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Abstract— Model learning is a crucial aspect of robotics as
it enables the use of traditional and consolidated model-based
controllers to perform desired motion tasks. However, due to the
increasing complexity of robotic structures, modelling robots is
becoming more and more challenging, and analytical models
are very difficult to build, particularly for redundant robots.
Machine learning approaches have shown great capabilities
in learning complex mapping and have widely been used in
robot model learning and control. Generally, inverse kinematics
is learned, directly obtaining the desired control commands
given a desired task. However, learning forward kinematics
is simpler and allows the computation of the robot Jacobian
and enables the exploitation of the optimality of controllers.
Nevertheless, typical learning methods have no knowledge about
the differential relationship between the position and velocity
mappings. In this work, we present two novel loss functions
to train feedforward Artificial Neural network (ANN) which
incorporate this information in learning the forward kinematic
model of robotic structures, and carry out a comparison with
standard ANN training using position data only. Simulation
results show that incorporating the knowledge of the velocity
mapping improves the suitability of the learnt model for control
tasks.

I. INTRODUCTION

Kinematic modelling is an important aspect of robotics,
as it produces a mapping from joint space control variables
to task space variables, and vice versa. However, with
advancing technology and requirements, robot models are
becoming more and more complex, thus obtaining accurate
kinematic models is becoming increasingly challenging.

Machine learning techniques have become very popular
and effective in dealing with complex physical models, and
they have been widely used in robotics for modelling and
control [1]. Machine learning approaches for control can be
mainly divided into model-free and model-based. Model-free
approaches, such as those used in Reinforcement Learning,
do not require any knowledge about the robot model, instead
learning policies based on some reward function [2], [3].
Reinforcement learning, however, is less data-efficient than
supervised learning, requires an appropriate reward function
definition, and may need to be retrained for new tasks [4].

On the other hand, model-based techniques are used to
create an approximation of the robot model, without the
need of analytical mapping, which may be hard to obtain
due to the complexity of the system. The model can then
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be employed to formulate the control as an optimization
problem [5] and exploit the efficacy of standard and consol-
idated control techniques. Different works have focused on
model learning for robotics, such as in [6], where a Gaussian
mixture model was used to build the kinematic model of a
robot catheter, or [7], where neural networks were employed
to learn the inverse kinematics of a soft robot directly.

The vast majority of research has been focused on learning
the inverse kinematics of robotic structures, as in [8]–[10],
computing the control variables directly from task space vari-
ables. However, the technique of learning inverse kinematics
has a number of drawbacks:

• it represents an anticausal relationship, with usually a
non unique solution [11], as it could be for redundant
robots, and it makes this mapping complicated to obtain;

• it does not allow the exploitation of redundancy in
highly articulated robots and finding optimal control
variables [12];

• it requires information about the robot pose, which it
might be unavailable during use due to the lack of
sensors (as it could be in robotic surgery).

Learning the forward kinematics of the robot, instead,
can be beneficial to overcome these limitations. In [13],
[14] feedforward Artificial Neural Networks (ANNs) were
used to learn the forward kinematics of a robotic system
and analytical derivation is carried out to compute the robot
Jacobian for control purposes. A similar approach is used in
[15], [16] where the derivation of the Jacobian is exploited
to solve the redundancy problem by means of Null Space
Projection [17].

The main disadvantage of learning the forward kinematics
is that the velocity mapping, which is generally used for con-
trol, is obtained by differentiating the learned forward model.
This may lead to inaccurate approximations, as the learning
techniques have no knowledge about the differential rela-
tionship between position and velocity mappings. Recently,
Lagrangian Neural Networks [18], [19] have been presented
as architectures that are capable of learning the Lagrangian
dynamics of a system by incorporating derivatives of the
neural network model as part of the loss function used during
learning. This technique embeds physical differential rela-
tionships in the model, and could be an appealing research
direction for kinematic modelling.

Since neural networks have shown great capabilities in
modelling complex functions [20] and in robot control [21]–
[23], the contribution of this work is two-fold:

• proposing two novel loss functions to learn the forward



kinematics model of robot manipulators, which incor-
porate physical differential relationships during training
to additionally learn velocity mapping;

• comparing the capabilities of the proposed training
strategies and of standard training in modelling the
forward kinematics of robot manipulators and evaluate
their performances in robot kinematic control.

Even though our focus is on feedforward neural networks,
a similar approach can be tested on other machine learning
techniques, as long as the derivative of the model can be
computed (e.g. in Gaussian Process Regression).

It is worth mentioning that the focus of this work is only
on learning robots’ forward kinematics, yet generalization
to the inverse kinematics is also being investigated.
Additionally, the proposed strategies are here validated
on serial-link robotic manipulators because it is possible
to easily simulate a ground truth model, and then better
estimate the performances of the proposed approach.

The paper is structured as follows:
Section II describes robot kinematic modelling, control,

and neural networks. Section III presents the proposed train-
ing strategies, and the experiments performed to test them;
Section IV shows the modelling and control results using
the proposed training strategies, and, finally conclusions are
drawn in Section V.

II. PROBLEM FORMULATION

In this section, a brief introduction of robot kinematic
modelling and control, as well as an introduction to neural
networks is presented.

A. Robot Kinematic Modelling

Robot kinematic modelling is typically described in the
case of rigid-body robots, where forward kinematics refers to
the mapping from joint space configuration q ∈ Rnj , where
the robot has nj actuated joints, to task space [24]. However,
in general, robot kinematic modelling finds the relationship
between positional control variables θ ∈ Rnj (e.g. motor
positions), to the task space pose of the end-effector T ∈
R4×4, which is generally expressed with respect to a fixed
reference frame. The end-effector’s pose is a function of

the positional control variables, T (θ) =

[
R(θ) P (θ)
0 1

]
,

and describes the end-effector’s position P (θ) ∈ R3 and
orientation R(θ) ∈ R3×3.

In this work, we consider task space position only, defined
as:

P (θ) = FK(θ). (1)

The derivative of equation (1) with respect to time yields
the forward kinematic mapping for velocity:

Ṗ (θ, θ̇) = J(θ)θ̇, (2)

where J(θ) = ∂P
∂θ is the Jacobian from θ to P , and is an

3× nj matrix.

B. Robot Kinematic Control

For control purposes, having a model of the robotic system
allows properties of traditional optimal controllers to be
exploited, and thus guarantee stability of the system. In the
majority of control tasks, the robot must find the optimal
control variable space trajectory to achieve a desired end
effector trajectory - something that can be achieved using
inverse kinematics. The goal of the inverse kinematics is to
compute the required control variables for the end-effector to
follow a desired Cartesian trajectory, defined by [P̃ (t), ˙̃P (t)].

At each timestep t, the optimal control variables can be
computed as:

θ∗t = arg min
θ

1

2
||P̃ t − P t||2 , (3)

where P̃ t is the desired position at the instant t, and
P t = FK(θt) is the end-effector position computed with
the forward kinematic model of the robot.

Generally, a simplification of this is to solve the control
problem at the velocity level, carrying out a local lineariza-
tion of the kinematics, as:

θ̇
∗
t = arg min

θ̇

1

2
|| ˙̃P t − Jθ̇||2

and θt+1 = θt + θ̇
∗
t ∆t ,

(4)

where J is the Jacobian of the forward kinematic model, and
∆t is the motion sampling time. For redundant manipulators,
the minimum norm solution is usually chosen, which can be
computed as:

θ̇
∗
t = arg min

θ̇

1

2
||θ̇||2

s.t ˙̃P t = Ĵ θ̇ .

(5)

The solution of both (4) and (5) can be directly computed
by means of the Jacobian pseudoinverse J† as:

θ̇
∗

= J†Ṗ . (6)

In case of redundant robots, however, the pseudoinverse
only allows one particular solution to be found. The general
solution can be expressed as a combination of these min-
imum control variable velocities θ̇

∗
and the component of

the control variable velocities that are in the null-space of
the robot Nθ̇0:

θ̇ = θ̇
∗

+Nθ̇0, (7)

where N ∈ Rnj×nj is the null space projector. N can be
calculated from the Jacobian and its pseudo-inverse:

N = I − J†J . (8)

C. Feedforward Artificial Neural Networks

Given a dataset of input points x ∈ Rnin and output
points y ∈ Rnout , the goal of regression is to find best the
relationship between the two, meaning

y ∼ f(x) (9)



where f(·) can be any linear or nonlinear function. A very
popular approach for nonlinear regression is the use of
feedforward artificial neural networks (ANNs). It has been
shown that neural networks can be regarded to as universal
approximators, meaning they can model any suitably smooth
function, given enough hidden units, to any desired level of
accuracy [25], [26]. They are thus capable of representing
complicated behaviours, without the need of any mathemat-
ical or physical prior model.

Feedforward networks consist of different layers of neu-
rons. The first layer is the input layer, the last one is the
output layer, and all the others in between are called hidden
layers. Each layer has several neurons, each one receiving
inputs from the neurons of the previous layer and sending an
output to the neurons of the following layer. The final output
of the neural network is then a nonlinear function of the input
values, controlled by the nodes’ weights. These weights can
be retrieved by minimizing a desired cost function [27].

A great advantage of ANN compared to other machine
learning approaches is their parametric and layered structure.
It is easily possible to compute the derivatives of the network
output with respect to the network weights through back-
propagation. Additionally, it is also possible to compute in
a similar way the derivatives of the output with respect to
the inputs. This will be very useful for solving the inverse
kinematics of the robot as shown in the following sections.

For each network layer, with input xi and output yi, the
derivative of the output with respect to the input can be
computed as

∂yi

∂xi
=
∂yi

∂hi

∂hi

∂zi

∂zi
∂xi

, (10)

where zi = W ixi + W i,0, with W i being the matrix
of weights of the layer and W i,0 the biases, and hi the
activation function. The first two partial derivatives can be
easily computed analytically once the activation function is
chosen (for instance sigmoid), and ∂zi

∂xi
= W i. Because the

total network is a cascade of layers, the final derivative of
the network output with respect to the network inputs can be
calculated analytically and iteratively by applying the chain
rule to the derivatives of each layer.

III. METHOD

In this section, we present the proposed training strategies
to learn a forward kinematic model of a robot and the
experiments carried out to test each strategy.

A. Robot Kinematic Modelling with Neural Networks

In order to optimally control a robotic system using
the techniques described in section II-B, both the forward
kinematics of a robot should be computed, obtaining both a
mapping from the control variables to the tip position, and
information about the robot Jacobian. These are then used to
perform inverse kinematics at velocity level, which can be
numerically integrated to produce optimal control variable
trajectories for the control problem. Since the control strategy
is generally formulated at the velocity level as in (4) and (5),
one possibility would be to use one single network to learn

the Jacobian. However, information about the expected end-
effector’s position is also needed for control, especially in
the case where no external sensors can be used for feed-
back compensation. Another approach would be to use two
different networks [28]; one learning the mapping to the
end-effector’s position and one to the Jacobian, but this
solution would be time consuming and suboptimal, as the
two networks would not share any information about the
dependencies between the two mappings. Furthermore, if an
ANN is used to learn the inverse mapping directly, the robot
end-effector’s position needs to be used as input to the ANN.
In many robotics applications, such as in surgery, measuring
the end-effector’s position is not possible, thus learning the
inverse mapping would not be applicable.

Given a dataset of control variable positions and velocities
and task space positions and velocities, D = {θ, θ̇,P , Ṗ }, a
neural network with weights W , can be used to approximate
the forward kinematic model of a robot:

P̂ = NN(θ,W ). (11)

In the traditional, simplest case, this network is trained to
minimise a mean squared error loss between predicted task
space position and the actual task space position of the robot:

L1 =
1

N

N∑
i=1

||P i − P̂ i||22. (12)

However, the neural network is differentiable with respect
to its input, θ, so an estimate of the Jacobian of the robot,
Ĵ(θ,W ) can also be obtained, and used to estimate the task
space velocity of the robot ˆ̇P = Ĵ θ̇. A second loss term,
mean squared error between predicted task space velocity
and the actual task space velocity of the robot can then be
calculated:

L2 =
1

N

N∑
i=1

||Ṗ i − ˆ̇P i||22. (13)

This additional task space velocity loss term allows the
neural network to inherently learn the differential relationship
of the forward kinematic model it is approximating.

Further information to the loss function can be obtained by
exploiting the inverse kinematics mapping (6) and the ground
measured control variables velocities θ̇. The minimum norm
expected control velocity can be computed as ˆ̇θ = Ĵ

†
Ṗ . This

allows the formulation of the error between the minimum
control variable velocities calculated from the predicted task
space velocities and the minimum control variable velocities
calculated from the actual task space velocities as:

eθ̇∗ = ˆ̇θ − Ĵ
†
Ĵ θ̇ = Ĵ

†
Ṗ − Ĵ

† ˆ̇P . (14)

This is the projection of the predicted task space velocity
error into the control variable space, Ĵ

†
(Ṗ − ˆ̇P ), and gives

a third loss term:

L3 =
1

N

N∑
i=1

||Ĵ
†
(Ṗ i − ˆ̇P i)||22. (15)



We hypothesise that this projected velocity loss term
provides the forward kinematic model with knowledge of the
inverse kinematic velocity relationship of the pseudo-inverse
of the Jacobian.

The effects of the three loss terms presented in (12), (13)
and (15) are investigated in this paper. It is worth clarifying
that the information on the Jacobian in (13) and (15) is
directly added during training by analytical derivation of the
network model.

B. Model Training Strategies

The loss function has direct effects on the modelling
capabilities of the ANN, as it is responsible of the optimal
tuning of the network wights. Generally, ANNs for robot
modelling are trained only considering data on the control
variables’ positions and on the end-effector’s position to
directly learn either the forward or the inverse position
mapping. This strategy, however, neglects useful information
about the velocity mapping, which is instead highly benefi-
cial for robot kinematic control.

For this purpose, we compare three strategies to train an
ANN for forward kinematic robot model, using combinations
of the three loss terms presented in Section II. The three
training strategies are as follows:

1) Position loss (P Loss): The loss used in this training
strategy is traditional position loss only,

LP = L1. (16)

Important to note is that although the model is trained on
position data only, the Jacobian of the neural network can
still be calculated to predict task space velocity during eval-
uation. Yet, the Jacobian is only used for control purposes
and not exploited in the training.

2) Position and velocity loss (PV Loss): This training
strategy uses a weighted combination of the position and
velocity loss terms, allowing the neural network to learn both
the forward kinematic positional mapping and the velocity
mapping:

LPV = w1L1 + w2L2. (17)

For simplicity, in this work we use w1 = w2 = 0.5.
3) Position, velocity, and inverse velocity loss (PVI Loss):

This strategy combines the previous loss terms with inverse
velocity loss to allow the neural network to inherently learn
the robot’s inverse kinematic velocity relationship:

LPV I = w3L1 + w4L2 + w5L3. (18)

In this work, w3 = w4 = 0.45, w5 = 0.1 from empirical
trials.

IV. RESULTS AND DISCUSSION

Two sets of experiments were completed in order to
test the performance of each training strategy: robot model
learning and robot control.

A. Robot Model Learning

In this work we tested the three proposed cost functions
to learn the kinematic models of three different robotic
structures (Figure 1): a 2DOF (RR) planar robot, a 4DOF
(PRRR) robot, a 7DOF robot with all revolute joints. For
the 2DOF and the 4DOF each link is 0.5 m long, and for
the 7DOF all links are 0.5 m long, except for the last one
being 0.125 m long.

In many robotic scenarios, the model of the robot is
completely unknown. Therefore, the only feasible way to
collect data for the learning is by controlling the robot at the
joint level, commanding desired joint motions. In this work,
the control variables are excited sinusoidally, with different
combinations of frequencies, and such that their motion
spans the whole joint range. The ground truth simulated robot
models are used to collect the data of the corresponding end-
effector position. In total 24000 data points were collected
for the 2DOF robot, 48000 for the 4DOF, and 111486 for the
7DOF. It is worth noticing that the data are collected such to
not explore the whole workspace, so as to also evaluate each
strategy’s capability of generalizing to unseen data points.

In order to train the networks with PV Loss and
PV I Loss, data for the control variable and end-effector
velocity need to be collected too. These data can be retrieved
by taking the time derivative of the data on the control
variable and end-effector positions. In a real scenario, noise
in the measurements can be accentuated by the derivation.
However, both PV Loss and PV I Loss need the velocity
data only for the offline training an not during the real time
control, therefore noise impact can be effectively reduced
with filtering. For this reason, the data for the training are
here considered to be noise free.

For learning each robot model, the same datasets and the
same optimization algorithm are used for each method. In all
cases, Pytorch and ADAM optimizer [29] were used, with
a learning rate of 10−3 and a maximum number of epochs
set to 20 · 103 for the 2DOF and 4DOF, and 100 · 103 for
the 7DOF. Moreover, for the 2DOF and the 4DOF the ANN
has one single hidden layer with 30 neurons, whereas for
the 7DOF it has 4 hidden layers with 60 neurons each. In
all cases, however, sigmoid activation function is used to
ensure continuity of the derivatives.

Even though the data are collected with continuous mo-
tion, for the offline model learning the data points are
randomly shuffled and split in a training and test set (80%-
20%). Table I reports the Root Mean Squared Errors (RMSE)
in the training and test sets for each robot model and for each
proposed cost function.

For both the 2 and 4 DOF robot models, it can be no-
ticed that including information about the velocity mapping
results in lower errors at the velocity level (RMSEṖ ),
without much deterioration of the learning at position level
(RMSEP ). For the 7 DOF, instead, all learning strategies
perform similarly at both position and velocity level.
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Fig. 1: The 2DOF, 4DOF, 7DOF robot models used for testing the three training strategies. P and R stand for prismatic and
revolute joint respectively.
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Fig. 2: An exemplary comparison for the 2DOF robot
between the data points used to train the network and the
desired paths for the control tests. The path covers both
explored and unexplored datapoints.

B. Robot Control Tests

The models learnt through the proposed learning strategies
are here tested to evaluate their performances in controlling
the three robots to follow various desired paths. For each
robot 5 tests are conducted to follow polygons with 3, 4, 5,
6, and 10 vertices, randomly selected in the 3D Cartesian
space. Each side of the polygon is linearly discretized in
100 points and the control law defined in II-B is employed to
compute the control variable commands to reach each desired
point. Figure 2 shows an exemplary path for the 2DOF
robot compared to the data used for training the network. As
described in IV-A, the desired paths cover both explored and
unexplored regions in the space, which is needed to evaluate
the capabilities of generalizing of the three training strategies.

Moreover, in these tests we are assuming an open-loop
control, namely no information about the actual end-effector
position is exploited in the control. In addition, bounds on the
control variable limits or self collisions are not considered in
this work, but they could be easily included in the controller
as constraints.

Figure 3 shows the tracking results for the different paths

and for the different robots with the three proposed learning
strategies, whereas Table II reports the RMSE. We evaluated
the error between the desired P̃ and the actual P end-
effector position, obtained from the ground truth simulated
model, εP = 1

Np

∑Np

n=1 ||P̃ n − P n||, with Np the total
number of points in the path.

Even though the controller achieves small errors between
the desired end-effector position and the expected one P̂ ,
both from Figure 4 and Table II it can be seen that the models
learnt with the two proposed PV Loss and PV I Loss
generally yield better tracking results. The standard P Loss
achieves better results only in few cases for the 7 DOF arm.
Overall PV Loss is the one with best performances, with
median position error values of 11.44, 17.98, 39.58 mm
for the 2 DOF, 4 DOF, 7 DOF robot respectively, compared
to 13.51, 25.35, 52.25 mm for the standard P Loss and
10.780, 21.30, 49.64 for the PV I Loss.

These results show that incorporating information about
the velocity mapping leads to better control performances
and PV Loss seems to be sufficient to improve the tracking
accuracy. PV Loss resulted in a 15.33%, 29.09%, 24.25%
overall reduction of the end-effector position error for
the 2 DOF, 4 DOF and 7 DOF robots compared
to the standard P Loss. PV I Loss, instead, yielded
20.24%, 15.96%, 5.00% improvement for each robot. One
possible reason for PV Loss outperforming the others is that
including the velocity mapping in the loss means specifying
information about the slope of the kinematic model at each
datapoint. This, in turn, would result in smoother and more
accurate kinematic model.

To assess the statistical significance of the results, we
conducted a two-tailed Student t-test on the control tests for
the 2, 4, and 7 DOF robots on the path tracking tasks. Figure
4 reports the p-values when comparing P Loss against
PV Loss, P Loss against PV I Loss, and PV Loss against
PV I Loss, given the null hypothesis that the test results
come from normal distributions with equal means with a
significance level of 5%. For both the 2 and 4 DOF, results
from P Loss and PV Loss are statistically significant and
the null hypothesis can be rejected; for the 7 DOF, instead,

TABLE I: RMSE in the training and testing datasets for each training loss: RMSEP is the error on the end-effector position
in mm, and RMSEṖ on the velocity in mm/s.

2DOF 4DOF 7DOF
RMSEP RMSEṖ RMSEP RMSEṖ MSEP RMSEṖ

Train Test Train Test Train Test Train Test Train Test Tr+ ain Test
P Loss 3.5637 3.5214 0.1647 0.1665 5.6152 5.6143 1.9013 1.9222 16.8671 17.6352 25.0870 25.3425
PV Loss 1.9494 1.9647 0.0571 0.0585 9.3696 9.4218 1.2083 1.2124 17.2337 17.8885 26.0768 26.6458
PVI Loss 2.4174 2.4286 0.0750 0.0730 6.7020 6.7656 1.0109 1.0398 18.5578 19.2329 25.2916 25.6733
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Fig. 3: Actual and desired robots’ end-effector positions for tracking the desired paths for: 3a) 2DOF robot; 3b) 4DOF robot;
3c) 7DOF robot.

TABLE II: RMSE between the desired and the actual tip position εP (in mm) for the control tasks on the different paths
defined by the number of vertices for the different robots.

2DOF 4DOF 7DOF
#Vertices P Loss PV Loss PVI Loss P Loss PV Loss PVI Loss P Loss PV Loss PVI Loss

3 14.6531 11.8384 10.7767 25.3530 16.3475 17.6197 52.2532 36.5668 38.5655
4 13.5108 11.4391 11.9525 20.6080 17.2653 24.7878 75.3516 63.0311 88.8702
5 13.1353 11.9717 11.4862 31.5394 21.6719 24.8936 32.7040 39.5821 58.4742
6 10.9540 9.0664 9.9368 28.2653 19.3334 19.9761 56.1324 46.2807 43.9248
10 13.8671 10.6835 8.9751 22.6860 17.9754 21.3022 31.8849 33.5757 49.6399
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Fig. 4: Overall results of the end-effector positioning errors
from the three learning strategies for the three different
robots on the given paths.

there is not a large statistical significance.
All the learning strategies show worse performances in the

tracking task for the 7DOF robot, due to larger modelling
inaccuracies compared to the other models.

V. CONCLUSIONS AND FUTURE WORK

In conclusion, in this work we propose and compare
three different learning startegies to train ANNs for robot
kinematic model learning. The focus has been on learning the
forward kinematics as this, opposed to learning the inverse
kinematics directly, has different advantages such as:
• does not necessarily need information about the tip posi-

tion for control purposes, which might not be available;
• allows the exploitation of the Jacobian matrix and

optimal control techniques.
The three strategies consist in using different loss functions
during the training of the ANN an we compared the standard
P Loss with the two novel losses PV Loss and PV I Loss,
that additionally include information about the froward ve-
locity mapping and inverse velocity mapping. Simulation
results on different robots and the control tests to track



various paths show that including the information about the
velocity mapping leads to better performances and smaller
tracking errors, with both PV Loss and PV I Loss having
higher tracking accuracy than P Loss.

However, further investigation is needed to better under-
stand the effect of the inverse mapping in the training. In
fact, PV Loss is the one that performs the best, showing
that just including the forward kinematic velocity mapping
is sufficient to achieve better performance.

Even though the networks were trained in a simulation
environment on noise-free data, this is not a limitation as
the position and velocity data is needed only for the offline
training, so the effect of noise can be reduced with filtering.

We believe this work could improve the kinematic mod-
elling of a range of robots, particularly those that are too
complex to model analytically. This is especially appealing
for applications where control is of huge importance, but
robot models are complicated, such as in surgical or soft
robotics. Future work will focus on investigating more thor-
oughly the effects of the proposed loss functions, including
more complex techniques for weighting each loss term, such
as adaptive weighting during training. Furthermore, addi-
tional tests on more complex real robots, where modelling is
challenging, also including the end-effector orientation, will
be performed.
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