
Date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

GlobDesOpt: A Global Optimization
Framework for Optimal Robot
Manipulator Design
FRANCESCO CURSI1,2, WEIBANG BAI1, ERIC M. YEATMAN1, AND PETAR KORMUSHEV2
1Hamlyn Centre, Imperial College London, London, UK
2Robot Intelligence Lab, Imperial College London, London, UK

Corresponding author: F. Cursi (e-mail: f.cursi@ imperial.ac.uk).

This work was partially supported by EPSRC project EP/P012779/1.

ABSTRACT Robot design is a major component in robotics, as it allows building robots capable
of performing properly in given tasks. However, designing a robot with multiple types of parameters
and constraints and defining an optimization function analytically for the robot design problem may be
intractable or even impossible. Therefore black-box optimization approaches are generally preferred.
In this work we propose GlobDesOpt, a simple-to-use open-source optimization framework for robot design
based on global optimization methods. The framework allows selecting various design parameters and
optimizing for both single and dual-arm robots. The functionalities of the framework are shown here to
optimally design a dual-arm surgical robot, comparing the different two optimization strategies.

INDEX TERMS Robot design, Global optimization, Robot kinematics

I. INTRODUCTION

PROPERLY designing robots is a time-consuming and
challenging task, which requires great expertise and

knowledge on the field of application of the system. A good
design should ensure good performance regardless of the task
that it is given, otherwise different designs should be needed
for different tasks. Thus, robotic design optimization with
consideration of different types of parameters and constraints
is of great significance and practicability.

Several measures can be employed to define an optimal
design, such as the performance in executing a desired
control task, accuracy in path tracking, and robot dexterity.
However, analytically formulating an optimization function
may be challenging or even impossible, especially for highly
complex robotic structures. For these reasons, researchers
have focused on black-box optimization methods, which do
not require a close form of the optimization function, nor
knowledge about its derivatives. For instance, Hassan et al.
[1] employed Genetic Algorithm (GA) to optimize the design
of a gripper; in [2] the optimal design of a 7DOF robot is
studied using GA and considering different kinematic and
dynamic measures; Particle Swarm Optimization (PSO) was
used in [3] to optimally design a cable-driven robot and [4]
employed Adaptive Simulated Annealing for the design of a

Jointi-1

Jointi

Jointi+1
Linki-1

Linki

ai-1

ai
xi-1

yi-1
zi-1
di θi αi

Oi-1 xi
yi
zi

Oi

FIGURE 1: Representation of the Denavit-Hartenberg pa-
rameters

concentric tube robot. Most of the works focus on the design
of robots with just one arm. However, in fields like minimally
invasive surgery, surgical robots are usually employed in a
dual-arm configuration, both at the master and slave side.
Optimally designing dual-arm robots is more challenging,
as the interaction between the two arms should be consid-
ered. Because of the dual collaboration, performance indexes
generally used for single-arm robots need to be adapted.
Lee et al. [5] propose a dual arm manipulability measure
specifically designed for multi-arm systems, and Torabi et

VOLUME 4, 2016 1

F. Cursi et al.: GlobDesOpt: A Global Optimization Framework for Optimal Robot Manipulator Design

al. [6] extended it to master-slave teloperation. Only a few
works in the literature have focused on the optimal design of
dual-arm robots, such as [7] where PSO is used to design a
dual-arm concentric-tube robot, or in [8] GA for a bi-manual
articulated robot. However, both works focus on task specific
applications.

Recently, in the field of machine learning, Bayesian Op-
timization (BO) has been gaining a lot of popularity and
proved very efficient in solving black-box optimization prob-
lems. It is considered the state-of-the-art machine learning
framework for optimization tasks in terms of data efficiency,
and has been successfully applied in engineering, machine
learning, and design [9], [10]. BO has also been widely used
in robot control to optimize control parameters and policies
[11]–[13] as it makes efficient use of data and experiments
by learning a probabilistic surrogate model of the function to
optimize, which is used for finding optimal parameters. By
exploiting the learned model, BO requires fewer interactions
(i.e., evaluations of the true objective function) than other
optimization methods [11].

Lately, in [14] a method for optimizing the design of
a single surgical robotic arm was proposed, yet the ap-
proach results to be little flexible, as it is very appli-
cation specific, and time consuming. To the best of the
authors’ knowledge, no software is available online cur-
rently to simplify the robotic optimizing design process.
We have therefore developed GlobDesOpt (available at
https://github.com/cursi36/GlobDesOpt) a Matlab package
for optimal robot design, based on three different solver
(PSO, GA, and BO).

The contribution of this manuscript is two-fold:
• providing GlobDesOpt, a simple-to-use open-source

Matlab package for optimal robot design;
• proposing two optimization strategies which can be

applied to both single and dual-arm robots, with the
dual-arm optimization including the dual-arm dexterity
measure and a safety measure to maximize the dual-arm
robot’s dexterity while reducing the risk of collisions
between the two arms.

GlobDesOpt allows selection of different design parame-
ters, easy implementation of cost functions and models for
different robotic structures. Currently, two main options are
provided to optimize the design of robots in single or dual-
arm configuration. In this work we compare the optimization
results when employing the three different solvers, along
with the optimization results when optimizing the design
of a surgical slave robot for the two arms independently or
simultaneously.

The manuscript is thus structured as follows. Section II
introduces how robot design affects the robot’s model and
performance, along with a brief introduction of BO, PSO,
and GA. Section V presents GlobDesOpt’s features and
the optimization options currently implemented. Section VI
shows the optimization results and, finally, conclusions are
drawn in Section VII.

II. PROBLEM FORMULATION
In this section, robot kinematic modelling and manipulability
measure are presented, along with a brief description of
Bayesian Optimization.

A. ROBOT KINEMATIC MODELLING
Different methods exist to describe the kinematic model of
robots, one of the most widespread being based on Denavit-
Hartenberg (DH) convention [15]. According to this method,
the transformation matrix i−1T i ∈ R4×4, relating the pose
of a link i to the preceding one, can be described by means of
4 parameters dDH,i, θDH,i, aDH,i, αDH,i and the joint angle
qi, where dDH,i is the distance between two consecutive
joints along the the current joint axis, θDH,i the tilting
between the two joints about the current joint axis, aDH,i

the link’s length, and αDH,i the angle between the two joint
axis (Figure 1). These parameters can be all stacked together
generating the so-called DH table, which consists of as many
rows as the number of joints n.

Since the end-effector’s pose of a robot is a function of the
DH parameters and of the joint values, the DH parameters
and the type of joints (which are typically revolute or pris-
matic) highly affect the performance of the robot in executing
a desired task. An optimal choice of these parameters is thus
needed to guarantee the best performance.

B. ROBOT MANIPULABILTY
One typical approach to measure the capabilities of a robotic
system is the dexterity. There exist various dexterity indices
[16] in the literature, but they are mainly derived from the
manipulability ellipsoid. An ellipsoid is defined by a core
matrix H as zT (H)−1z ≤ 1 and the singular values of
the core matrix H equal the square of the semiaxes’ length
of the ellipsoid, whereas its determinant can be shown to be
proportional to the ellipsoid volume.

For kinematic purposes, it is common to refer to the
kinematic manipulability ellipsoid [17], which results by
considering the set of joint velocities such that q̇Tq ≤ 1. By
considering that the tip twist is computed as v = Jq̇ ∈ R6,
with J the robot Jacobian matrix, it turns out that the kine-
matic manipulability ellipsoid is deined as:

vT (J(q)JT (q))−1v ≤ 1 , (1)

with H(q) = J(q)JT (q). When the robot approaches a
singular configuration, the ellipsoid deforms to a line or a
point (i.e. null volume ellipsoid), since at least one of the
semiaxes reduces to zero. In this work we will be using the
standard kinematic manipulability measure:

δ(q) =
√
det(H(q)) . (2)

Clearly, the robot design affects the dexterity measure by
altering the Jacobian matrix.

C. BAYESIAN OPTIMIZATION
Generally, analytically defining a cost function to optimize
in terms of the robot design parameters (the DH parameters

2 VOLUME 4, 2016

F. Cursi et al.: GlobDesOpt: A Global Optimization Framework for Optimal Robot Manipulator Design

Select Configuration

- Single arm

Initialize Robot
Models

- Dual arm

Bayesian Optimization

Robot 1 Robot 2

Initialize

Parameters

Sample Next

Parameters

Update Robots

 Models

Compute WS

Get Cost

Function

Choose Solver
Options

Get Final
Robot Models

Select Optimization
Parameters

Robot 1 Robot 2

didx = []
θidx = []
aidx = []
αidx = []

jointidx = []

distidx = []

didx = []
θidx = []
aidx = []
αidx = []

jointidx = []

FIGURE 2: GlobDesOpt workflow

and the type of joints) is intractable or even impossible. In
this case, the derivatives of the function are unknown, and
exploratory techniques need to be employed.

Recently, in the field of machine learning, BO has found
great popularity to solve optimization problems with black-
box cost functions. Given a cost function f(x), BO attempts
to find the global optimum in a minimum number of steps,
by incorporating prior belief about f(x) and updates the
prior with samples drawn from f(x) to get a posterior
that better approximates f(x). Differently from other global
optimization methods such as evolutionary algorithms, BO
exploration is more probabilistic and exploits the model prob-
ability estimate to search through more uncertain regions.
The steps performed in the optimization are:

1) Initialization: a random number of NumSeedPoints
configurations are created and the cost function evalu-
ated.

2) GP Regression: a surrogate model of f(x) is created
based on the sampled points. Generally, a Gaussian
Process (GP) regression model is employed. The GP
outputs a probability distribution which is used to iden-
tify the sampling points.

3) Sampling: an acquisition function exploits the out-
put of the GP to identify the sampling points, taking
into account the exploration and exploitation trade-off
to either evaluate points with low mean, or those with
high uncertainty, respectively. The new point is added
to the current dataset.

Steps 2 and 3 are then repeated until the maximum number
of iterations is reached. Typical acquisition functions are
Probability of Improvement (PI) [18], Expected Improvement
(EI) [19] and Lower Confidence Bound (LCB) [20].

In robot design, generally the numbers of parameters to
optimize is not large and BO proved to be very efficient
with dimensional problems with up to 20 parameters [12].

However, new approaches to deal with higher dimensional
problems are being explored in the literature [21], [22].

III. GENETIC ALGORITHM
GA [23] belongs to evolutionary optimization methods,
which try to find global optima of a cost function by mim-
icking the mechanisms of natural selection and genetic evo-
lution. The main advantages of GA are:

• it is derivative-free, thus it doesn’t require to compute
the derivatives of the cost function;

• it finds the cost function optima in a trial and error way,
by using multiple individuals per iteration;

• it allows to have very large populations and, thus, effec-
tively explore large search spaces.

Due to its capabilities, GA has been widely used to
identify optimal design configurations [24]. Different works
employed GA for optimal robotic design [8], [25], [26].

In GA the following steps are performed:
1) Initialization: the algorithm begins by creating an ini-

tial population of PopSize individuals. This initial pop-
ulation can be assigned by the user or generated by
means of the CreationFunction.

2) Function Evaluation: the fitness function for each in-
dividual in the current population is computed.

3) Parents Selection: the individuals are ranked de-
pending on their corresponding value of the fit-
ness function (FitV alues). The ScalingFunction is
used to scale FitV alues and obtain ScaledV alues.
The ScaledV alues are then exploited by the
SelectionFunction to choose the appropriate parents
for the next generation.

4) Children Generation: from the Parents, Children
are generated in different ways. A certain number
of individuals are passed directly onto the next gen-
eration (Elite Children). A certain percentage of

VOLUME 4, 2016 3

F. Cursi et al.: GlobDesOpt: A Global Optimization Framework for Optimal Robot Manipulator Design

the Children is instead obtained by means of the
Crossover Function, and some others are randomly
obtained through the Mutation Function.

5) Migrate Population: finally, the obtained Children are
used to replace the current Population and, thus, obtain
a new population.

Steps 2 to 5 are repeated until the stopping criteria are met.
Generally, the algorithm stops if the fitness value is lower
than a specific threshold, if the maximum number of gener-
ations is achieved, or if the best fitness value doesn’t change
for a certain number of generations (Stall Generations).
At the end of the procedure, the population of the latest
generation is returned.

IV. PARTICLE SWARM OPTIMIZATION
Similarly to GA, PSO [27] makes no assumptions about the
problem being optimized and can search very large spaces of
candidate solutions, and it is derivative-free.

PSO solves the optimization by having a set of candidate
solutions (the particles) and moving these particles around in
the search-space according their position and velocity. Each
particle’s movement is influenced by its local best known
position, but is also guided toward the best known positions
in the search-space, which are updated as better positions are
found by other particles. This is expected to move the swarm
toward the best solutions.

1) Initialization: an initial swarm of particles of
SwarmSize size is randomly created individuals. This
initial population can be assigned by the user or gen-
erated by means of the CreationFunction. Similarly,
initial random velocities are initialized too.

2) Function Evaluation: the objective function at each
particle location is computed, determining the best func-
tion value and the best location.

3) Velocity and Location Update: the velocity of each
particle is updated by taking into account the previous
velocity, the difference between the current position and
the best position the particle has seen, and the difference
between the current position and the best position in the
current swarm. The particles’ positions are then updated
with the new velocity.

Steps 2 and 3 are repeated until the stopping criteria are
met, e.g if the fitness value is lower than a specific threshold,
if the maximum number of generations is achieved, or if the
best fitness value doesn’t change for a certain number of
iterations.

V. GLOBDESOPT FRAMEWORK
In this section, GlobDesOpt is presented, describing its func-
tionalities and workflow.

A. FRAMEWORK DESCRIPTION
GlobDesOpt is an optimization framework to identify the
best robot design, given a specific cost function to minimize.
GlobDesOpt is meant to be user-friendly and versatile, in

order to be used in different scenarios and by inexperienced
users. Figure 2 shows the workflow of GlobDesOpt.

Currently, GlobDesOpt allows optimizing for all the DH
parameters of each robot’s link dDH,i, θDH,i, aDH,i, αDH,i

and for each joint type (prismatic or revolute). The choice
of what parameters to optimize for is left to the user. Ad-
ditionally, GlobDesOpt supports the following design opti-
mizations:

• single arm optimization: one single kinematic chain is
optimized;

• dual-arm optimization: the design of two arms in a
dual-arm configuration is simultaneously optimized. In
this configuration, the two robots can have the same or
completely different kinematic structures. In the former
case, one arm is just a copy of the other. In the latter
case, the DH parameters and joint types of the two
robots can be optimized independently. In both cases,
however, the distance between the bases of the two
robots d is added as additional optimization variable.

A .xml file is used as configuration file, passing information
about the optimization to perform. The path to an initial
DH table of the robots can be specified in the .xml file,
especially if only some parameters need to be optimized.
The robot model is then generated by means of a robot
class function, which can also be easily edited by the user
according to their individual needs. The user selects what
parameters to optimize for, creating a structure of indexes for
each parameter in the configuration file. Additionally, lower
and upper bounds for the parameters are specified. If the
dual arm configuration is chosen, with the two arms having
different structures, then the indexes of the parameters for
both arms need to be specified too.

Once the optimization variables and their bounds are spec-
ified, the solver is called and the optimization performed.
Matlab Bayesian Optimization [28], Particle Swarm Opti-
mization [29], and Genetic Algorithm [30] toolboxes are
used in this work, and the user can specify different opti-
mization options such as the number of iterations, the size
of the population and of the swarm (for PSO and GA), the
acquisition function and the exploitation/exploration ratio for
BO. As described in II-C, BO runs iteratively and builds a
GP model mapping the optimization variables to the cost
function. By default Matlab uses ARD Matérn 5/2 kernel
for the model. At each step of the optimization, the robots’
structures are updated, the dexterous workspace calculated,
and the cost function computed. The process is repeated until
the maximum number of iterations is reached.

When the optimization finishes, the optimized parameters
are returned, along with a plot of the robots’ structures and
workspaces.

B. SINGLE ARM OPTIMIZATION
Different cost functions can be implemented in GlobDesOpt,
however, in this work the goal is to find the optimal design
in order to improve the dexterity of a miniaturized robotic
structure.

4 VOLUME 4, 2016

F. Cursi et al.: GlobDesOpt: A Global Optimization Framework for Optimal Robot Manipulator Design

The dexterous workspace (WS) is a subset of the reachable
WS, which is the set of Cartesian points that the robot can
reach. In order to generate it, each joint is excited sinu-
soidally, spanning the whole joint’s range. Different combi-
nations of frequencies are commanded, in order for the robot
to explore as much as possible the whole Cartesian space,
as in [16]. The number of samples Ns for generating the
reachable workspace is user-defined.

For each configuration qns
, with ns = 1 . . . Ns, the dexter-

ity measure δ(q) defined in (2) is computed, which considers
both the position and orientation terms. The user specifies
an acceptance rate (α) to select only those configurations,
and the corresponding Cartesian points, that have a dexterity
measure above the acceptance rate. The dexterous WS is then
defined as:

Dq = {qns
| δ(qns

) ≥ α(δM − δm) + δm} ,

D = {P ns | qns
∈ Dq}

(3)

where P is the robot’s tip position, δM , δm are the maximum
and minimum dexterity measures in the explored configu-
rations, Dq is the set of dexterous joint configurations, and
D a point cloud of dexterous Cartesian points. This point
cloud is then converted into a 3D volumetric shape with
the Alphashape Matlab function. Once the 3D shape is
created, its volume VD can be easily computed with Matlab’s
V olume function. As the Alphashape generates a 3D vol-
ume of triangular meshes, the V olume function adds up all
the volumes of these meshes, returning the total volume of
the 3D shape.

In order to take into account both the dexterity of the robot
and the size of the dexterous WS for the optimal design, the
global dexterity measure can be defined, similarly to [6], as:

∆ =

∫
D
δdV . (4)

Supposing that the volume is discretized equally into Nv

points, then (4) can be computed as:

∆ =

Nv∑
i=0

δi
VD

Nv
= δ̄VD (5)

and the cost function for the single arm optimization can be
defined as:

C = −log(∆) , (6)

where the minus sign is needed as Matlab requires a function
to minimize and the logarithm is just used to scale the cost.

C. DUAL-ARM OPTIMIZATION
In a dual-arm configuration, the two robots work together
to a common task and it is thus important to maximize the
common dexterity.

To identify the common dexterous WS, first the two dex-
terous WS for the two arms D1,D2 as in (3) are computed
independently. Then, the the dual arm dexterous workspace
is computed as Ddual = D1 ∩ D2, which comprises all the
points in common. This generates a new point cloud, which

Robot 1 Robot 2

FIGURE 3: Example of the dual-arm dexterous WS gen-
eration D1,D2 in point cloud (left) and 3D Alphashape
(right) form. The yellow volume is the common dexterous
WS Ddual.

is then used to generate a 3D Alphashape, for which the vol-
ume VDdual

can be computed. Figure 3 displays an example
of the evaluation of the common dual-arm WS. Similarly to
the single arm optimization, the goal is to maximize both the
dexterity of the dual-arm robot and the size of the dexterous
WS and, therefore, the global dual-arm dexterity measure is
considered:

∆dual =

∫
Ddual

δdualdV . (7)

Lee at al [5] defined the dual-arm dexterity as the volume of
the manipulability ellipsoid resulting from the intersection of
the two arms’ manipulability ellipsoids. This measure only
depends on the joint configurations of the two robots and, in
their approach, it is computed locally for specific configura-
tions in a motion task. In order to optimize the robot design
and be the least task-specific, it is necessary to compute the
dual arm dexterity for different possible combinations of the
joint configurations of the two arms, within the common WS.

Therefore, in this work, for each configuration of one of
the two arms q1,i ∈ Ddual, the dual-arm dexterity mea-
sures δduali,j for all the configurations of the second arm
q2,j ∈ Ddual can be computed. As the goal is to optimize
the design in order to maximize the system’s dexterity, for
each configuration i in the dexterous WS the dual-arm dex-
terity is computed as δ̂duali = minj(δduali,j). Finally, the
global dual-arm dexterity measure considered in this scenario
results to be:

∆dual =

∫
Ddual

δ̂dualdV

≃
Nv∑
i=0

δ̂duali
VDdual

Nv

= δ̄dualVDdual

. (8)

Algorithm 1 summarizes the computation of ∆dual.
Based on the current idea, in the case of the dual arm

configuration the optimizer would lead the two robots to be
as close as possible to each other, since the common volume
would then be maximized. However, the smaller the distance
between the two robots, the higher the risk of collision.

VOLUME 4, 2016 5

F. Cursi et al.: GlobDesOpt: A Global Optimization Framework for Optimal Robot Manipulator Design

Algorithm 1 Global dual-arm dexterity measure computa-
tion.

1: function GETGLOBALDUALARMDEXT(q1, q2,Ddual)
▷ Get volume of common dexterous WS

2: VDdual
= V olume(Ddual)

▷ Get number of configurations of the arms in Ddual

3: N1, N2 = getConfig(Ddual)
4: for i = 1 . . . N1 do
5: for j = 1 . . . N2 do
6: δduali,j = getDualArmDext(q1,i, q2,j)
7: end for

▷ Compute minimum dual-arm dexterity
8: δ̂duali = min(δduali,1 , . . . , δduali,N2

)
9: end for

▷ Compute average dual-arm dexterity
10: δ̄dual =

1
N1

∑N1

i=1 δ̂duali
▷ Get global dual-arm dexterity measure

11: ∆dual = δ̄dualVDdual

return ∆dual

12: end function

d
R1,max R2,max

P1,0
P1,ns

P2,0

P2,ns

FIGURE 4: The computation of the maximum reach for the
dual-arm configuration, given the two arms’ reachable WS.

In order to prevent this, a safety measure S is introduced
in the cost function for the dual arm. The safety is defined as:

S = 1− e−K1(
||d||

||Rmax||)
K2

(9)

where d is the distance vector between the two arms’ bases,
Rmax is the maximum reach, K1 = 7,K2 = 2 are two tun-
able parameters. Such function was chosen to have smooth
variations in the safety values and such that minS = 0 at
low distances and maxS = 1 for large distances between
the two arms. Note that in the dual-arm configuration, the
distance vector d is added as an optimization parameter. The
maximum reach is a measure to quantify how far apart the
arms can be without ever colliding with each other. Once the
reachable WS for each robot is obtained, each Cartesian point
is projected onto the distance vector d. The maximum reach
is computed as:

Rmax = R1,max −R2,max , where

Ri,max = max
ns

(
P T

i,0d

||d||2
d, . . .

P T
i,Ns

d

||d||2
d) , (i = 1, 2)

(10)

where P 1,ns
, P 2,ns

(ns = 0, . . . , Ns) are the points in the
reachable WS of the two arms. The minus sign is needed
because the reach of the second arm is considered to be in
the direction opposite to d, when all vectors are expressed
in a common reference frame. Figure 4 shows an example to
compute Rmax.

From (9), it turns out that dual arm configurations where
||d|| ≥ ||Rmax|| are the safest, i.e. S ≃ 1, as the two arms
would never collide. Smaller distances, instead, increase the
chance of collisions and, consequently, lower the safety mea-
sure. Finally, the cost function for the dual-arm optimization
is then defined as:

C = −log(S ∆dual) , (11)

where the safety measure is used as a penalization term to
prevent the two arms from being too close to each other.

VI. RESULTS
In this section the design optimization results are shown,
presenting a comparison of the optimal design when using
the three different solvers for a dual-arm robot, along with the
optimization results for a surgical slave robot both in single
and dual-arm optimization mode.

A. COMPARISON OF THE OPTIMIZATIONS
In this test GlobDesOpt was employed to optimize the design
of a 4-DOF dual-arm robot, with two identical arms. Table 1
reports the initial DH table of the manipulator’s arms. The
optimization parameters in this scenario are the first and
second link lengths l1, l2, the joint types of joint 1 and 4,
the distance along x, y between the two arms’ base frames.
The initial robot’s configuration is set to be PRRR, meaning
the first joint is prismatic and the others are revolute. The

TABLE 1: Initial DH table for each arm of the 4-DOF robot

dDH θDH aDH αDH

1 l1 0 0 π/2
2 0 π/2 l2 −π/2
3 0 −π/2 0 −π/2
4 5 0 0 π/2

joint bounds are set to
[
0 10.0

]
mm for the prismatic joints

and
[
−π/4 π/4

]
for the revolute ones. The bounds on

the link lengths l1, l2 are instead set to
[
0 10.0

]
mm and[

3.0 25.0
]

mm respectively, whereas the bounds on the
distance are set to

[
0 15.0

]
mm both for x, y direction.

In this exemplary test only 4 parameters and two joint
types are optimized, therefore a brute force space search
could be sufficient too, even though the number of computa-
tions would depend on the discretization of each parameter.
In a more general case, more parameters might need to be
optimized and brute force search strategies may be highly
computational inefficient. Therefore global optimization ap-
proaches might be more beneficial.

All three solvers BO, PSO, and GA are here tested and
their results compared. The maximum number of iterations
was set to 100 and a population of 50 individuals used

6 VOLUME 4, 2016

F. Cursi et al.: GlobDesOpt: A Global Optimization Framework for Optimal Robot Manipulator Design

y
(m

m
)

Dexterous WS
Robot 2

Common
Dexterous WS

Reachable WS

Robot 1
Dexterous WS

Reachable WS

y (mm)

z
(m

m
)

x (mm)
x (mm)

30

-20
-20 30

-20

40

20 -20 -20 20

d

B
O

y (mm)

z
(m

m
)

x (mm)

-20

40

20
-20 -20 20

d

G
A

y (mm)

z
(m

m
)

x (mm)

-30

50

20
-20 -30 30

d

P
S
O

z
(m

m
)

x (mm)

40

24
-20 30

y
(m

m
)

x (mm)

30

-20

-25 25

z
(m

m
)

x (mm)

40

24

-25 25

y
(m

m
)

x (mm)

30

-20

-25 25

z
(m

m
)

x (mm)

48

30
-25 25

FIGURE 5: Optimization results for the 4-DOF robot using BO,GA,PSO

for GA and for PSO, whereas for BO EI was used as
acquisition function and 1000 initial points generated.
Additionally, the number of stalling iterations both for GA
and PSO was set to 10, 50 · 103 points were used to generate
the WS in both cases, and α = 0.6 is chosen to select the
points belonging to the dexterous WS. Table 2 reports the
comparison of the performances of the three solvers, and
Figure 5 plots the optimized robot design and its reachable
and dexterous workspaces.

In all cases, the optimal joint types result to be RRRP,
namely the last joint is prismatic. BO and GA also result in
same link lengths, but different base offset d. An advantage
of GA and BO over PSO is that they allow specifying
the optimization variables to be integers. This is of great
importance because it allows taking into account constraints
due to the resolution of the manufacturing process. PSO,
instead, would need a proper adjustment or rounding strategy
to be implemented. Given the fact that BO and GA produce

TABLE 2: Results for the design optimization of the 4-DOF robot. VD is the volume of each arms’ dexterous WS, VDdual
the

volume of the common dexterous WS, δ̄dual the average dual dexterity in the common dexterous WS, and log(·) = log10(·).
l1(mm) l2(mm) dx(mm) dy(mm) Types log(VD) log(VDdual

) log(δ̄dual) Safety Cost Time (s)
BO 2.0 24.0 8.0 7.0 rrrp 4.0927 3.6702 1.6779 0.2367 -4.7273 129
GA 2.0 24.0 1.0 12.0 rrrp 4.0927 3.7615 1.7048 0.3532 -5.0157 932
PSO 9.09 25.0 0.0 13.18 rrrp 3.9211 3.5096 1.4596 0.3928 -4.5634 852

VOLUME 4, 2016 7

F. Cursi et al.: GlobDesOpt: A Global Optimization Framework for Optimal Robot Manipulator Design

the same robotic design, the volume of the dexterous WS
for the two robot arms is also the same. The volume of the
common dexterous WS and the average dual-arm dexterity
are however slightly larger for GA optimization, due to the
different relative placement of the two arms’ bases. This
also results in a larger safety value (0.3532 for GA and
0.2367 for BO) and smaller value of the cost function to
minimize (−5.0157 and −4.7273 respectively). PSO is the
solver that leads to worst performances in terms of volume of
the dexterous WS and average dual-arm dexterity.

In terms of computational cost, we used a Windows x64
16 core machine with Intel i9-10980HK CPU and BO results
to be the fastest solver: PSO takes 5.6 times longer and GA
6.2 times longer.

B. SURGICAL ROBOT DESIGN OPTIMIZATION
GlobDesOpt has also been employed in this work to optimize
the design of a dual-arm surgical robotic instrument. Due to
the satisfying and faster performances of BO optimizer, only
BO is here employed as solver. The robot consists of two
identical arms, whose kinematic model is shown in Figure 6
and the DH parameters in Table 3.

x0z0

d

Robot 1 Robot 2

l1

l3

l5

FIGURE 6: The dual-arm surgical robot kinematic model

TABLE 3: DH table for each arm of the dual-arm surgical
robot

dDH θDH aDH αDH

1 0 0 0 0
2 l1 π/2 0 π/2
3 0 π/2 0 −π/2
4 0 0 l3 π/2
5 0 0 0 −π/2
6 0 l5 0 0

Each arm has 6 joints, with the first one being prismatic
and the others revolute. The joint limits are set by de-
sign constraints to

[
0, 10.0

]
mm for the prismatic joint,[

−π, π
]

for the first revolute joint, and
[
−π/4, π/4

]
for the others. Only the three link lengths l1, l3, l5 are here
optimized, whereas the other parameters are set by design
considerations.

Even though only the three link lengths are here optimized,
standard optimization procedures would still be challenging
to implement due to the difficulties in analytically formulat-
ing the cost function and its derivatives, especially for the
dual-arm configuration.

To evaluate how to optimally design the dual-arm robotic
system, two different optimization tests are performed. For
both optimizations, EI was used as acquisition function,
150 · 103 points were used to generate the WS in both cases
and α = 0.7 is chosen to select the points belonging to the
dexterous WS.

1) Independent arm optimization
The design of the arms is optimized without any considera-
tion of the dual-arm configuration. Since the two arms have
an identical structure, GlobDesOpt is used with the single
arm optimization option and the optimization parameters are
set to be the robot’s link lengths l1, l3, l5, with their limits
set by design considerations to

[
3.0, 25.0

]
mm. In order

to keep the robot small enough for surgical applications, the
maximum sum of the link lengths is set to be Lmax = 47.0
mm and therefore a linear constraint l1 + l3 + l5 ≤ Lmax is
added to the the cost function (6).

2) Simultaneous dual-arm optimization
In this case, the interaction between the two arms is consid-
ered and GlobDesOpt is employed in the dual-arm optimiza-
tion option. In this case, the same optimization parameters
as in the single arm case are chosen (l1, l3, l4), yet the
distance between the bases of the two arms along the x
direction is also added. From design limitations, the bounds
for the distance are set to

[
0.0, 15.0

]
mm and, similarly

to the independent arm optimization, the constraint on the
maximum link lengths is added to the cost function (11).

C. OPTIMIZATION RESULTS
Figure 7 shows the optimized robot designs and Table 4
reports the optimized variables, for the independent and
simultaneous optimizations. Since modern manufacturing
methods ensure high precision, a resolution of 0.1 mm is
allowed. Overall, the independent optimization, which does
not consider any interaction between the two arms, resulted
in a longer structure, with a total length of 45.6 mm versus
39.1 mm for the simultaneous dual-arm optimization.

To compare the optimal design results of the dual-arm sur-
gical robot, we compared three different cases by positioning
the two arms obtained from the independent arm optimiza-
tion at a distance of 14.8 mm (same as the optimal distance
found from the simultaneous dual-arm optimization), 7.4
mm, and 1.5 mm.

Figure 8 shows a comparison of the dexterous WS for
the two optimizations in the different placements and Table
5 reports the values of the volumes of the dexterous WS

TABLE 4: Design results for the independent arm and simul-
taneous dual-arm optimizations. All measures are in mm and
N.A. stands for not applicable.

Optimization l1 l3 l5 d
Independent 4.2 19.9 21.5 N.A
Simultaneous 3.8 24.9 10.4 14.8

8 VOLUME 4, 2016

F. Cursi et al.: GlobDesOpt: A Global Optimization Framework for Optimal Robot Manipulator Design

x (mm)

y
(m

m
)

z
(m

m
)

Dexterous WS
Robot 2

Common
Dexterous WS

Reachable WS

Robot 1
Dexterous WS

Reachable WS

y (mm)

z
(m

m
)

x (mm)

x (mm)

40

-40

-40 40

0

40

-40 40

d

0

40

40

-40 -40

40
d

(a) The independent arm optimization results

x (mm)
y

(m
m

)
z

(m
m

)

Dexterous WS
Robot 2

Common
Dexterous WS

Reachable WS

Robot 1
Dexterous WS

Reachable WS

y (mm)

z
(m

m
)

x (mm)

x (mm)

40

-40

-40 40
-10

40

-40 40

d

0

40

40

-40 -40

40
d

(b) The simultaneous dual-arm optimization results

FIGURE 7: The optimal designs and the surgical robot’s WS from: 7a) independent arm optimization; 7b) simultaneous dual-
arm optimization. In both cases the arms are at a distance of 14.8 mm.

TABLE 5: Comparison of the results from the independent arm and simultaneous dual-arm optimizations for different
placements d of the arms Robot 1 and Robot 2. The subscripts 1, 2 refer to Robot 1 and Robot 2 arms, VD is the volume
of each arms’ dexterous WS, VDdual

the volume of the common dexterous WS, δ̄1,2 the arms’ average dexterities in their
dexterous WS, δ̄dual the average dual dexterity in the common dexterous WS, and log(·) = log10(·).

Optimization d(mm) log(VD1
) log(VD2

) log(VDdual
) log(δ̄1) log(δ̄2) log(δ̄dual) Safety Cost

Independent
1.5 7.5708 7.5708 7.4747 4.5836 4.5836 4.2967 5 · 10−5 −7.4813
7.4 7.5708 7.5708 7.3636 4.5836 4.5836 4.2967 0.0064 −9.4576
14.8 7.5708 7.5708 7.1559 4.5836 4.5836 4.2967 0.0500 −10.1515

Simultaneous 14.8 7.2329 7.2329 6.8363 4.7783 4.7783 4.4914 0.0884 −10.2743

Simultaneous Optimization Independent Optimization

d = 14.8 mm d = 1.5 mm d = 7.4 mm d = 14.8 mm

x (mm)y (mm)

z
(m

m
) 45

30
20

-20 -20

30

50

30
20

-20 -20

20
x (mm)y (mm)

z
(m

m
) 50

30
20

-20 -20

20
x (mm)y (mm)

z
(m

m
) 50

30
20

-20 -20

40

x (mm)y (mm)

z
(m

m
)

Robot 1 Robot 2 Common WS

FIGURE 8: Comparison of the dexterous WS from the independent arm and simultaneous dual-arm optimizations for different
placements of the arms Robot 1 and Robot 2. The yellow volume is the common dexterous WS Ddual.

VOLUME 4, 2016 9

F. Cursi et al.: GlobDesOpt: A Global Optimization Framework for Optimal Robot Manipulator Design

VD1
,VD2

for the two arms and of the common dexterous
WS VDdual

, the average dexterities of the two arms δ̄1, δ̄2
and the average dual-arm dexterity δ̄dual, the safety value S
(9) and the cost function values C (11).

Due to the two arms having the same structure, the vol-
umes of the dexterous WS and the average dexterity measures
for the two arms are the same in each test.

In all the three cases from the independent arm optimiza-
tion, the volume of the dexterous WS does not change, as it is
not a function of the distance between the two arms, but just
of the arms’ Jacobian. The common dexterous WS, instead, is
larger when the two arms get closer. Having the two arms too
close, however, makes the control more challenging, as the
risk of self collisions increases. The proposed safety measure
S prevents the arms from being too close and, indeed, it is at
its minimum when the distance is set to 1.5 mm. Because of
smaller safety values, the cost function values are also larger
as the distance decreases.

When comparing with the optimal design results from
the simultaneous dual-arm optimization, where the distance
is set to be the optimal one of 14.8 mm, the independent
optimization leads to higher volumes of the arms’ dexterous
WS. This is also related to the fact that larger link lengths are
obtained with the independent optimization.

The dexterity measures, and especially the dual-arm dex-
terity measure, result to be higher in the simultaneous dual-
arm optimization, as this approach actually considers the
interaction between the two arms. Moreover, the safety mea-
sure is also larger, leading to a smaller cost.

D. SIMULATED CONTROL TASK
To further validate the best practice to optimally design a
dual-arm robot, a motion control test is carried out. The
two designs resulting from the independent arm and the
simultaneous dual-arm optimizations, with the two arms at
a distance of 14.8 mm, are compared.

The control task consists in a rough simulation of a knot
tying, with the two arms following a Bernoulli lemniscate
path described by:

P des = P c +

β cos(t)
1+sin2(t)
β sin(2t)

2(1+sin2(t))

0

 , (12)

where P c =
[
xc yc zc

]T
is the center of the path,

t ∈
[
π/2, 3π/2

]
for the left arm (Robot 1) and

t ∈
[
−π/2, π/2

]
for the right arm (Robot 2).

In order for the path to be within the common dexterous
WS and due to the different sizes of the WS resulting from
the two optimized designs, the path is scaled for the two
tests such that P c =

[
8.0 0.0 0.87zmax

]T
mm and

β = 0.4xrange, where zmax is the maximum height of
the WS (54.0 mm for the independent arm optimization and
46.0 mm for the simultaneous dual-arm optimization) and
xrange is the span of the WS in the x direction (20.0 mm
for the independent arm optimization and 15.0 mm for the

TABLE 6: Dual-arm dexterity measure values in the sim-
ulated motion tracking task for the two optimized designs.
δave,δmin,δmax are the average, the minimum, and maximum
values over the path and log(·) = log10(·).

(a) Synchronous motion

Optimization log(δave) log(δmin) log(δmax)
Independent 1.65 -4.06 3.27
Simultaneous 2.35 −1.99 3.83

(b) Asynchronous motion

Optimization log(δave) log(δmin) log(δmax)
Independent -1.14 -2.42 0.21
Simultaneous −0.35 −1.04 0.97

simultaneous dual-arm optimization). The two arms are re-
quired to follow the two parts of the lemniscate path keeping
a constant orientation, in a synchronous and asynchronous
motion (Figure 9).

Results show that the both optimization results achieve
good tracking accuracy. However, the simultaneous dual-arm
optimization design leads to higher values in terms of dual
arm-dexterity throughout the motion (Table 6).

VII. CONCLUSIONS
In this work we presented GlobDesOpt, a simple-to-use
open-source Matlab package for optimal robot design, based
on three different global optimization solvers. GlobDesOpt
has here been employed for two purposes:

• compare the optimization results when using three dif-
ferent global optimization solvers (BO, GA, PSO);

• optimally design a surgical dual-arm robot and compare
the results between an independent arm and a simulta-
neous dual-arm optimization.

From the comparison of the three solvers, it turns out that
GA and BO outperform PSO in terms of minimization of the
cost function. Moreover GA and BO allow the parameters to
be set as integer, thus taking into account numerical approx-
imations due to possible manufacturing resolutions. Among
the three, BO results to be the fastest approach. Additionally,
results show that for a dual-arm robot, a simultaneous dual-
arm optimization should be preferred, as it leads to overall
higher dexterity.

Currently GlobDesOpt focuses only on articulated robots
whose model is described by DH parameters. However, users
can simply adapt to different structures by updating the
provided robot class function, including the functions for the
forward kinematics and Jacobian computation.

Future work will focus on extending the framework to
other robotic structures like parallel or continuum robots,
where the design complexity is higher. Moreover, an addi-
tional optimization layer will be added in order to optimally
identify the best number of joints to consider in the design.
We however hope that the community will benefit from this
work aimed at simplifying the optimal robot design process
and will contribute to use and enhance it.

10 VOLUME 4, 2016

F. Cursi et al.: GlobDesOpt: A Global Optimization Framework for Optimal Robot Manipulator Design

Synchronous Motion Asynchronous Motion
S

im
u

lt
an

eo
u

s
O

p
ti

m
iz

at
io

n
In

d
ep

en
d

en
t

O
p

ti
m

iz
at

io
n

FIGURE 9: Snapshots of the tracking tests for the synchronous and asynchronous motions.

REFERENCES
[1] A. Hassan and M. Abomoharam, “Modeling and design optimization of

a robot gripper mechanism,” Robotics and Computer-Integrated Manufac-
turing, vol. 46, pp. 94–103, 8 2017.

[2] S. Hwang, H. Kim, Y. Choi, K. Shin, and C. Han, “Design optimization
method for 7 DOF robot manipulator using performance indices,”
International Journal of Precision Engineering and Manufacturing,
vol. 18, no. 3, pp. 293–299, 3 2017.

[3] J. T. Bryson, X. Jin, and S. K. Agrawal, “Optimal Design of Cable-
Driven Manipulators Using Particle Swarm Optimization,” Journal of
Mechanisms and Robotics, vol. 8, no. 4, 8 2016.

[4] C. Baykal, C. Bowen, and R. Alterovitz, “Asymptotically optimal
kinematic design of robots using motion planning,” Autonomous Robots,
vol. 43, no. 2, pp. 345–357, 2 2019.

[5] S. Lee, “Dual Redundant Arm Configuration Optimization with Task-
Oriented Dual Arm Manipulability,” IEEE Transactions on Robotics and
Automation, vol. 5, no. 1, pp. 78–97, 1989.

[6] A. Torabi, M. Khadem, K. Zareinia, G. R. Sutherland, and M. Tavakoli,
“Manipulability of teleoperated surgical robots with application in design
of master/slave manipulators,” in 2018 International Symposium on Med-
ical Robotics, ISMR 2018, vol. 2018-January. Institute of Electrical and
Electronics Engineers Inc., 4 2018, pp. 1–6.

[7] M. T. Chikhaoui, J. Granna, J. Starke, and J. Burgner-Kahrs, “Toward mo-
tion coordination control and design optimization for dual-arm concentric
tube continuum robots,” IEEE Robotics and Automation Letters, vol. 3,
no. 3, pp. 1793–1800, 7 2018.

[8] A. Schmitz, P. Berthet-Rayne, and G. Z. Yang, “Endoscopic Bi-Manual
Robotic Instrument Design Using a Genetic Algorithm,” in IEEE Inter-
national Conference on Intelligent Robots and Systems. Institute of
Electrical and Electronics Engineers Inc., 11 2019, pp. 2975–2982.

[9] D. R. Jones, M. Schonlau, and W. J. Welch, “Efficient Global Optimization
of Expensive Black-Box Functions,” Journal of Global Optimization,
vol. 13, no. 4, pp. 455–492, 1998.

[10] J. Snoek, H. Larochelle, and R. P. Adams, “Practical Bayesian
optimization of machine learning algorithms,” in Advances in Neural
Information Processing Systems, vol. 4, 6 2012, pp. 2951–2959.

[11] R. Calandra, A. Seyfarth, J. Peters, and M. P. Deisenroth, “Bayesian
optimization for learning gaits under uncertainty: An experimental
comparison on a dynamic bipedal walker,” Annals of Mathematics and
Artificial Intelligence, vol. 76, no. 1-2, pp. 5–23, 2 2016.

[12] R. Moriconi, M. P. Deisenroth, and K. S. Sesh Kumar, “High-dimensional
Bayesian optimization using low-dimensional feature spaces,” Machine
Learning, vol. 109, no. 9-10, pp. 1925–1943, 9 2020.

[13] N. Jaquier, L. Rozo, S. Calinon, and M. B. Urger, “Bayesian Optimization
Meets Riemannian Manifolds in Robot Learning,” in Proceedings of the
Conference on Robot Learning. PMLR, 5 2020, pp. 233–246.

[14] X. Zhi, W. Bai, and M. Y. Eric, “Kinematic Parameter Optimization
of a Miniaturized Surgical Instrument Based on Dexterous Workspace
Determination,” in IEEE International Conference on Advanced Robotics
an Mechatronics (ICARM), 2021.

[15] B. Siciliano and O. Khatib, Springer handbook of robotics, B. Siciliano
and O. Khatib, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2008.

[16] D. Zhang, F. Cursi, and G.-Z. Yang, “WSRender: A Workspace Analysis
and Visualization Toolbox for Robotic Manipulator Design and Verifica-
tion,” IEEE Robotics and Automation Letters, vol. 4, no. 4, pp. 3836–3843,
10 2019.

[17] T. Yoshikawa, “Manipulability of Robotic Mechanisms,” The
International Journal of Robotics Research, vol. 4, no. 2, pp. 3–9,
6 1985.

[18] D. R. Jones, “A Taxonomy of Global Optimization Methods Based on
Response Surfaces,” Journal of Global Optimization, vol. 21, no. 4, pp.
345–383, 12 2001.

[19] J. Močkus, “On bayesian methods for seeking the extremum,” in
Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 27
LNCS. Springer Verlag, 1975, pp. 400–404.

[20] P. Auer, “Using confidence bounds for exploitation-exploration trade-
offs,” in Journal of Machine Learning Research, vol. 3, no. 3, 4 2003,
pp. 397–422.

[21] M. Mutný and A. Krause, “Efficient High Dimensional Bayesian Opti-
mization with Additivity and Quadrature Fourier Features,” Tech. Rep.,
2018.

[22] C. Li, S. Gupta, S. Rana, V. Nguyen, S. Venkatesh, and A. Shilton, “High
dimensional Bayesian optimization using dropout,” in IJCAI International
Joint Conference on Artificial Intelligence, vol. 0. International Joint
Conferences on Artificial Intelligence, 2017, pp. 2096–2102.

[23] D. E. Goldberg and J. H. Holland, “Genetic Algorithms and Machine
Learning,” pp. 95–99, 1988.

[24] G. Renner and A. Ekárt, “Genetic algorithms in computer aided design,”
CAD Computer Aided Design, vol. 35, no. 8 SPEC., pp. 709–726, 7 2003.

[25] P. K. Jamwal, S. Xie, and K. C. Aw, “Kinematic design optimization of
a parallel ankle rehabilitation robot using modified genetic algorithm,”
Robotics and Autonomous Systems, vol. 57, no. 10, pp. 1018–1027, 10
2009.

[26] J. Han, W. K. Chung, Y. Youm, and S. H. Kim, “Task based design of
modular robot manipulator using efficient genetic algorithm,” in Proceed-
ings - IEEE International Conference on Robotics and Automation, vol. 1.
IEEE, 1997, pp. 507–512.

[27] J. Kennedy and R. Eberhart, “Particle swarm optimization,” Proceedings
of ICNN’95 - International Conference on Neural Networks, vol. 4, pp.
1942–1948.

[28] “Bayesian Optimization Algorithm - MATLAB & Simulink - MathWorks
United Kingdom.”

[29] “Particle swarm optimization - MATLAB particleswarm - MathWorks
United Kingdom.”

[30] “Find minimum of function using genetic algorithm - MATLAB ga -
MathWorks United Kingdom.”

VOLUME 4, 2016 11

	Introduction
	Problem Formulation
	Robot Kinematic Modelling
	Robot Manipulabilty
	Bayesian Optimization

	Genetic Algorithm
	Particle Swarm Optimization
	GlobDesOpt Framework
	Framework Description
	Single Arm Optimization
	Dual-Arm Optimization

	Results
	Comparison of the Optimizations
	Surgical Robot Design Optimization
	Independent arm optimization
	Simultaneous dual-arm optimization

	Optimization Results
	Simulated Control Task

	Conclusions
	REFERENCES

