
Pre-operative Offline Optimization of Insertion Point Location for Safe
and Accurate Surgical Task Execution

Francesco Cursi∗,1,2, Petar Kormushev2

Abstract— In robotically assisted surgical procedures the
surgical tool is usually inserted in the patient’s body through
a small incision, which acts as a constraint for the motion
of the robot, known as remote center of Motion (RCM). The
location of the insertion point on the patient’s body has huge
effects on the performances of the surgical robot. In this work
we present an offline pre-operative framework to identify the
optimal insertion point location in order to guarantee accurate
and safe surgical task execution. The approach is validated
using a serial-link manipulator in conjunction with a surgical
robotic tool to perform a tumor resection task, while avoiding
nearby organs. Results show that the framework is capable of
identifying the best insertion point ensuring high dexterity, high
tracking accuracy, and safety in avoiding nearby organs.

I. INTRODUCTION

In robotically assisted surgical procedures, the surgical
tool is inserted inside the patient’s body through small
incisions. This, however, restricts the motion of the robot,
which is not allowed to move tangentially to the hole plane.
Yet, it can only pivot and translate in the insertion direction
about the insertion point. The insertion point generates the
Remote Center of Motion (RCM), whose constraint leads the
robotic system to lose two Degrees of Freedom (DOFs) [1].

Different approaches have been developed to overcome
the issue of loss of mobility due to the RCM motion, and
they can typically be divided into design-based and control-
based strategies [2]. However, the location of the insertion
point, which is responsible for the RCM, highly affects the
performances of the surgical robot.

Thus far, few works have focused on finding the optimal
insertion point for a surgical operation. In [3] the authors
used CT images to manually identify the set of possible port
locations and then applied a search space method among the
possible port locations to find the best one. In this work,
however, the robot could achieve the RCM motion thanks
to its mechanical design. In [2], instead, the robotic setup
consists of a serial-link manipulator and a surgical tool. This
work is concerned with the problem of choosing a location
for the RCM relative to the manipulator in order to maximize
the system performances.

Most of the works focus only the system’s dexterity,
without assessing the motion accuracy or possible presence
of organs and obstacles that might interfere with the surgical
task. The main contribution of this manuscript is thus to
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(a) The KUKA+Micro-IGES robot in the real environment

(b) Simulation environment for the KUKA+Micro-IGES robot

Fig. 1: The KUKA+MicroIGES robot in: 1a) the real envi-
ronment; 1b) the simulation environment.

provide a pre-operative offline framework for finding the
optimal insertion point location in order to guarantee safe
and accurate surgical task execution, when operating with a
surgical robot. This work focuses on the use of a KUKA
robot, on which the Micro-IGES surgical robotic tool [4]
is attached, to simulate a tumor resection task (Figure 1).
However, the framework can be generalized to any other
robotic structure and task.

The framework consists of two main parts: the control
strategy, and the optimization strategy. For the control
problem, the Hierarchical Quadratic Programming (HQP)
[5] approach is adopted, since it allows multiple prioritized
tasks to be optimally solved while satisfying additional
constraints, such as joint limits and avoiding obstacles (like
organs or bones). With regards to the optimization, a space
search optimization is employed to identify the best port
location in a defined space. A custom-made fitness function
for the optimization is introduced which allows motion
accuracy, system’s dexterity, and safety in avoiding collision
with nearby organs to be considered. However, the optimal
configuration identified by the solver may reside in a region
where small deviations from the optimal may lead to much
worse performances. Consequently, a resilience to error
strategy to find an optimal solution in a neighborhood that
guarantees good performances is also introduced. Being it
an offline pre-operative framework, results are shown in this
paper based on a simulation environment, which allows the



capabilities of the robot to be assessed when many different
insertion point locations are assigned.

The paper is structured as follows. In Section II the Micro-
IGES robotic surgical tool is described and the kinematic
model of the whole KUKA and Micro-IGES robot is derived.
Section III describes the proposed framework, presenting the
control strategy, the optimization method, and the resilience
to error approach. Results are then shown in Section IV and,
finally, conclusions are drawn in Section V.

II. ROBOTIC SYSTEM DESCRIPTION

In this section an overview of the robotic system setup
is presented, describing the kinematic models of the Micro-
IGES surgical robotic tool, of the KUKA LBR IIWA robotic
arm, and of the whole system.

A. Micro-IGES Kinematic Model

A detailed description of the Micro-IGES robot can be
found in [4], [6]. Because of the generally nonlinear motor
to joint (and joint to motor) mapping qu = f(θu), being
θu the vector of motor positions and qu the vector of joint
positions, the kinematic model of the robot, with respect to
its base frame ({RFb} in Figure 1b), can be rewritten as
bT u = bT q(qu) = bT u(θu) and bvu = bJq(qu)q̇u =
bJq(qu)L(qu)θ̇u = bJu(θu)θ̇u, where bT u ∈ R4×4 is the
Cartesian end-effector pose, bvu ∈ R6 the Cartesian end-
effector twist (linear and angular velocities vector), bJq is
the Cartesian task Jacobian with respect to the joint variables,
and bJu the Jacobian with respect to the motor values. The
matrix L, with Li,j = ∂qi

∂θj
, is the motor to joint differential

matrix [7]. In this work we employed the same motor to joint
mapping as in [8]. The control problem for the Micro-IGES
can therefore be formulated as a function of the motor values,
which can be directly measured and controlled. The system’s
state is expressed by θu =

[
θR θe1 θe2 θW θJ

]T
,

representing the Roll, Elbow 1, Elbow 2, Wrist, and Jaws
motor values.

B. KUKA Robotic Arm

The KUKA LBR IIWA is an articulated industrial robot
with 7 joints. Because of its serial-link manipulator design
and direct transmission (the motors are placed directly at
the joints), the kinematic model of this robot can be easily
computed by means of the Denavit-Hartenberg convention.
Therefore, the kinematics of the KUKA can be expressed
with respect to its base frame {RF0} as 0T k = 0T k(qk)
and 0vk = 0Jk(qk)q̇k, where qk ∈ R7 is the vector of
KUKA’s joint positions.

C. Total System Kinematics

The total robotic system is composed by the Micro-
IGES and the KUKA robots (Figure 1), with the Micro-
IGES motor package directly attached to the KUKA end-
effector. Due to the lack of a proper CAD model of the
motor pack, in this work the Micro-IGES is considered to be
directly attached to the KUKA’s end-effector, just neglecting

a vertical translation. In total, the system has 12 Degrees of
Freedom (DOF), 7 for the KUKA and 5 for the Micro-IGES
and the robot’s state is then described by q =

[
qk θu

]T
.

The robot end-effector pose, with respect to the KUKA
base, can be computed as T (q) = 0T k(qk) kT b

bT u(θu),
where 0T k is the KUKA end-effector pose, kT b ∈ R4×4 is
a fixed transformation matrix from the KUKA end-effector
to the Micro-IGES base frame, and bT u is the Micro-IGES
pose with respect to its base.

Being ωk = Jω,kq̇k ∈ R3 the KUKA’s end-effector
angular velocity, with Jω,k ∈ R3×7 and Jω,u ∈ R3×5

the KUKA and micro-IGES’s orientation Jacobian, Jv,k ∈
R3×7,Jv,k ∈ R3×5 the Jacobians of for the linear velocity of
each robot, it then results that the macro-micro manipulator’s
end-effector velocities can be computed as:

Ṗ =
[
0Ĵv,k

0Jv,u
] [q̇k
θ̇u

]
= 0Jv,totq̇

ω = 0ωk +0 ωu =
[
0Jω,k

0Jω,u
] [q̇k
θ̇u

]
=0 Jω,totq̇

,

(1)
with Ĵv,k = Jv,k +

[
Jω,1 × P u,k . . . Jω,7 × P u,k

]
.

The total system’s end-effector twist is then computed as:

v =

[
Ṗ
ω

]
=

[
Jv,tot
Jω,tot

]
q̇ =

[
JKUKA JIges

]
q̇ = J totq̇ ,

(2)
with JKUKA ∈ R6×7 and JIgesR6×5 describing the contri-
bution of each robot to the motion.

III. METHOD

In this section, the proposed pre-operative framework is
presented, introducing the control strategy and the optimiza-
tion method.

A. Surgical Task Plan

Identifying the optimal insertion point location is typically
task specific. In this work we are roughly simulating a
tumor resection task, which starts with the whole KUKA
and micro-IGES manipulator at the home position, with
the KUKA upright and the micro-IGES straight. Once the
insertion point location is specified, the whole manipulator
is required to reach the keyhole. In this phase of the motion,
the micro-IGES is not enabled, but kept straight. Only the
final accuracy in reaching the insertion point is considered,
since generally in a real scenario the robot is manually
moved to the insertion point. The insertion point location
dictates the direction along which the surgical tool will be
inserted. In fact, during the insertion phase, the tip moves in a
straight line connecting the insertion point to the tumor, while
keeping the RCM and the controller tries to keep the micro-
IGES straight, as it would be in a real surgical operation.
Once the targeted tumor is reached, the whole system is
commanded to get to a desired cutting orientation. In this
work, the cutting orientation is perpendicular to the tumor’s
plane. Finally, the tumor is cut, tracking its contour with the
desired cutting orientation, while keeping the RCM.
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Fig. 2: Remote Center of Motion representation

B. Motion Control

In order to optimally exploit the hyper redundancy of
the whole manipulator, different motion subtasks can be
specified. Each subtask can be assigned a certain priority.
This ensures that the subtasks do not conflict with each other,
guaranteeing optimality in the control. Different approaches
exist in the literature that address the redundancy problem
in robotic surgery [9]–[11]. Recently, especially in the field
of humanoid robotics, where researchers have to deal with
high level of redundancy, HQP [5] is widely used to solve
stacks of prioritized tasks subjected to different constraints
(both equality and inequality). In a surgical application like
tumor resection at least two motion subtasks can be specified:
keeping the RCM fixed and follow a desired path (in order
to remove the tumor). However, during the surgical task the
robot may be required to avoid possible obstacles such as
bones or organs, that may be in the proximity of the tumor.
Therefore, beside keeping the RCM and accurately tracking
a desired path, obstacle avoidance may be assigned as an
additional subtask.

1) Remote Center of Motion: The RCM is a point where
only rotations and insertion motion can be achieved. During
laparoscopic procedures, for instance, the RCM coincides
with the location of the hole on the patient’s body where
the surgical tool is then inserted, as in Figure 2. Therefore,
the motion at the RCM needs to be constrained along
the surface tangential directions (y, z in Figure 2). Con-
sequently, the primary motion subtask is to constrain the
RCM and the corresponding cost function can be specified
as ||ṽRCM − JRCM q̇||2, where ṽRCM is a desired RCM
velocity. JRCM allows the velocity of the RCM to be
computed based on the robot kinematics.

The position of the RCM with respect to the robot
base is computed as PRCM = 0P k +0 Rk

kPRCM,k,
with kPRCM,k being the RCM position with respect to
the KUKA’s end-effector, in the end-effector’s frame. By
deriving with respect to time, as in (1), it turns out that:

ṖRCM =0 Jv,kq̇k+[
0Jω,1 ×0 PRCM,k . . . 0Jω,7 ×0 PRCM,k

]
q̇k =[

0ĴRCM 0
] [q̇k
θ̇u

]
=0 JRCM q̇

.

(3)
To simplify the control problem, in this work the RCM
motion is expressed with respect to the insertion point frame

z
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Fig. 3: Simulation environment with the tumor resection task
showing the kidneys acting as obstacles to avoid and the body
approximation used for the optimization strategy.

in Figure 2. Therefore JRCM =

[
hR0

0Jv,RCM
hR0

0Jω,RCM

]
, with

0Rh = hRT
0 the rotation matrix of the hole frame with

repect to the KUKA base frame, and 0Jv,RCM ,
0 Jω,RCM

the linear and orientation part of the RCM Jacobian. Thanks
to this transformation, assuming the hole fixed, the RCM
motion to consider is only along the y, z components.
Consequently, ṽRCM =

[
0 0

]T
in order to guarantee the

RCM motion in the tangential directions to be fixed and
JRCM ∈ R2×12. However, this formulation also allows non-
null hole velocities to be specified, as it could be in case of
breathing.

2) Path Tracking: The secondary motion subtask is exe-
cuting a desired motion, which, in our case is to have the total
system’s end-effector follow the desired path during insertion
and tumor resection. Given a reference Cartesian path and
its corresponding desired velocity ṽP , with mp ≤ 6, from
(2) the cost function associated to the secondary motion task
can be expressed as ||ṽP − J totq̇||. In this work the path
tracking subtask is expressed in terms of both Cartesian
position and orientation, therefore mp = 6 and considers
both the approaching motion to reach the tumor inside the
patient and the path tracking to cut the tumor.

3) Obstacle Avoidance: Figure 3 shows the simulation en-
vironment with the obstacles being the kidneys of the patient.
In order to avoid the obstacles, a repulsive field is generated.
Since the dynamics of the system is not considered in this
work, the repulsive field is expressed in terms of velocities.
For sake of simplicity, a spherical bounding volume for the
organs is generated. Any more complex shape can also be
used. The bounding volumes are responsible for the repulsive
fields, which are considered to have the following form:

vrep = k1e
−k2 dT d

δ2
d

||d||
, (4)

where k1 = 20, k2 = 5 are user-defined constants on the
strength and extension of the repulsive field, δ = 5 cm is the
radius of the bounding volume, and d ∈ R3 is the distance
of a point from the center of the bounding volume. In order
to ensure that the surgical tool steers away from the obstacle,
the repulsive field is considered to act only on the two points
on the tool that are closer to each organ. The tool is therefore
discretized into 34 points, 28 on the shaft and 6 on the
articulated part (one for each joint). During the motion, it
is continuously checked which points are closer to the two
obstacles, and the two closest ones are considered. These two



points will be at distances d1,d2 from the organs to which
the two repulsive velocities vobs,1,vobs,2, computed from
(4), will correspond. Moreover, the two points are associated
with the Jacobians 0Jobs,1,

0 Jobs,2 with respect to the whole
system’s base frame.

In order to avoid stalling situations when the repulsive
velocities are in the opposite direction of the motion of
the two points, only the components of the repulsive field
perpendicular to the direction of motion of the two points
are taken into consideration. Even though the robot manages
to move unimpeded into the obstacle if traveling radially,
this motion would be penalized in the optimization.

C. Prioritized Motion Control

In order to guarantee accurate execution of the specified
tumor resection task, while avoiding collisions with sur-
rounding obstacles, the HQP problem is formulated as:

for n = 1 . . . 3

q̇n = arg min
q̇

1

2
||ṽn − Jnq̇||2 +

1

2
||Λq̇||2

s.t J1q̇ = J1q̇1

...
Jn−1q̇ = Jn−1q̇n−1

qm − q
dt

≤q̇ ≤ qM − q
dt

, (5)

where n = 1 corresponds to guaranteeing RCM motion
(J1 = JRCM , ṽ1 = ṽRCM ) and n = 2 is for the path
tracking (J2 = J tot, ṽ2 = ṽP ). For the obstacle avoidance

n = 3, the task is specified as J3 = Jobs =

[
Jobs,1
Jobs,2

]
and ṽ3 = vobs =

[
vobs,1
vobs,2

]
, which guarantees that the

two critical points move away from the obstacles. The HQP
formulation guarantees that lower priority subtasks (n) are
solved by exploiting the system’s redundancies and without
conflicting with higher priority subtasks (n−1). This means
that the solution of high priority subtasks needs to be
included as an equality constraint when solving for lower
priority subtasks (Jn−1q̇ = Jn−1q̇n−1). In our formulation,
the highest priority subtask is constraining the RCM, the
secondary subtask is path tracking, and obstacle avoidance
is the lowest priority one. For the primary RCM motion task,
J0 = 0. Λ = diag(λk, λu) is a diagonal weighting matrix
which is used to reduce joint velocities when the systems
are close to singularity. The last inequality in (5) guarantees
that the joints and motor commands of the whole system
are within their bounds (qm, qM ). dt is the motion sampling
time.

D. Optimization of Insertion Point Location

With regards to choosing the location of the insertion
point, it is important to consider the information provided
by the surgeons, who make their decision depending on the
surgery to be undertaken and the anatomy of the patient.
Therefore, in our framework the surgeon can specify a

certain region on the patient’s body where the insertion point
might be. This region is then discretized and a space search
optimization is performed. In this work we approximate the
torso of the patient as a cylinder with specified radius and
assume that the insertion point will be on the surface of
the cylinder. For this reason, we choose two independent
variables for the search space: the distance from the center
of the torso z and the angle around the torso α (Figure 3).
We are assuming that z ∈ [−15, 15] cm and α ∈ [90, 210]◦,
with a discretization of 5 cm and 5◦, respectively. The search
space optimization will iterate through the defined discretized
locations and choose the best one.

1) Fitness Function: In order to find the optimal insertion
point location, a fitness function needs to be chosen and
minimized. This function must be defined such as to take
into consideration different factors such as the RCM motion,
the tip positioning, the system’s dexterity, and the obstacle
avoidance while performing the desired surgical task.

To perform the path tracking and cut the tumor, the path
is discretized in Nt time steps, and (5) is used to find the
joint commands at each time step. The tracking accuracy
can therefore be expressed in terms of the value of the cost
function achieved by solving (5). It is worth mentioning, that
the number of time steps (and thus the total completion time)
is fixed and it is the same for any insertion point location.
Assuming that q̇∗ is the optimal joint commands from (5),
the cost at each time step t = 0 . . . Nt is computed as:

ct =
1

2
||ṽRCM − JRCM q̇∗||+

1

2
||ṽP − J totq̇∗|| , (6)

with each ct ∈ [0,∞]. Then the average c̄ and the maximum
cM costs can be obtained as c̄ = 1

Nt

∑Nt
t=0 ct and cM =

max(c0, . . . , cNt). The cost fitness function is then defined
as fc = 1

c̄cM
≥ 0: configurations with small tracking costs,

would have high fitness cost values. Such choice is made
in order to penalize configurations that might have overall
smaller tracking costs c̄, but large instantaneous peaks cM .

Beside the motion accuracy, it is also important to have
configurations that improve the dexterity of the system. Gen-
erally, the manipulability ellipsoid [12] is used in robotics to
assess the dexterity of a system. Different measures exist to
assess the dexterity of a robot, as reported in [13], but their
derivations only consider one single motion task. Therefore,
in this work the following modification is carried out. If
joint limits were not imposed and obstacle avoidance not
accounted for, the solution of (5) would be the same as
the one obtained from the Gradient Projection Method and
would be defined by q̇ = J†1ṽ1 + (J2P1)†(ṽ2 − J2J

†
1ṽ1)

[14], with P1 = I − J†1J1, and ṽ1,J1 correspond to the
RCM motion task, and ṽ2,J2 to the path tracking task.
In order to take into account joint limits, a penalization
function is used [13]. Each Jacobian column j = 1 . . . 12 is
penalized for each task n = 1, 2 such that Jn,j = sjJn,j and

sj = 1−e
−4K

(qM,j−qj)(qj−qm,j)
(qM,j−qm,j)2

1−e−K , where K = 10 is a positive
constant. This allows the contribution of a specific joint to be
zero when it reaches its joint limits. From the definition of the



Fig. 4: Snapshots of the surgical task plan at two different insertion point locations.
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Fig. 5: Flow chart showing the framework to identify the
optimal insertion point location. For each insertion point
location z, α, the desired motion task is solved and the
associated fitness function F computed.

manipulability ellipsoid, following the Jacobian penalization,
the multitask manipulability ellipsoid can be defined as

q̇T q̇ =
[
ṽT1 ṽT2

]
H

[
ṽ1

ṽ2

]
with H ∈ R8×8. If only one

single motion task is specified, this formulation reduces to
the traditional manipulability ellipsoid formulation. To assess
the system’s dexterity, the order-independent manipulability
measure is used [13]. Due to the time discretization of the
motion, at each time step the dexterity measure is defined
as:

δt = (det(H))1/nj , (7)

with nj = 12 being the number of joints of the system,
and δt ∈ [0,∞]. The average δ̄ = 1

Nt

∑Nt
t=0 δt and the

minimum δm = min(δ0, . . . , δNt) dexterities are computed
and utilized to define the dexterity fitness function fd =
δ̄δm ≥ 0: configurations with high dexterity maximize the
dexterity fitness function.

To account for the obstacle avoidance, the optimal inser-
tion point location should ensure that the robot passes far
from the obstacles, and, therefore, the repulsive fields for
the two critical points should be small. At each time step,
the total repulsive field strength is computed as:

st = ||vobs,1||+ ||vobs,2|| (8)

and then the average s̄ = 1
Nt

∑Nt
t=0 st and the maximum

sM = max(s0, . . . , sNt) are used to define the field strength
fitness function fs = 1

s̄sM
≥ 0, which decreases as the

tool gets closer to the organs. Similarly to the cost, this
function penalizes configurations that might have overall
small repulsive fields s̄, but large instantaneous peaks sM .

Finally, the fitness function to minimize in order to find
the optimal insertion point location is computed as:

F = −fcfdfs , (9)

with the negative sign being added to ensure the mini-
mization of the fitness function. The fitness function is
considered to be unitless and the possible differences in the
order of magnitude in the measures used do not affect the
optimization, since they are not summed together but rather
multiplied or divided in the computation of F . Figure 5
shows the flow chart of the framework and Figure 4 shows
some snapshots of the surgical task plan for two different
insertion point locations.

2) Resilience to Errors: One issue that may arise from
the optimization, is that the optimal insertion point location
identified by the solver may reside in a region where small
deviations from the optimal may lead to much worse per-
formances, yielding higher costs and lower dexterities. This
is what could happen in case of positioning errors of the
surgical tool on the patient’s body. In order to overcome it,
the following adjustment is made.

Given an insertion point location defined by L0 =
[z0, α0], neighbouring regions in the search space to this
location are considered. In this work we consider three
neighbouring regions with sizes of lz = 1, 3, 5 cm and
lα = 1, 3, 5◦ for the z and α variables respectively. Each



Algorithm 1 Algorithm for penalization of the costs, dex-
terities, and filed strengths based on neighbouring regions.

1: function F ∗ ← REGIONPENALTY(L0, lz, lα)
. Get neighbouring regions

2: R ← getRegions(L0, lz, lα)
3: S = 12 . Total Number of neighbouring locations
. Get values for current configuration

4: c̄0, cM,0, δ̄0, δm,0, s̄0, sM,0 ← SolveMotionTask(L0)
5: s = 1
6: for Ls ∈ R do
7: c̄s, cM,s, δ̄s, δm,s, s̄0, sM,0 ←

SolveMotionTask(Ls)
8: s = s+ 1
9: end for

10: ∆1 = max(|c̄1 − c̄0|, . . . , |c̄S − c̄0|)
11: ∆2 = max(|cM,1 − cM,0|, . . . , |cM,S − cM,0|)
12: ∆3 = max(|δ̄1 − δ̄0|, . . . , |δ̄S − δ̄0|)
13: ∆4 = max(|δm,1 − δm,0|, . . . , |δm,S − δm,0|)
14: ∆5 = max(|s̄1 − s̄0|, . . . , |s̄S − s̄0|)
15: ∆6 = max(|sM,1 − sM,0|, . . . , |sM,S − sM,0|)

. Penalize current configuration values

16:
c̄∗0 = c̄0∆1

c∗M,0 = cM,0∆2

}
f∗c = 1

c̄∗0c
∗
M,0

17:
δ̄∗0 = δ̄0

∆3

δ∗m,0 =
δm,0
∆4

}
f∗d = δ̄∗0δ

∗
m,0

18:
s̄∗0 = s̄0∆5

s∗M,0 = sM,0∆6

}
f∗s = 1

s̄∗0s
∗
M,0

return F ∗ = −f∗c f∗d f∗s
19: end function

neighbouring region R is a set of 4 new locations such that
R = {Ls, s = 1 . . . 4 | L1 = [z0 + lz, α

0 + lα], L2 = [z0−
lz, α

0+lα], L3 = [z0−lz, α0−lα], L4 = [z0+lz, α
0−lα]}.

In total, 12 neighbouring locations are added. This choice of
the neighbouring region is determined by the assumption the
the decision variables for the insertion point locations are just
the displacement z and the angle α.

For each neighbouring location Ls in R, the motion
task is solved and c̄, cM , δ̄, δm, s̄, sM are computed. Then,
the deviations of the costs, dexterities and field strengths
of each neighbouring location with respect to the initial
location L0 are computed. The initial location L0 is asso-
ciated with c̄0, cM,0, δ̄0, δm,0, s̄0, sM,0. The maximum de-
viations are then used as penalization terms. In this way,
configurations leading to large deviations will be associated
with higher penalized costs and field strengths and smaller
penalized dexterities. Algorithm 1 describes the penalization
process.

IV. RESULTS

Due to the chosen discretization of the optimization
variables z, α for the space search, in total 175 possible
insertion point locations were analyzed. Figure 6 shows the
distributions of the costs, dexterities, and filed strengths and

of the proposed fitness functions in the discretized space.
It can be noticed that the insertion point locations near
the organs have larger tracking costs c̄, cM and repulsive
field strengths s̄, sM throughout the whole motion. Larger
tracking costs occur also for large angles α because those
insertion point locations are much further from the robot base
and lead to more joints reaching their limits. The optimal
location identified by our framework results to be z = −15
cm and α = 165◦, to which corresponds a value of the
fitness function F = −13.3 · 109. The fact that the optimal
location resides on the border of the search space is due to the
organs being in the middle of the patient’s body. The safest
configurations to avoid the organs are those at the borders of
z or those at large angles α. However, those at larger angles
lead to poor performances in terms of dexterity and tracking
accuracy.

Table Ia reports the costs, dexterities, and field strength
values for the locations optimizing each measure indepen-
dently. Both from Figure 6 and Table Ia it is clear that
optimizing for one single measure independently may lead
to much worse values in the other measures of interest. For
instance, the location z = 15 cm, α = 190◦ which minimizes
the average field strength during the motion, has very high
costs. This leads to poor overall performances and small
fitness function values (Figure 6).

The optimal solution found z = −15 cm and α = 165◦,
instead, allows good dexterities, low costs and field strengths
to be achieved, thus guaranteeing accurate path tracking and
safe distancing from the obstacles. Furthermore, it is worth
noticing the effect of taking into consideration neighbouring
regions in order to reduce the deterioration of the perfor-
mances due to inaccurate positioning of the insertion point.
If the neighbouring regions were not considered, the optimal
insertion point location would be z = −15 cm and α = 210◦.
However, as reported in Table Ib, this location resides in a not
safe region. In fact, large deviations occur in its surrounding
locations, especially in the dexterity measures. The optimal
port location, instead, is in a safer region, with much smaller
variations.

V. CONCLUSIONS

In conclusion, in this work we proposed an offline pre-
operative framework for identifying the best location of the
insertion point of a surgical robotic tool on a patient’s body,
in order to improve safety and accuracy of the surgical
task execution. The framework considers different aspects to
ensure safety during the surgical procedure, such as accurate
tracking of the RCM and of the desired path, system’s
dexterity, and avoidance of nearby organs. Results show that
the location of the insertion point has strong effects on the
performances of the robotic system, justifying the need for
an optimal location.

The proposed framework is task-specific, so it needs to
be run every time a different surgical task is specified.
However, being it pre-operative and offline, this is not a
major limitation. Moreover, it can be used for different
surgical tasks and different robots, just by adapting the
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Fig. 6: Distributions of the costs, dexterities, and field strengths used to compute the fitness function in the discretized
insertion point locations space.

TABLE I: Cost, dexterities, field strengths, and fitness function values for each optimal port location, and maximum deviations
in the neighbouring regions.

(a) Cost, dexterities, field strengths, and fitness function values for each optimal port location.

Name Location c̄ cM δ̄ δm s̄ sM |F|
z(cm) α(◦)

Optimal Average Cost 5 120 0.0365 0.2302 0.0796 7.21 · 10−7 1.4041 6.5605 0.0069
Optimal Maximum Cost 5 135 0.0464 0.1520 0.0758 1.56 · 10−5 0.3403 1.9778 32.78

Optimal Average Dexterity 15 150 0.1232 1.2404 0.1012 3.43 · 10−8 0.0185 0.0663 1.38 · 103

Optimal Minimum Dexterity 0 130 0.0469 0.2078 0.0743 0.0074 0.8930 6.2803 1.43 · 105

Optimal Average Field Strength 15 190 3.0620 18.8779 0.0224 0.0021 0.0010 0.0024 1.57 · 107

Optimal Maximum Field Strength 0 190 1.9406 11.1727 0.0197 0.0011 0.0011 0.0023 3.11 · 107

Optimal Location −15 165 0.0970 0.7749 0.0946 1.41 · 10−5 0.0051 0.0185 13.3 · 109

Optimal Location Not Resilient −15 210 1.6734 10.846 0.0535 0.0016 0.0012 0.0029 3.47 · 109

(b) Maximum deviations in the neighbouring regions in terms of average and maximum cost (∆1,∆2),average
and minimum dexterity (∆3,∆4), average and maximum repulsive field strength (∆5,∆6).

Name ∆1 ∆2 ∆3 ∆4 ∆5 ∆6

Optimal Location 0.0266 1.41 · 10−5 0.0889 1.2583 0.0086 0.0389
Optimal Location Not Resilient 0.0290 0.0014 0.4243 2.3701 0.0011 0.0087



kinematic model and reformulating the fitness function, if
necessary.

Future work will focus on improving the framework by
including more organs and approximating them with more
realistic anatomical shapes, generating more complex repul-
sive fields, and better discretizing the patient’s body.
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