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Abstract— In fields such as minimally invasive surgery, ef-
fective control strategies are needed to guarantee safety and
accuracy of the surgical task. Mechanical designs and actuation
schemes have inevitable limitations such as backlash and joint
limits. Moreover, surgical robots need to operate in narrow
pathways, which may give rise to additional environmental
constraints. Therefore, the control strategies must be capable
of satisfying the desired motion trajectories and the imposed
constraints. Model Predictive Control (MPC) has proven effec-
tive for this purpose, allowing to solve an optimal problem by
taking into consideration the evolution of the system states, cost
function, and constraints over time. The high nonlinearities in
tendon-driven systems, adopted in many surgical robots, are dif-
ficult to be modelled analytically. In this work, we use a model
learning approach for the dynamics of tendon-driven robots.
The dynamic model is then employed to impose constraints
on the torques of the robot under consideration and solve an
optimal constrained control problem for trajectory tracking
by using MPC. To assess the capabilities of the proposed
framework, both simulated and real world experiments have
been conducted.

I. INTRODUCTION

Accuracy and precision are of uttermost importance to
ensure safety in many robotic applications, especially in
minimally invasive surgery, where little (or preferably no)
damage should be caused to the patient’s body. Moreover,
effective control strategies are needed to guarantee safe
execution of surgical tasks [1]. Due to mechanical design
and actuation, robots have inherent limitations such as
joint position, velocity, acceleration, and torque bounds.
In addition, the operational environment may also lead
to other constraints due to limited working volume or
safety margins [2]. This is particularly true for minimally
invasive surgery, where motion often occurs in very narrow
and constrained spaces. Controllers capable of ensuring
constraint satisfaction and task execution are therefore vital
in these scenarios.

Different approaches have been investigated to guarantee
limit avoidance in robotic systems. The Gradient Projection
Method [3]–[5] uses the projection of a secondary task onto
the null space of the primary task to guarantee the execution
of the desired motion, while minimizing a secondary desired
cost function. This method works only with redundant
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Fig. 1: The Micro-IGES surgical robotic tool [16]

robots and does not always guarantee constraint satisfaction,
since bounds are converted to soft bounds with low priority
[6]. The Augmented Jacobian method [7] allows constraints
to be placed at the same priority level of the main task
by augmenting the robot Jacobian. Many other approaches
have also been developed such as nonlinear variables
transformation [8], [9], adding repulsive forces pushing the
joints far from bounds [10], using barrier functions [11],
Saturation in the Null Space [12], constrained stochastic
optimization [13].

An optimal way to deal with many and various constraints
is to formulate the control problem as a Quadratic Pro-
gramming (QP) optimization with a desired cost function
to minimize (e.g. tracking error) with respect to the control
variable, and bounds to satisfy [14]. Despite the great ef-
fectiveness of finding optimal solutions, this method is only
locally temporally optimal, since it doesn’t take into account
the future evolution of the controlled system [15].

In order to improve the optimality of the solution, Model
Predictive Control (MPC) can be adopted. In fact, it allows
to include the evolution of the system within a defined
prediction horizon and thus obtain smoother solutions.

MPC might be employed for tracking control tasks where
a desired trajectory is known or at least can be defined
within the prediction horizon (i.e. for reference paths that
change during the task execution). This is the typical case of
many surgical applications where motion tasks are usually
known in advance, such as in knot-tying, suturing, or tumor
resection. Even though the surgical environment is less
structured, it is still possible to estimate how it is evolving,
for instance, by tracking tissue deformation [17], and thus
still have some tracking reference.

Different types of mechanical transmissions have been
used in the design of surgical robots, with the vast majority
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being tendon-driven [18]. Many research efforts focused on
modelling this kind of transmission analytically [19]–[22].
Nonetheless, due to the highly complex nonlinearities in
tendon-driven systems, other researchers employed machine
learning approaches [23] such as Artificial Neural Networks
[24], Gaussian Mixture Regression, K-nearest Neighbour
Regression, and Extreme Machine Learning [25].

Thus far very little work has been conducted on optimal
control of surgical robots, especially in the case of con-
strained systems, both kinematically and dynamically. Even
though in robotic surgery motions are typically not very fast,
dynamic constraints may rise to limit the magnitude of the
applied end-effector force or to limit tendon forces, as for
tendon-driven systems. Recently, Faroni et al. [15] presented
a work on MPC for controlling an articulated industrial
robot under only kinematic constraints (on joint positions,
velocities, accelerations).

The main contribution of our manuscript is to apply
an MPC approach to the Micro-IGES [16] surgical robot
in order to allow it to follow a desired path (as could be
for tumor resection), while satisfying different constraints.
In this work, however, we are not directly addressing the
kinematic mapping, which is described in [26], but rather
providing a framework which allows to satisfy imposed
constraints, given a certain kinematic model. Ongoing work
is focusing on improving the kinematic model accuracy and
will then be merged with this presented work.

The paper is structured as follows. Section II presents
the Micro-IGES robotic surgical tool (Figure 1). Section III
describes the approach to solve the MPC for trajectory track-
ing under the imposed kinematic and dynamic constraints.
In Section IV the results for modelling the dynamics of
the Micro-IGES tendon-driven robot are shown, along with
a discussion of the results of the motion control strategy.
Lastly, conclusions are drawn in Section V.

II. TENDON-DRIVEN SYSTEM

In this Section an overview of the Micro-IGES surgical
robotic tool is presented, describing its kinematic and dy-

namic models.

A. Micro-IGES Surgical Robotic Tool

The Micro-IGES [16] (Figure 2) is a surgical robotic tool,
composed of a rigid shaft (27 cm) and a flexible section
(39 mm in zero/home configuration). The shaft is responsible
for the roll and translation Degrees of Freedom (DOFs). The
articulated end, instead, consists of 2 elbows for pitch and
yaw, with each elbow made of a pair of coupled joints, a 1
DOF revolute joint for the wrist pitch, and the jaws. The jaws
provide two more DOFs: one for the wrist yaw and one for
the gripper’s opening/closing. Each joint of the articulated
part is driven by an antagonistic pair of tendons, with each
pair being connected to the corresponding driving capstan
at the proximal drive unit. The coupling of the two pairs
of joints of the elbows occurs at the driving unit: the two
capstans that drive the two serial joints for each DOF of
the elbow (pitch and yaw) are coupled by a series of gears
with 1:2 ratio. Due to the current setup, in this work, the
translation DOF cannot be used, therefore only 5 independent
DOFs are considered (Roll, Elbow 1, Elbow 2, Wrist Pitch,
Wrist Yaw). In order to control the Wrist Yaw DOF, with
null gripping angle, the two jaws need to move equally (their
motion is not independent).

B. Robot Kinematic and Dynamic Model

The nonlinearities in tendon transmission make the math-
ematical derivation of the system kinematics and dynamics
tedious. In addition, tendon-driven systems for minimally
invasive surgery usually lack sensors at the distal side,
therefore joint values cannot be measured and controlled
directly. Because of the generally nonlinear motor to joint
(and joint to motor) mapping q = l(θ), being θ ∈ Rnm the
vector of motor positions and q ∈ Rn j the vector of joint
positions, the kinematic model of the robot can be rewritten
as P = P(θ), with P ∈ R3 being the Cartesian end-effector
position. nm and n j are the number of motors and of joints
of the system. The mapping from motor positions to end-
effector Cartesian pose results to be highly nonlinear due to
the hysteresis, backlash, tendon elongation effects caused by
the tendon transmission [21].

The system dynamics, in absence of external interactions
(i.e. no contact with the environment), can be rewritten as:

τmot = L(q)T
τj(q, q̇, q̈) =Γd(θ , θ̇ , θ̈) , (1)

where τmot is the vector of motor torques and τj ∈ Rn j is
the vector of joint torques, which is typically known for
articulated robots [27]. The matrix L, with Li, j =

∂qi
∂θ j

, is the
motor to joint differential matrix [28]. Γd takes into consid-
eration all the dynamic effects, including the nonlinearities in
the tendon transmission. Because of these nonlinearities, the
dynamic model of the robot mapping the motor values to the
motor torque values is build by means of feedforward Artifi-
cial Neural Networks (ANN). Due to the small accelerations
usually required in robotic surgery, in this work we assume
that the motor torques only depend on the motor positions
and velocities, meaning τmot = τmot(θ , θ̇), and, therefore,



ANN are used to find the mapping
[
θ θ̇

]
→ Γ̃d. It thus

results that the control problem can be formulated as a
function of the motor positions, velocities, and accelerations,
which can be directly measured and controlled. In this work,
the vector of controllable motor positions are defined by
θ =

[
θR θe1 θe2 θW θ j1

]
, corresponding to the robot

joints described in II-A.

III. METHOD

In this Section we describe the proposed approach for
solving the optimal control problem.

A. Model Predictive Control

Model predictive control consists in formulating an opti-
mal problem with a cost function to be minimized over a
finite prediction horizon, with respect to the control inputs.
Once a solution is found, only the first control action is
executed and the procedure is repeated by shifting the
horizon forward. The existence of the horizon allows to take
into consideration the evolution of the desired cost function,
of the constraints, of the system states.

Since the control interface of the Micro-IGES robot
accepts desired positions, in this work we formulate the
tracking problem in terms of a cost function minimizing the
error between the desired Cartesian pose and the current one.
Moreover, only the 3D robot Cartesian position is considered.

In order to ensure safety conditions, constraints on joint
positions, velocities, accelerations, and torques can be im-
posed. Due to these limitations, the desired Cartesian po-
sition may not be achieved, leading to a deformation of
the followed path. To reduce this issue, a scaling factor
s can be introduced [15]. Considering a trajectory defined
by a curvilinear abscissa ξ (t) as Pd(ξ ), starting from the
current time t = tk, the evolution of the desired position can
be described by Pd(tk+1) = Pd(tk) +

∂Pd
∂ξ

∂ξ

∂ t ∆t = Pd(tk) +

sk∆Pd(tk). The scaling factor sk =
∂ξ

∂ t allows to reduce the
desired rate of change of the path (which equates to a dilation
of the execution time execution), without modifying the path
itself. As a matter of fact, at each time instant ξ is computed
as ξk+1 = ξk + sk∆t, where ∆t is the sampling time.

The optimal control problem is then formulated as:

min
θ̈0,...θ̈N−1

s1...sN
σ1...σN

1
2

N

∑
k=1
||Pk(θk)−Pd,k− sk∆Pd,k||2Wp

+Ws(sre f − sk)
2 + ||Γ̃d,k||2Wt + ||θ̈k−1||

2
Wa

+ ||σk||2Wσ

(2a)

s.t.
[

θ̇k
θ̈k

]
=

[
0 1
0 0

][
θk
θ̇k

]
+

[
0
1

]
θ̈k (2b)

θm ≤ θk ≤ θM (2c)

θ̇m ≤ θ̇k ≤ θ̇M (2d)

θ̈m ≤ θ̈k−1 ≤ θ̈M (2e)

τmot,m−σk ≤ Γ̃d,k(θk, θ̇k)≤ τmot,M +σk (2f)
0≤ sk ≤ 1 (2g)
0≤ σk (2h)

where N is the number of timesteps in the prediction horizon,
Γ̃d is the vector of learned dynamic torques (as described in
II-B), the subscripts m, M indicate lower and upper bounds,
and Wp,Ws,Wt,Wa,Wσ are the weights for each component
of the cost function. Due to possible infeasibilities, some
slack variables σ are also added in the torque constraints
(2f). This allows the bounds to be relaxed, if necessary. sre f
is a user-defined reference scaling factor, which is generally
set to 1. In order to solve the nonlinear MPC problem, the
fast nonlinear MPC ACADO toolkit [29] has been used. Even
though the robot states are θ =

[
θR θe1 θe2 θW θ j1

]
∈

R5, the torque vector Γ̃d is a six-dimensional-vector, since it
includes also the torque for the second jaw.

B. Torque Linearization

The dynamic constraints in (2f) are highly nonlinear, as
it is computed by means of an Artificial Neural Network
(ANN) as described in II-B. In order to have a more robust
model estimation, less affected by possible outliers in the
data, the method proposed in [30] is employed in this work
to learn the mapping from

[
θ θ̇

]
→ Γ̃d.

Since ACADO toolkit is a symbolic solver, it would
require adding this constraint in an analytical form. In prin-
ciple, this would be possible since the network architecture
(number of layers and nodes) and the activation functions
are all known. However, for large ANNs, the computational
effort due to the large number of operations ACADO needs to
perform to obtain the network output and then to formulate
the whole MPC in a symbolic form, becomes very high.
Because of this, ACADO toolkit takes a very long time to
generate the MPC code. Therefore, the following simplifica-
tion is adopted in order to overcome this issue.

At each time instant t = tk, the dynamic torques of the
system can be linearized as:

Γ̃d,k ' Γ̃d,k−1 +Mp,k(θk−θk−1)+Mv,k(θ̇k− θ̇k−1) , (3)

where Mp,k = ∂ Γ̃d
∂θ

∣∣∣
k−1

, Mv,k = ∂ Γ̃d
∂ θ̇

∣∣∣
k−1

, for k = 0...N.

These matrices can be analytically computed by exploiting
the cascade structure of a feedforward ANN. In practice The
final derivative of the network output with respect to inputs
can be calculated iteratively by applying the chain rule to
the derivatives of each layer. For more details refer to Ap-
pendix I. Those values are functions of the motor states and
control variables, and, as such, change over time. However,
by expressing them as a function of the motor states and
control at the instant precedent to the current prediction hori-
zon (k = 0), they can be considered constant within the pre-
diction horizon, resulting in Γ̃d,k−1 = Γ̃d,−1 = Γ̃d(θ−1, θ̇−1),
Mp,k = Mp,0 =

∂ Γ̃d
∂θ

∣∣∣
−1

, Mv,k = Mv,0 =
∂ Γ̃d
∂ θ̇

∣∣∣
−1

. θ−1 and θ̇−1

represent, respectively, the current motors’ positions and
velocities.

The dynamic constraint can then be rewritten as
τ̂m ≤Mp,0θk +Mv,0θ̇k ≤ τ̂M, with τ̂m(M) = τmot,m(M)−

Γ̃d,−1 +Mp,0θ−1 +Mv,0θ̇−1 .
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IV. EXPERIMENTAL SETTINGS AND RESULTS

In this Section we present the results for modelling the
dynamics of the Micro-IGES robot along with the results
for the control, both in a simulated environment and in real
experiments.

A. Micro-IGES Dynamic Model

In order to build the dynamic model of the Micro-IGES
Γ̃d, feedforward neural networks are used. To have better
results we design 6 independent networks, one for each
torque component. In this work, each network has the same

Motor RMSE
i Train Test Validation
1 0.028 0.028 0.029
2 0.063 0.065 0.064
3 0.037 0.037 0.039
4 0.040 0.041 0.040
5 0.049 0.048 0.049
6 0.039 0.039 0.038

TABLE I: RMSE (in mNm) between the learned torque
models of each motor and the real collected data for the
Micro-IGES robot on the different datasets.

structure consisting of 2 hidden layers with 10 and 30
neurons each. However, different structures for each network
could have been used too. The input of each network is
the 10-dimensional vector of motor positions and velocities[
θ θ̇

]
and the output of each ANN is the torque value

of each single motor. In order to limit the value of the
network output, the activation function of each output layer
has been set to be a sigmoid function. This allows to restrict
the network estimated values within the motors maximum
allowances of ±4.3 mNm. This consideration prevents the
ANN from predicting values that are clearly wrong due to a
poor extrapolation.

For the data acquisition, the actual robot is commanded to
move along a circular path of 15 mm in radius, controlling
only the x,y Cartesian components (expressed with respect
to the robot base frame) while keeping the z component
constant. The path is discretized in 55 points. In order to
collect a richer dataset, at each point each joint combination
is then excited. This consists in exciting the joints with
a sinusoidal motion with an amplitude of 5◦. From the
motor to joint mapping, the corresponding motor positions
are computed. Each joint can have a state 0 (still) or 1
(moving). Consequently, for each Cartesian point, 25 joint
combinations are obtained. In total 17442 data points have
been collected. Figure 3 shows the commanded motor values
for the data acquisition. To learn the dynamic model, the
dataset is divided into a training (75%), validation (15%),
and test (10%) sets. The Root Mean Squared Errors (RMSE)
between the acquired data and the learned models are shown
in Table I, whereas Figure 4 shows the results for the learned
model on a subset of the training set.

B. Motion Control

1) Simulation Results: The proposed control approach is
based on the MPC formulation in (2) where the computed
dynamic model of the Micro-IGES robot has been employed
to impose the torque constraints while performing trajectory
tracking, as it would be in case of tumor resection. VREP
[31] simulator has been used for this purpose. The path to
follow is a circle of 15mm in radius (same as the one used
for the data acquisition), however, for the control also the z
component is specified. The robot needs to track the circle
while keeping z constant, with respect to the robot base
frame. The motion task is thus specified as:

Pd =
[
r cos(α) r sin(α) z̃

]T

α = α f ξ , ξ (t) =
t
T

,
(4)

where z̃ = 0.0514 m, α f = 4π (the robot makes two
loops), and T is the desired period of the motion. A
first order polynomial is chosen for σ since the control
problem is directly solved at the position level, and,
consequently, no condition on the Cartesian velocity or
acceleration are imposed. The sampling time has been set
to 10ms and 10 steps are used for the prediction horizon
of the MPC. The motor positions are bounded between
±
[
280 55 47 74 74

]
rad, whereas the velocity,



TABLE II: Different path tracking tests have been run in simulation to validate the framework. Here T,Tact are the desired
and the actual motion times; τM(m), θ̇M(m), θ̈M(m) are the motor torque, velocities, and acceleration limits (all set equal
for each motor); |εP|max, |τ|max, |εlin|max are the maximum absolute position error, maximum absolute torque, and maximum
absolute torque linearization error; s̄ is the average scaling factor.

Test T (s) Tact(s) τM(m)(mNm) θ̇M(m)(rad/s) θ̈M(m)(rad/s2) |εP|max(mm) |τ|max(mNm) sref s̄ |εlin|max(mNm)
x y z

1 30 32.1 1 (-1) 10 (-10) 10 (-10) 0.5 0.8 1.6 0.949 1 0.934 0.084
2 30 31.6 1 (-1) 100 (-100) 100 (-100) 0.6 0.6 2.0 1.0004 1 0.949 0.038
3 30 31.6 0.5 (-0.5) 100 (-100) 100 (-100) 0.7 0.7 2.3 0.503 1 0.948 0.054
4 30 31.6 0.5 (-0.5) 10 (-10) 10 (-10) 2.0 2.1 3.2 0.530 1 0.949 0.024
5 30 36.3 0.5 (-0.5) 10 (-10) 10 (-10) 0.7 1.3 2.0 0.501 0.85 0.827 0.049
6 15 20.9 0.5 (-0.5) 10 (-10) 10 (-10) 1.8 1.2 2.0 0.507 0.85 0.718 0.124
7 15 18.5 0.5 (-0.5) 10 (-10) 10 (-10) 1.8 2.1 1.9 0.538 1 0.811 0.063
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Fig. 5: Simulation results for the different tests. The dashed black lines are the imposed motor limits. Accelerations for Test
2 and 3 fall outside the shown bounds simply because their bounds are set to 100 rad/s2 (see Table II).

acceleration, and torque bounds have been set to different
values to assess the capabilities of the control framework.
The bounds on the motor positions are a consequence of
the motor to joint mapping. As a matter of fact, due to the
routing of the tendons around the capstan, the motors may
need to complete more than one full turn in order for the

joints to reach their limits.

To validate the framework, different tests have
been run. The weights in the MPC cost function
have been set to Wp = diag([108 108 108]),
Ws = 10, Wt = diag([102 102 102 102 102 102]),
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Wa = diag([10−2 10−2 10−2 10−2 10−2]), Wσ =
diag([106 106 106 106 106 106]) and they have not
been changed in each test. Table II reports the different
setups and the results for each test. Figure 5 shows the
results both for the motor values (Figure 5a) and the
Cartesian position errors (Figure 5b) for each test.

Due to the scaling factor, each motion lasts longer than
the specified period T . This is the cost to pay in order
to satisfy at best the imposed constraints. For each test
the motor positions, velocities, and accelerations are always
within the imposed bounds. The bounds on the torque,
instead, are sometimes relaxed due to the presence of the
slack variables as discussed in Section III-A. Smaller scaling
factors, however, achieved by means of smaller s̃, allow to
reduce the bound relaxations.

Regarding the tracking accuracy, good results are obtained
in each test. The errors are generally small (in the order of
few millimeters or even less). Larger errors occur in the
Test 4. This is because the system undergoes simultaneous
saturations of multiple joints and the optimal scaling factor
is not enough to allow the system to reduce the motor
excitations. Reducing the scaling factor by setting s̃ to 0.85
allows to have better performances. Also having larger
acceleration bounds may help, since it reduces the risk of
motor saturation. Achieving large accelerations, however,
has the disadvantage of increasing the torque linearization
errors. Nonetheless, in the tests run the linearized torque is
always close to the expected ANN output. Higher accuracy
can be achieved by increasing the weights in Wp. Yet, this
may increase the bounds violations, especially when tight
bounds are imposed. Optimal weight tuning, such as the
recent work by Mehndiratta et al. [32], may be useful to
solve this issue, even though it is a challenging task which
requires more in-depth studies.

2) Experimental Results: The proposed control scheme
has also been tested on the real system. For the real world
examples, two exemplary tests were run: Test 2 and Test 5.
These two tests were chosen because they allowed to exam-
ine the control approach under different bound conditions.
The robot was commanded with the motor values computed
through the MPC control strategy resulting from Test 2 and
Test 5 from Table II. Each test was repeated 5 times. Due
to inaccuracies in the kinematic model the correct execution
of the desired trajectory is not guaranteed, and, therefore,
results are not reported. However, improving the kinematic
model was out of the scope of this work, where we were
only focusing on assessing the capabilities of the framework
to satisfy the imposed constraints. Another work is being
carried out in order to improve the kinematic accuracy of
the robot through online model adaptation.

Table III and Figure 6 show the results for the tests
considered. The motor positions, velocities, and accelerations
are guaranteed to be within the bounds, being the same as in
the simulation case. In both cases, the torque linearization
proved effective, with the linearized torque models being
almost coincident with the actual ANN models. Moreover,
for the Test 2, the learned ANN models behave quite well,
being close to the measured values for almost all motors
(the Elbow 2 motor is the one where the model perfor-
mances are the worst) with the maximum RMSE between
the ANN torques and the actual measured torques be-
ing

[
0.256 0.452 0.505 0.330 0.230 0.212

]
mNm.

In addition, also the real motor torques reside within the
imposed bounds.

With regards to Test 5, instead, the maximum RMSE are[
0.195 0.435 0.408 0.363 0.143 0.185

]
mNm. Even

though the ANN models are inside the bounds, due to the



|τ|max(mNm)
|τ1|max |τ2|max |τ3|max |τ4|max |τ5|max |τ6|max

Test 2 0.108 0.574 0.581 0.594 0.296 0.427
Test 5 0.141 0.844 0.658 0.637 0.414 0.397

TABLE III: Maximum absolute values of the motor torques
for each experimental test.

model inaccuracies, the actual torques slightly violate the
constraints, with the maximum absolute torque values shown
in Table III. This means that more accurate models are still
needed. Yet, if the ANN models are accurate enough, then
constraints satisfaction can be guaranteed.

V. CONCLUSIONS

In conclusions, the proposed framework allows to easily
impose the learned dynamic model as a constraint in an
MPC formulation for robot trajectory tracking. Simulation
results showed that the framework proved successful in
allowing the robot to accurately follow a desired trajectory
while satisfying the imposed bounds both on the kinematics
and dynamics, also under different bound ranges. This is
important in application scenarios like minimally invasive
surgery, where high motion accuracy and safety must be
guaranteed. However, one of the limitations resides in the
inaccuracy of the learned model. Because of that, constraint
satisfaction may not be guaranteed on the real system if
the learned model is not accurate enough. Online adaptive
learning techniques will be used in future work to solve this
issue, along with a more probabilistic approach to estimate
the model uncertainty. Moreover, in this work the weights
in the MPC cost function have been set by the authors
heuristically. However, optimal weight tuning may improve
the efficacy of the proposed approach, improving accuracy
and bound satisfaction. This, however, is a challenging task
which will also be addressed in future work. Finally, in this
work the path to follow was supposed to be fixed. However,
the framework can be generalized also to time changing
paths, as long as some future estimates are available, for
instance by modelling the tissue deformation as in [17].

APPENDIX I
ARTIFICIAL NEURAL NETWORK COMPUTATION

Artificial Neural Networks (ANN) are able to approximate
any suitably smooth function, given enough hidden layers
[33]. Feedforward networks consist of different layers of
neurons. The first layer is the input layer, the last one is the
output layer, and all the others in between are called hidden
layers. Each layer has several neurons, each one receiving
inputs from the neurons of the previous layer and sending an
output to the neurons of the following layer. Given a dataset
of input points x ∈ Rnin and output points y ∈ Rnout , and a
network with one input, one hidden, and one output layer,
nin inputs, M nodes in the hidden layer, and nout outputs,
then approximated mapping y∼ f(x) for each output of the

network is computed as:

yk(x,w) = h̃
( M

∑
i=1

w(2)
k, j h

( nin

∑
i=1

w(1)
i, j xi +w(1)

j,0

)
+w(2)

k,0

)
, (5)

where h̃,h are the activation functions, and w are the network
weights.

Due to the parametric nature of ANN, it is easily possi-
ble to compute the derivatives of the network output with
respect to the network weights through back-propagation.
Additionally, it is also possible to compute in a similar way
the derivatives of the output with respect to the inputs. For
each network layer, with input xi and output yi, the derivative
of the output with respect to the input can be computed as:

∂yi
∂xi

=
∂yi
∂hi

∂hi
∂zi

∂zi
∂xi

, (6)

where zi = Wixi +Wi,0, with Wi being the matrix of weights
of the layer and Wi,0 the biases, and hi the activation
function. The first two partial derivatives can be easily
computed analytically once the activation function is chosen
(for instance sigmoid), and ∂zi

∂xi
= Wi. Based on the structure

of the neural network as a cascade of layers, the final
derivative of the network output with respect to the network
inputs can be calculated iteratively by applying the chain rule
to the derivatives of each layer.
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