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Abstract: COMAN is a compliant humanoid robot. The introduction of passive 
compliance in some of its joints affects the dynamics of the whole system. Unlike 
traditional stiff robots, there is a deflection of the joint angle with respect to the 
desired one whenever an external torque is applied. Following a bottom up 
approach, the dynamic equations of the joints are defined first. Then, a new model 
which combines the inverted pendulum approach with a three-dimensional 
(Cartesian) compliant model at the level of the center of mass is proposed. This 
compact model is based on some assumptions that reduce the complexity but at the 
same time affect the precision. To address this problem, additional parameters are 
inserted in the model equation and an optimization procedure is performed using 
reinforcement learning. The optimized model is experimentally validated on the 
COMAN robot using several ZMP-based walking gaits. 
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1. Introduction 

The majority of the existing humanoid robots are powered by stiff actuation 
systems as in Asimo, HRP-3, iCub, LOLA and Hubo [1-11]. In fact, the 
predominant approach consists of using non-backdrivable, stiff transmission 
systems and high-gain PID controllers. This solution provides high-precision and 
high-load disturbance rejection but at the same time it makes the robot unsafe 
during interaction with humans as the environment. Moreover, the performance in 
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terms of energy efficiency, peak power limit and overall adaptability to the 
environment is very limited compared to the human being.  

      
Fig. 1. Lower body of COMAN robot 

Following a bioinspired approach, the new COmpliant huMANoid (COMAN) 
robot (Fig. 1) has been built implementing physical compliance inside the actuation 
system [12]. In details, passive elastic mechanism is inserted in some joints of the 
robot (knees and ankles) between the motor and the link. The elastic transmission 
gives many improvements to the robot during walking reducing the effect of foot 
impact with the ground. At the same time it adds extra dynamics to the system that 
is not presented in the common stiff robot. 

In this study, a reduced model able to represent the motion of the robot 
including the effect of compliance is presented, then a learning technique is used to 
improve the performance of the model. The presentation of the work is organized as 
follows: In Section 2, the working principle of the model as well as the main 
equations of the model are presented, in Sections 3 and 4, the model parameters and 
the proposed optimization approach are reported. 

2. Compliant humanoid model 

The COMAN robot is a multi degree-of-freedom (dof), non-linear, spring-mass 
system because of the introduction of passive compliance in the joints. In this 
section, the modeling procedure to obtain a compact model of the system is 
reported. Following a bottom-up approach, joint dynamics is identified and then the 
resultant effects of all the joints are modeled using a Cartesian spring-mass-damper 
model at the level of the Center of Mass (CoM) [14]. 

2.1. Joint model 

In COMAN, there are two types of joints. In the first type, the motor actuates the 
link through a harmonic reduction drive group. These joints are called “stiff” joints 
because the stiffness, due to the harmonic gearbox , is very high. “Compliant” 
joints are the second type of joints where an additional physical elasticity is 
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incorporated in the actuation. In particular, a passive elastic mechanism is inserted 
in these joints between the electrical motor and the link. The additional elastic 
mechanism is in series with the harmonic drive and is characterized by stiffness  . 

 
Fig. 2. Joint model 

The schematic model of the joint is shown in Fig. 2. Adapting the model from 
[13] to this representation, the joint can be described by the following equations: 

(1)  , 

(2)  = , 

where ,  and  are the position, velocity and torque of the motor, respectively, 
reflected at the link side after the gear reduction: 

(3)  , 

(4)  , 

where N is the gear ratio (N=100:1),  and  are the position and torque of the 
motor;  and  are the inertia and damping of the motor reflected to the link side 
as follows: 

(5)  , 

(6)  , 

where  and  are the torque sensitivity and back EMF constant,  is the 
stator resistance and  is the physical damping of the motor. Finally, , , ,  
and  are the position, velocity, torque, inertia and damping of the link respectively 
and   is the resultant joint stiffness (    for the stiff joints and  in 
the case of compliant joints). In the case of the compliant joints, it is possible to 
approximate the resultant joint stiffness with  since 8000 N. m /rad is 
much larger than  100 N. m /rad. From the stiffness and damping value of 
each joint it is possible to define the joint stiffness and damping matrix as:  

diag  and diag  , i={1, 6}. Both of them are 6×6 diagonal positive 
definite matrices.  

2.2.  Cartesian model at the CoM 

Based on the compliant joint model introduced in the previous section, the 
compliant robot behaviour is approximated by an equivalent Cartesian spring-mass-
damper model at the level of the CoM. 
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Fig. 3. Robot model and associated support foot reference frame 

For each leg, the Jacobian matrix C M from the foot base frame placed below 
the ankle, to the frame placed at the CoM of the robot has been computed (Fig. 3). 
Using the joint stiffness matrix  , the resultant Cartesian stiffness matrix 

C    at the pelvis level (CoM) can be obtained by the following equation: 
(7)  C C M

T
C M 

where C M
T  is the inverse transposed Jacobian matrix. In a similar manner, the 

resultant Cartesian damping matrix C     at the pelvis level (CoM) can be 
obtained as follows: 
(8)  C C M

T
C M 

where   is the joint stiffness matrix defined in the previous section. Equations (7) 
and (8) are an approximation of the complete relationship due to the fact that they 
do not take into account the change of the Jacobian matrix during the deflection 
movement [15]. Consequently, the approximation is valid when the deflection is 
small which occurs during the model experiments. 

2.3.  Working principle of the model 

The dynamics model of COMAN is developed with the following assumptions in 
mind: 
(A1) The joints’ positions  are controlled with a stiff PID loop. 

(A2) The elasticity in the joint transmission system is due to the harmonic drive 
compliance as well due to additional physical elasticity integrated in the knee 
and ankle pitch joints of the leg. 

(A3) A single mass approximation is used for the robot model. 

The first assumption allows the reduction of the model’s complexity. In fact, 
in the case of an ideally stiff position control (motor position tracking error equal to 
zero) and high reduction ratio (back-drivability approximately zero), the dynamics 
of the motor in (1) can be ignored when the robot is subject to external force 
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perturbations. In this case, (2) approximates the overall joint/link dynamic because 
the dynamics of the controlled actuator is much faster than the dynamics of the 
transmission. 

During walking experiments, the position deflection of the CoM with respect 
to the desired position is large along the directions x and z and smaller along the 
lateral direction y according to foot frame (Fig. 3). This is a consequence of (A2), in 
fact, the level of compliance is high in the sagittal plane of the humanoid robot (due 
to additional elasticity in the knee and ankle pitch joints) while in lateral direction 
the robot is stiffer (only the compliance of the harmonic reduction drive contributes 
to this). Because of that, in y direction the movement can be approximated by a stiff 
system. 

Finally, (A3) is an approach which has been extensively used in trajectory 
generation and control of humanoid robots [16]. Therefore, according to this 
assumption, the dynamics of the robot is approximated to the dynamics of the single 
mass placed at the pelvis (CoM position). 

According to the previous consideration and considering equations (7) and (8), 
the forces generated at the pelvis (CoM) frame when the CoM position  

  T    deflects with respect to its reference position vector  
  T   , can be expressed as follows: 

(9)  CT CT CT  

where CT,  CT     are sub-matrices of C,  C related to the linear motion 
along x, y and z. In case of diagonal matrices x, y and z dynamics are completely 
decoupled but in this case the off-diagonal elements of the matrices in (7) and (8) 
are different from zero. Therefore, decoupling the movement of the robot is not 
possible. 

The linear passive dynamics of the single-mass model can be described by the 
following expression: 

(10)  CT , CT 

where the mass-matrix diag , ,    with  being the total mass of 
the robot placed at the CoM, CT   T    is the Cartesian forces 
given by (9) and  CT 0 0 T    represents the gravity. 

Considering only the passive dynamics along the sagittal and vertical 
directions and referring to equation (9), (10) can be written in a matrix form as 
follows  

(11)   
 
0  

where , ,  and  are the relevant elements of C; , , ,  
are the relevant elements of C;  and  are Cartesian position reference of the 
CoM; and , ,  , ,  are position, velocity and acceleration of the CoM when it 
is subject to external loads. The passive dynamic of the CoM of the robot in 
Cartesian space during stance phase is described by (11). 
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2.4.  Reference trajectory generation 

The reference trajectories used later in the learning technique and in the 
experimental evaluation of the model were generated based on the ZMP approach. 
The desired gait can be defined by a minimum set of data: step length (sl), single 
support duration ( ), double support duration ( ). During the single support the 
robot was approximated with a single mass linear inverted pendulum as in [16], 
[17] The ZMP trajectory was computed in order to achieve the desired gait. The 
reference position of CoM   can be obtained from the defined ZMP 
reference  ZMP ZMP ZMP 0 T   .  

(12)  ZMP, 

(13)  ZMP 

where  is the fixed CoM height. 

3. Model implementation 

The model in (11) has been developed exploiting the characteristics of the system 
and adopting some approximation based on the three assumptions reported in 
Section 2.3. These approximations allow to reduce the complexity of the equations 
but at the same time they introduce an error in the model. The model equations can 
be rearranged as follows: 
(14)   β  γ  , 

(15)  β   

γ   , 

where , , γ  and , i={1, 2} are parameters inserted to compensate model errors 
due to the approximation used as well as other errors from the identification of the 
joint stiffness and damping parameters. 

Equations (14) and (15) describe the robot behavior during single support. In 
this phase, the robot stands on one leg therefore the robot movement is mostly 
affected from the compliant joints of the supporting leg. Otherwise, during double 
support phase, both feet are on the ground hence the compliant joints of both legs 
contribute to the robot movement. To take into account the effect of the second leg 
during this phase, the same procedure used to derive equations (9) can be reiterated 
for the other leg and included in the model equation. In order to reduce the 
complexity of the model, another approach has been adopted. Assuming that during 
the double support phase the two feet on the ground do not move relative to each 
other, the forces developed from the two legs are different because of the different 
configuration of the legs and different displacements. The effect of the second leg 
has been included to the model scaling equations (14) and (15) as follows: 

(16)   γ  β   , 
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(17)  γ   

β    . 
Equations (16) and (17) are used during the double support phase. The scaling 

coefficients ,  are computed from experimental data which evaluates the x and 
z forces measured by the force/torque sensors mounted at the feet of the robot [14]. 

4.  Optimization of the model using reinforcement learning 

The proposed compact model captures well many of the characteristics of the 
passively compliant robot. However, it does not perfectly predict the behaviour of 
the robot, which is due to two main reasons: (i) the simplifying assumptions, which 
are necessary to keep the model compact, but also introduce approximation errors, 
and (ii) measurement inaccuracies when estimating the physical properties of the 
robot, e.g. the stiffness of the springs, etc. A common simplification assumption is, 
for example, that the left and the right leg have the same properties and therefore 
behave identically. In reality, this is not entirely true, because of the complexity of 
series elastic actuation, where it is normal to observe differences between the right 
and left leg’s motors, passive compliance unit, friction, and so on. 

One way to minimize the modelling error is to make the model more complex. 
This, however, would diminish the advantage of having a compact model, and 
would impede its use as a fast predictor of the robot’s behaviour instead of the robot 
itself. Therefore, in this paper we concentrate our effort on optimizing the proposed 
compact model in order to achieve the best modelling precision without 
unnecessarily increasing the model complexity. 

More concretely, by optimization of the model we mean the search for optimal 
values of some important parameters of the model. From equations (14)-(17) we 
have identified 8 important parameters whose values are crucial for the performance 
of the model. These parameters are as follows:  and γ  affect the relationship 
between the force generate along x direction and the position and velocity of the 
CoM in the same direction, β  and  affect the relationship between the force 
generate along z direction and the position and velocity of the CoM in the same 
direction, finally β , ,  and γ  affect the coupling between the orizontal and 
vertical movement of the CoM. 

Initially, the parameter values are all set to be equal to 1.0. The goal of the 
optimization is to find other values for these parameters which reduce the overall 
model error. The model error is estimated using a ground truth data set, recorded 
from real-world experiments with COMAN, where the reference trajectories are 
known, and the actual response trajectories are compared to the model output. 
Using this data set, we have defined a cost function to be minimized, equal to the 
mean squared error of the model prediction with respect to the actual response 
trajectories. 

Many alternative optimization approaches exist, which can be used to 
minimize this cost function. In this paper we have selected a reinforcement learning 
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approach, based on direct policy search. In this approach, the policy is 
parameterized by a set of parameters, and the reinforcement learning algorithm is 
trying to optimize their values by performing a sequence of trials and evaluating its 
performance using the defined cost function (which is a form of reward function).  

In particular, we have selected the POWER algorithm (POlicy learning by 
Weighting Exploration with the Returns [18]) for implementing the optimization, 
for the following reasons: (i) it does not require a learning rate parameter; (ii) it re-
uses efficiently trials using importance sampling; (iii) it has been already applied 
successfully on the COMAN robot for another task, to optimize the walking gait by 
varying the center-of-mass height and thus reduce the energy consumption [19]. 

The optimization algorithm has been executed on reference trajectories with 
duration of 30 s (30 000 samples) and the corresponding trajectories performed by 
the robot computed through forward kinematics. The gait parameters are sl=0.03, 

=0.5 s and = 0.2 s. 
Table 1.  Parameter values after the optimization 

Parameter  β   γ    β  γ   
Value 0.9827 1.0357 1.0560 1.1335 0.9792 0.9561 1.0072 1.1053 

Table 1 contains the optimal values of the parameters found by the algorithm. 
The results from the optimization show that the modelling error can indeed be 
reduced by only changing the values of the selected eight parameters 
( , β  , γ , , , β , γ , ). In Fig. 4 the results of the model before and after the 
optimization process are compared. 

 

 
Fig. 4. Comparison of the model results before and after optimization 
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The base assumptions of the model reduce the precision of the inertia 
representation more than the gravity. The movement along the walking direction is 
mostly affected by the inertia of the system because there are important 
accelerations and decelerations. Instead vertical movement is mostly affected by 
gravity force. The consequence is that the movement along x directions benefit of 
the optimization procedure more than z direction.  

5. Conclusion  

In this work a reduced model of the dynamic of the CoM motion of the robot has 
been described. The model is based on some assumptions that reduce the 
complexity of the equations but at the same reduce the precision of the results. To 
improve the performances of the model some parameters have been inserted in the 
model equations in order to compensate the errors due to the reductions. The value 
of these parameters has been optimized using learning technique. An improvement 
of the model performance has been reached. 

The set of parameters found has been also used to perform walking with 
different gaits than the one used in the optimization process. Also, in these cases the 
performance reached by the optimized model is better than the original model.  
Acknowledgment. This work is supported by the FP7 European project AMARSI (ICT-248311). 
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