
position during the motion. Once the mapping for each motor
is obtained, it is then possible to compensate for the backlash
by simply adding or removing the deadzone size whenever
there a desired change of motion is commanded, meaning:

θj,comp(t) =


θj(t)− δj(θj(t)), if θ̇j(t) < 0 ∧ θ̇j(t− 1) > 0

θj(t) + δj(θj(t)), if θ̇j(t) > 0 ∧ θ̇j(t− 1) < 0

θj(t), otherwise
(2)

IV. NEURAL NETWORKS FOR MODEL LEARNING

In this section, the approach to model the robot’s kinematics
by means of Artificial Neural Networks is presented.

A. Feedforward Neural Networks

In this work, a standard ANN (FFNet) is employed to
directly map the motor positions to the tip Cartesian position
θ → P̂ , where P̂ is the network output (Figure 5a). By
learning the motor to tip mapping, we inherently learn the
motor to joint mapping, which is generally very tedious to
retrieve analytically. Even though the mapping from joints

to tip could be easily computed from the geometry of the
robot, joint data are hard to collect compared to the tip
position, which, instead, can be measured directly through
external sensors. The network weights are thus computed by
minimizing the position loss function cp =

∑
D

1
2 ||P̂−PD||2,

where PD are the measured positions. From the learnt motor
to tip position mapping, it is also possible to have an estimate
of the Jacobian Ĵ after the training.

B. Augmented Feedforward Neural Networks

In order to optimally control a robotic system using the
techniques described in section II-B, the forward kinematics
of a robot should be computed, obtaining both a mapping
from the control variables to the tip position and infor-
mation about the robot Jacobian. Even though FFNet al-
lows obtaining the Jacobian by derivation, information on
the velocity mapping is not included in the training. This
might, however, be beneficial for the network to learn a
more accurate model. For this reason an augmented network
AugNet (Figure 5b) is proposed. AugNet takes as input both
the motor positions θ and velocities θ̇ and outputs both the
estimated tip positions P̂ and velocities ˙̂P . The decoupling
layer is only used to split the inputs into two sub-vectors.
The motor positions θ are fed into a feedforward layer to
estimate the tip position. The derivative layer computes the
derivatives of the network, given the current set of weights
and inputs, to estimate the Jacobian Ĵ during the network
training. This layer, however, does not add additional weights
to the model. The Jacobian is then multiplied by the motor
velocities to produce the expected tip velocities ˙̂P = Ĵ θ̇. The
cost function to train the network’s weights is then defined as
cpv =

∑
D
wp

2 ||P̂ − PD||2 +
wdp

2 ||
˙̂P − ṖD||2, where

ṖD are the measured tip velocities, and wp = 10−3, wdp = 1
are user-defined weights.

Even if for the training phase θ and θ̇, and are needed, for
the inference in testing and control it is necessary to only use
θ, as only the feedforward layer will be retained and used for
estimations of P̂ .

C. Model Learning and Control Approach

To evaluate the effects of backlash compensation, two dif-
ferent strategies are tested, employing both presented network
architectures FFNet and AugNet. It is worth mentioning
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that all the control is performed in open-loop, without any
on-board sensory feedback. For this reason, the input to the
controller is the desired tip position and the only output is the
model’s predicted position.

P
~ θ

Ĵ
P̂

IK Robot

ANN

(a) Control without backlash
compensation

P
~

θ

Ĵ
P̂

IK Robot

ANN

θcomp
Compensate

(b) Control with backlash compensation

Fig. 6: Control strategy for the case: 6a) without compensation;
6b) with compensation.

1) Learning and Control without Compensation: In this
case, the mapping from motor to tip is built without com-
pensating the motor positions to send to the robot, but in
a pure black-box fashion. Training data is collected without
the compensation and consists of the desired motor positions
θ and corresponding measured tip positions PD. Once the
kinematic model is learnt, the control strategy in Figure
6a is employed. The learnt model outputs the expected tip
position P̂ and Jacobian Ĵ , which are then used in the inverse
kinematics solver (1) to compute the motor values, given a
desired tip position P̃ . The resulting motor positions from the
solver are then directly commanded to the robot.

2) Learning and Control with Compensation: In this case,
the training data to learn the kinematic model is collected in-
cluding the backlash compensation described in III-B. Because
of the deadzones, non-null desired motor commands would
correspond to null tip velocities, making the mapping less
univocal and more challenging to invert. The a priori backlash
compensation is used to isolate time-dependent nonlinearities,
simplify the model and the computation of its derivatives, and
reduce the occurrence of uncertain states due to the motor
inputs being in the deadzones. The input of the network is still
the desired motor positions θ, yet they are first compensated
before being sent to the robot and the corresponding tip
position PD is then measured. Similarly to the case without
compensation, the learnt model predicts the expected tip posi-
tion and Jacobian to use in the inverse kinematics solver. Since
the network’s inputs are the uncompensated desired motor
commands, the resulting motor positions are first compensated
and then commanded to the robot (Figure 6b).

V. RESULTS

In this section, results are presented, showing tests to
validate the backlash compensation, the accuracy of the learnt
models, and the comparison of the control tasks with the two
different learned models.

A. Validation of Backlash Compensation

To validate the proposed backlash compensation, three
different kinds of motions were commanded to each motor
independently: sinusoidal motion with linearly increasing am-
plitude (same as the one used to estimate the deadzones), sinu-
soidal motion with exponentially varying amplitude, random
motion (Figure 7a).

Figure 7b shows the comparison of the motion obtained
with and without backlash compensation when commanding

TABLE I: Average deadzone sizes (in rad) for each motor,
with and without compensation. The values in brackets are
the percentage reduction with respect to the case without
compensation.

Motor Motion Compensation Elbow 1 Elbow 2 Wrist Pitch Jaws

Sinusoidal without 7.28 12.83 7.28 8.95
with 0.84(-88%) 0.72(-94%) 0.76(-90%) 0.95(-89%)

Exponential without 6.94 13.38 5.15 7.15
with 6.53(-6.0%) 7.49(-44%) 4.51(-12%) 4.50(-37%)

Random without 8.64 15.54 9.29 11.14
with 5.10(-41%) 11.49(-26%) 5.28(-43%) 7.85(-29%)

Sinusoidal Exponential Random

θ

time time time

θ θ

(a) The commanded motor motions
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Fig. 7: Example of the commanded motions for validating
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Elbow 1, Elbow 2, Wrist Pitch, and Wrist Yaw with sinusoidal
motion.

the sinusoidal motion, whereas Table I reports the sizes of
the deadzones identified as described in III-A for each motion
when setting ε = εv = 10−4 for each motor. Results prove
that the proposed approach ensures good compensation of the
deadzones, thus largely reducing motion lag at each change
of direction. The offsets and discrepancies in the tip position
are due to the initial misalignment when running the different
tests. In fact, at the beginning of each test the robot needs
to be manually brought to the home configuration, and this
causes inaccuracies. Some of the overshooting, instead, may
be caused by an overestimation of the deadzone size due to
the spline approximation of the motor to deadzone function.

B. Robot Model Learning

To generate the data, the Micro-IGES motors
are excited with sinusoidal motion of the type
θu,i(t) = 0.8

θu,i,max−θu,i,min

2 (sin(2πψ t
T ) + 0.2 sin(20πψ t

T )).
In order to explore as much as possible of its workspace,
each motor is excited with two possible choices ψ = {2, 4},
resulting in a total of 24 combinations, with an additional
independent excitation for each single motor also included.
In total 24 + 4 = 20 excitations were commanded, each one
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TABLE II: Root Mean Square Error (RMSE) for the trained
models in the training and test sets, for both case with and
without backlash compensation. RMSEP is the error on the
tip positions and RMSEdP on the velocities per unit of time.
All measures are in mm.

RMSEP RMSEdP

Train Test Train Test
Model Compensation x y x y x y x y

AugNet
with 3.59 2.31 3.55 2.18 1.03 0.73 1.04 0.65

without 3.21 2.01 3.40 2.06 1.20 0.86 1.22 0.84

FFNet
with 3.12 1.77 3.26 1.91 1.38 1.24 1.23 1.25

without 2.67 1.72 2.60 1.84 1.46 1.16 1.31 1.16

lasting T = 40 s and with a sampling rate ∆t = 200 ms.
Consequently, 4000 data points were collected and randomly
split into a training (80%) and test (20%) set.

The sampling rate is the same later used for control, and its
choice was dictated by the acquisition frequency of the EM
trackers. Due to the reduced number of DOF available, only
the Cartesian x, y components are controlled and, therefore,
modelled. Figure 1 shows the experimental setup. Two EM
trackers are used to collect the tip position data, with a
reference sensor at the Micro-IGES base and one on the
tip, which allows referring all measurement with respect to
the robot’s base directly. To learn the forward kinematics,
two networks are used to model independently the x and y
Cartesian components and, for both FFNet and Augnet,
the feedforward network consists of one input layer with 4
neurons (corresponding to the robot motor values θ), a single
hidden layer with 30 neurons, and a one-dimensional output
layer. sigmoid activation function is employed, the training
learning rate was set to 10−4, and 20000 epochs were run.
These parameters were heuristically chosen on a trial-and-error
basis. The same procedure for data collection and the same
network architecture are also used for the modelling when no
backlash compensation is implemented.

Table II reports the Root Mean Square Error (RMSE) in
the training and test sets for each model. Due to the weights
in the cost function for AugNet, the model accuracy on the
tip position is generally lower than FFNet. However, since
FFNet neglects any information about the derivative of the
kinematics, and therefore about the velocity mapping, its error
at the velocity level is generally higher. The slightly smaller

errors on the positions in the models without compensation
may be due to the fact that, when the motors are in deadzones,
multiple close motor positions correspond to the same tip
position, resulting in a lower prediction error. Yet, without
the compensation non-null motor velocities might correspond
to null tip velocities, which might be more challenging for the
network to capture as demonstrated by the larger errors at the
velocity level using AugNet.

C. Control Tests
The robot is required to follow four different paths (two

ellipses with axes of 12 and 20 mm and two rectangles with
sides of 12 and 20 mm) starting from the home straight config-
uration. We compared the tracking accuracy when employing
the learnt AugNet and FFNet models and the currently
implemented geometric model based on Denavit-Hartenberg
(DH) convention, both with and without the backlash com-
pensation. Figure 8 plots the comparison of the tracking tasks
and the norm of the tracking error εP = P̃ − P act, where
P act is the actual robot tip position measured with the EM
trackers. It is worth mentioning that each test was conducted
in open-loop and the EM trackers were only used to collect
the tip position data.

Table IIIa reports the mean tracking error norm ε̄P and
the improvements in the case with backlash compensation
over those without. AugNet is the model resulting in the
lowest tracking errors, with a mean of 3.74 mm over the four
tests in the case with backlash compensation and 5.13 mm
without, compared to 5.88 mm and 5.80 mm for FFNet with
and without compensation, and 5.39 mm and 6.35 mm for
the DH model (with and without compensation). This means
that AugNet results in an overall improvement of 36% over
FFNet and 31% over DH model, in the case with backlash
compensation. Even though FFNet performs slightly better
on the rectangles, it is AugNet to lead to paths more similar
to the desired ones, as reported by the ratio of the areas of
the tracked paths over the desired ones. Additionally, adding
derivatives information during training with AugNet allows
having smoother and less jerky motion compared to FFNet.

Our results also show that the backlash compensation is
effective in improving the robot control. In the control tests

TABLE III: Results for the path tracking tests with and without backlash compensation: IIIa is the tip position error norm;
IIIb is the ratio between the areas of the actual and desired paths. The values in brackets are the percentage improvements
over the case without compensation.

(a) Mean tracking error norms ¯||εP || in mm.

Model Compensation Ellipse (12-20) Ellipse (20-12) Rectangle (12-20) Rectangle (20-12)

AugNet
with 2.58 (−48%) 3.27 (−38%) 3.56 (−30%) 5.58 (+6%)

without 4.96 5.26 5.05 5.26

FFNet
with 6.53 (0%) 8.58 (+55%) 3.41 (−43%) 4.99 (−1%)

without 6.54 5.54 6.02 5.04

DH
with 4.55 (−25%) 6.01 (−5%) 5.52 (−14%) 5.49 (−17%)

without 6.04 6.33 6.45 6.58

(b) Ratio (%) between the areas of the actual paths and the desired paths.

Model Compensation Ellipse (12-20) Ellipse (20-12) Rectangle (12-20) Rectangle (20-12)

AugNet
with 82 (+57%) 84 (+63%) 89(+62%) 87(+58%)

without 25 21 27 29

FFNet
with 86 (+72%) 87 (+70%) 89 (+56%) 57 (+28%)

without 14 17 33 29

DH
with 14 (+12%) 38 (+30%) 20 (+18%) 34 (+28%)

without 2 8 2 6
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Fig. 8: Control test results on different paths for both cases with and without backlash compensation. εP is the error between
the desired and the actual robot position.

without compensation, a large motion lag is noticeable, espe-
cially when performing the elliptical shapes, and the robot’s
paths result to be scaled (Table IIIb). This effect might
be caused by the not proper tensioning of the tendons by
the motors when commanding the desired motor commands.
When employing the backlash compensation, this effect is
reduced thanks to the additional rotations of the motors added
to compensate for the deadzones. The backlash compensation
leads to an overall improvement of 27% for AugNet and 15%
for DH model in terms of tracking error with respect to the
control without compensation. For FFNet, instead, there is
a slight deterioration, mostly caused by the poor performance
over the second ellipse. With regards to the sizes of the areas,
the compensation leads to an overall increase of 60% for
AugNet, 57% for FFNet, and 22% for the DH model. Our
results thus show that:

• the implemented backlash compensation helps improving
the robot’s control, even with traditional DH geometric
model;

• adding a priori knowledge of the backlash results in better
performance;

• adding differential relationships during training by using
AugNet improves model learning and control.

Even though the proposed backlash compensation and learning
approach allow for improved modelling accuracy and tracking
precision with respect to the currently implemented DH model,
the control performances are still not perfect. In fact, most
of the tracking errors occur at the beginning of the motion,

where understanding if the system is in a deadzone is highly
challenging due to manual homing and lack of sensors. Cur-
rently, because of its design (Figure 1a), our system does not
allow estimating tensions on the tendons due to the lack of
sensors and to the fact that each motor drives two tendons,
thus making it challenging to properly have an estimation
of the tensions on each tendon. Including such information
and employing more advanced modelling techniques capable
of including more information about the hysteretic behaviour
might lead to even further improvements.

D. Comparison to LSTM learning

Because of the time and motion-dependent nonlinearities
in tendon-driven robots, LSTM could be beneficial to learn
robot’s kinematics. However, if LSTM were used to learn the
forward kinematics, then extrapolating the network derivatives
for Jacobian computation would be tedious and computation-
ally expensive. In [15] LSTM was employed to directly learn
the inverse kinematics of the Micro-IGES on task-specific
data and perform Cartesian motion control, thus aiming to
inherently learn a backlash compensation. The Micro-IGES is
required to follow the 12 × 20 mm ellipse, the 20 × 12 mm
rectangle, and a 10× 10 mm square. The LSTM model-based
mean tracking errors ¯||εP || result to be 3.69 mm, 3.60 mm,
and 3.47 mm on the ellipse, rectangle, and square respectively,
compared to 2.58 mm, 5.58 mm, and 2.73 mm for AugNet
with compensation. The current compensation and modelling
technique based on AugNet leads to an improvement in the
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mean tracking error of 30% and 21% on the ellipse and square
paths, but to a less accurate tracking on the rectangle. One of
the causes of the larger errors in tracking the rectangle might
be due to the use of a more sparse and less-task specific
dataset for training. Future work will focus on comparing
how backlash compensation and training on full workspace
exploration data benefits an LSTM approach.

VI. DISCUSSION AND CONCLUSION

In this work we analysed how an offline a priori backlash
compensation strategy can improve model learning. The pro-
posed backlash compensation technique is employed in order
for the ANN to bypass learning the compensation and just
build a forward kinematic model that maps from desired motor
positions to the robot’s tip position. Incorporating the backlash
compensation reduces the nonlinearities in the system, sim-
plifying model learning. For better modelling, we employed
the novel ANN architecture named AugNet that includes
differential relationships during training to additionally learn
velocity mapping.

Results on the real Micro-IGES tendon-driven robot show
that our proposed backlash compensation strategy is effective
at reducing lags in the robot motion and at improving the
model learning, leading to more accurate motion tracking.
Furthermore, results show the proposed AugNet model out-
performs both standard ANN modelling (FFNet) and the
generally used DH model. Nevertheless, the proposed backlash
compensation is still based on some simplified assumptions
and it does not manage to fully compensate for the nonlin-
earities in the system. Future work will focus on improving
the compensation by exploring novel architectures, including
additional information about motion history, and, eventually,
implementing adaptive modelling strategies.
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