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Abstract: COMAN is a compliant humanoid robot. The introduction of passive
compliance in some of its joints affects the dynamics of the whole system. Unlike
traditional stiff robots, there is a deflection of the joint angle with respect to the
desired one whenever an external torque is applied. Following a bottom up
approach, the dynamic equations of the joints are defined first. Then, a new model
which combines the inverted pendulum approach with a three-dimensional
(Cartesian) compliant model at the level of the center of mass is proposed. This
compact model is based on some assumptions that reduce the complexity but at the
same time affect the precision. To address this problem, additional parameters are
inserted in the model equation and an optimization procedure is performed using
reinforcement learning. The optimized model is experimentally validated on the
COMAN robot using several ZMP-based walking gaits.
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1. Introduction

The majority of the existing humanoid robots are powered by stiff actuation
systems as in Asimo, HRP-3, iCub, LOLA and Hubo [1-11]. In fact, the
predominant approach consists of using non-backdrivable, stiff transmission
systems and high-gain PID controllers. This solution provides high-precision and
high-load disturbance rejection but at the same time it makes the robot unsafe
during interaction with humans as the environment. Moreover, the performance in
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terms of energy efficiency, peak power limit and overall adaptability to the
environment is very limited compared to the human being.
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Fig. 1. Lower body of COMAN robot

Following a bioinspired approach, the new COmpliant huMANoid (COMAN)
robot (Fig. 1) has been built implementing physical compliance inside the actuation
system [12]. In details, passive elastic mechanism is inserted in some joints of the
robot (knees and ankles) between the motor and the link. The elastic transmission
gives many improvements to the robot during walking reducing the effect of foot
impact with the ground. At the same time it adds extra dynamics to the system that
is not presented in the common stiff robot.

In this study, a reduced model able to represent the motion of the robot
including the effect of compliance is presented, then a learning technique is used to
improve the performance of the model. The presentation of the work is organized as
follows: In Section 2, the working principle of the model as well as the main
equations of the model are presented, in Sections 3 and 4, the model parameters and
the proposed optimization approach are reported.

2. Compliant humanoid model

The COMAN robot is a multi degree-of-freedom (dof), non-linear, spring-mass
system because of the introduction of passive compliance in the joints. In this
section, the modeling procedure to obtain a compact model of the system is
reported. Following a bottom-up approach, joint dynamics is identified and then the
resultant effects of all the joints are modeled using a Cartesian spring-mass-damper
model at the level of the Center of Mass (CoM) [14].

2.1. Joint model

In COMAN, there are two types of joints. In the first type, the motor actuates the
link through a harmonic reduction drive group. These joints are called “stiff” joints
because the stiffness, due to the harmonic gearbox Kj,, is very high. “Compliant”
joints are the second type of joints where an additional physical elasticity is
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incorporated in the actuation. In particular, a passive elastic mechanism is inserted
in these joints between the electrical motor and the link. The additional elastic
mechanism is in series with the harmonic drive and is characterized by stiffness K.
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Fig. 2. Joint model

The schematic model of the joint is shown in Fig. 2. Adapting the model from
[13] to this representation, the joint can be described by the following equations:

(1) I;nb + dnb =7 —k;j(0 — q),
(2) hg + dg=t, + k; (6 — q),

where 6, 6 and 7 are the position, velocity and torque of the motor, respectively,
reflected at the link side after the gear reduction:

(3) 0 =~ O,
4) T=Nty,

where N is the gear ratio (N=100:1), 8, and t,,, are the position and torque of the
motor; I, and d,,, are the inertia and damping of the motor reflected to the link side
as follows:

&) Iy = NZ]m'
= N2 KiKbemf
(6) Ay = N? (D, +S2em0),

where K, and Kpemr are the torque sensitivity and back EMF constant, R, is the
stator resistance and Dy, is the physical damping of the motor. Finally, q, q, t;, J;
and d; are the position, velocity, torque, inertia and damping of the link respectively
and k; is the resultant joint stiffness (k; = Kj, for the stiff joints and k; = % in
hThis
the case of compliant joints). In the case of the compliant joints, it is possible to
approximate the resultant joint stiffness with K since K, = 8000 (N.m)/rad is
much larger than K = 100 (N.m)/rad. From the stiffness and damping value of
each joint it is possible to define the joint stiffness and damping matrix as:
K= diag(k}) and D; = diag( d;), i={1, 6}. Both of them are 6x6 diagonal positive

definite matrices.

2.2. Cartesian model at the CoM

Based on the compliant joint model introduced in the previous section, the
compliant robot behaviour is approximated by an equivalent Cartesian spring-mass-
damper model at the level of the CoM.
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Fig. 3. Robot model and associated support foot reference frame

For each leg, the Jacobian matrix /., from the foot base frame placed below
the ankle, to the frame placed at the CoM of the robot has been computed (Fig. 3).
Using the joint stiffness matrix Kj, the resultant Cartesian stiffness matrix

Kc € R®*® at the pelvis level (CoM) can be obtained by the following equation:

() Ke = JeomKi/com

where Jov is the inverse transposed Jacobian matrix. In a similar manner, the
resultant Cartesian damping matrix D € R®*® at the pelvis level (CoM) can be
obtained as follows:

(8) De = JeomDy/com

where D; is the joint stiffness matrix defined in the previous section. Equations (7)
and (8) are an approximation of the complete relationship due to the fact that they
do not take into account the change of the Jacobian matrix during the deflection

movement [15]. Consequently, the approximation is valid when the deflection is
small which occurs during the model experiments.

2.3. Working principle of the model

The dynamics model of COMAN is developed with the following assumptions in
mind:
(A1) The joints’ positions 8 are controlled with a stiff PID loop.

(A2) The elasticity in the joint transmission system is due to the harmonic drive
compliance as well due to additional physical elasticity integrated in the knee
and ankle pitch joints of the leg.

(A3) A single mass approximation is used for the robot model.

The first assumption allows the reduction of the model’s complexity. In fact,
in the case of an ideally stiff position control (motor position tracking error equal to
zero) and high reduction ratio (back-drivability approximately zero), the dynamics
of the motor in (1) can be ignored when the robot is subject to external force
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perturbations. In this case, (2) approximates the overall joint/link dynamic because
the dynamics of the controlled actuator is much faster than the dynamics of the
transmission.

During walking experiments, the position deflection of the CoM with respect
to the desired position is large along the directions X and z and smaller along the
lateral direction y according to foot frame (Fig. 3). This is a consequence of (A2), in
fact, the level of compliance is high in the sagittal plane of the humanoid robot (due
to additional elasticity in the knee and ankle pitch joints) while in lateral direction
the robot is stiffer (only the compliance of the harmonic reduction drive contributes
to this). Because of that, in y direction the movement can be approximated by a stiff
system.

Finally, (A3) is an approach which has been extensively used in trajectory
generation and control of humanoid robots [16]. Therefore, according to this
assumption, the dynamics of the robot is approximated to the dynamics of the single
mass placed at the pelvis (CoM position).

According to the previous consideration and considering equations (7) and (8),
the forces generated at the pelvis (CoM) frame when the CoM position
p=[xyz]T € R® deflects with respect to its reference position vector
Pr=[x: yr z:]T € R3, can be expressed as follows:

) Fer = —Kcr(p — pr) — Derp

where Kcr, Doy € R3*3 are sub-matrices of K¢, D¢ related to the linear motion
along X, y and z. In case of diagonal matrices X, ¥ and z dynamics are completely
decoupled but in this case the off-diagonal elements of the matrices in (7) and (8)
are different from zero. Therefore, decoupling the movement of the robot is not
possible.

The linear passive dynamics of the single-mass model can be described by the
following expression:

(10) Mp = Fer(p,p) + MGer

where the mass-matrix M = diag(m,m,m) € R3*3 with m being the total mass of
the robot placed at the CoM, Fer = [fex foy f-z]T € R3? is the Cartesian forces
given by (9) and Gcr = [00 — g]T € R3 represents the gravity.

Considering only the passive dynamics along the sagittal and vertical
directions and referring to equation (9), (10) can be written in a matrix form as
follows

mx Kix sz] X = Xr [Dxx sz] x 0
1 Y= - .
(1) [mz] K, K, 2 - zr] D,. D, [Z] T lomg
where K, K,,, K,, and K,, are the relevant elements of K¢; Dyy, Dyz, Dyx, D,y
are the relevant elements of D¢; x, and z, are Cartesian position reference of the
CoM; and x, z, X Z, X, Z are position, velocity and acceleration of the CoM when it

is subject to external loads. The passive dynamic of the CoM of the robot in
Cartesian space during stance phase is described by (11).
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2.4. Reference trajectory generation

The reference trajectories used later in the learning technique and in the
experimental evaluation of the model were generated based on the ZMP approach.
The desired gait can be defined by a minimum set of data: step length (sl), single
support duration (Tys), double support duration (Typ,). During the single support the
robot was approximated with a single mass linear inverted pendulum as in [16],
[17] The ZMP trajectory was computed in order to achieve the desired gait. The
reference position of CoM p, can be obtained from the defined ZMP
reference pzvp = [Xzmp Yzmp 0]F € R3.

(12) g = 2 ==L e,
(13) e e Y

where Z_ is the fixed CoM height.

3. Model implementation

The model in (11) has been developed exploiting the characteristics of the system
and adopting some approximation based on the three assumptions reported in
Section 2.3. These approximations allow to reduce the complexity of the equations
but at the same time they introduce an error in the model. The model equations can
be rearranged as follows:

o Kxx Kxz Dyyx . Dyz .
(14) & =%= —a17(x — X)) — BlW(Z—Zr) I CRawab S Bl 2
. sz KZZ
(15) §=i=—g— 0 Ex-x)-p, Z@-2z)

DZX' . DZZ
V2T XT84

where a;, B;, v; and &;, i={1, 2} are parameters inserted to compensate model errors

due to the approximation used as well as other errors from the identification of the
joint stiffness and damping parameters.

Equations (14) and (15) describe the robot behavior during single support. In
this phase, the robot stands on one leg therefore the robot movement is mostly
affected from the compliant joints of the supporting leg. Otherwise, during double
support phase, both feet are on the ground hence the compliant joints of both legs
contribute to the robot movement. To take into account the effect of the second leg
during this phase, the same procedure used to derive equations (9) can be reiterated
for the other leg and included in the model equation. In order to reduce the
complexity of the model, another approach has been adopted. Assuming that during
the double support phase the two feet on the ground do not move relative to each
other, the forces developed from the two legs are different because of the different
configuration of the legs and different displacements. The effect of the second leg
has been included to the model scaling equations (14) and (15) as follows:

- Kox Dyx . Kxz Dyz .
(16) & =X =m (—alg(x —x) =y X = Btz 7)) — 8172),
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o sz DZX v
(17) 52=Z=—g+712(—0527(x—xr)—\(2 ety
KZZ DZZ .
-B, 7(2 —7) — & 72)-
Equations (16) and (17) are used during the double support phase. The scaling

coefficients 1, 1, are computed from experimental data which evaluates the x and
z forces measured by the force/torque sensors mounted at the feet of the robot [14].

4. Optimization of the model using reinforcement learning

The proposed compact model captures well many of the characteristics of the
passively compliant robot. However, it does not perfectly predict the behaviour of
the robot, which is due to two main reasons: (i) the simplifying assumptions, which
are necessary to keep the model compact, but also introduce approximation errors,
and (ii) measurement inaccuracies when estimating the physical properties of the
robot, e.g. the stiffness of the springs, etc. A common simplification assumption is,
for example, that the left and the right leg have the same properties and therefore
behave identically. In reality, this is not entirely true, because of the complexity of
series elastic actuation, where it is normal to observe differences between the right
and left leg’s motors, passive compliance unit, friction, and so on.

One way to minimize the modelling error is to make the model more complex.
This, however, would diminish the advantage of having a compact model, and
would impede its use as a fast predictor of the robot’s behaviour instead of the robot
itself. Therefore, in this paper we concentrate our effort on optimizing the proposed
compact model in order to achieve the best modelling precision without
unnecessarily increasing the model complexity.

More concretely, by optimization of the model we mean the search for optimal
values of some important parameters of the model. From equations (14)-(17) we
have identified 8 important parameters whose values are crucial for the performance
of the model. These parameters are as follows: a; and vy, affect the relationship
between the force generate along x direction and the position and velocity of the
CoM in the same direction, B, and &, affect the relationship between the force
generate along z direction and the position and velocity of the CoM in the same
direction, finally B,, &;, a; and v, affect the coupling between the orizontal and
vertical movement of the CoM.

Initially, the parameter values are all set to be equal to 1.0. The goal of the
optimization is to find other values for these parameters which reduce the overall
model error. The model error is estimated using a ground truth data set, recorded
from real-world experiments with COMAN, where the reference trajectories are
known, and the actual response trajectories are compared to the model output.
Using this data set, we have defined a cost function to be minimized, equal to the
mean squared error of the model prediction with respect to the actual response
trajectories.

Many alternative optimization approaches exist, which can be used to
minimize this cost function. In this paper we have selected a reinforcement learning
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approach, based on direct policy search. In this approach, the policy is
parameterized by a set of parameters, and the reinforcement learning algorithm is
trying to optimize their values by performing a sequence of trials and evaluating its
performance using the defined cost function (which is a form of reward function).

In particular, we have selected the POWER algorithm (POlicy learning by
Weighting Exploration with the Returns [18]) for implementing the optimization,
for the following reasons: (i) it does not require a learning rate parameter; (ii) it re-
uses efficiently trials using importance sampling; (iii) it has been already applied
successfully on the COMAN robot for another task, to optimize the walking gait by
varying the center-of-mass height and thus reduce the energy consumption [19].

The optimization algorithm has been executed on reference trajectories with
duration of 30 s (30 000 samples) and the corresponding trajectories performed by
the robot computed through forward kinematics. The gait parameters are sl=0.03,
Tss=0.5 s and Tg,= 0.2 s.

Table 1. Parameter values after the optimization

Parameter a, B, Yy & a; B, Y, &
Value 0.9827 | 1.0357 | 1.0560 | 1.1335 | 0.9792 | 0.9561 | 1.0072 | 1.1053
Table 1 contains the optimal values of the parameters found by the algorithm.
The results from the optimization show that the modelling error can indeed be
reduced by only changing the values of the selected eight parameters
(@1, B, 17y, €1, @2, B,, 75, €2)- In Fig. 4 the results of the model before and after the

optimization process are compared.

0.06
0.041
0.021

0 g
-0.02 \_/ ----- model before optimization

——model after optimization

X [m]

-0.04t —real robot response
‘ — reference trajectory
17.5 18 18.5
time [s]
0.47
0.46
E 045
N
----- model before optimization
0.44

——model after optimization
—real robot response
— reference trajectory
17.5 18 18.5
tme [s]
Fig. 4. Comparison of the model results before and after optimization

0.43

83



The base assumptions of the model reduce the precision of the inertia
representation more than the gravity. The movement along the walking direction is
mostly affected by the inertia of the system because there are important
accelerations and decelerations. Instead vertical movement is mostly affected by
gravity force. The consequence is that the movement along x directions benefit of
the optimization procedure more than z direction.

5. Conclusion

In this work a reduced model of the dynamic of the CoM motion of the robot has
been described. The model is based on some assumptions that reduce the
complexity of the equations but at the same reduce the precision of the results. To
improve the performances of the model some parameters have been inserted in the
model equations in order to compensate the errors due to the reductions. The value
of these parameters has been optimized using learning technique. An improvement
of the model performance has been reached.

The set of parameters found has been also used to perform walking with
different gaits than the one used in the optimization process. Also, in these cases the
performance reached by the optimized model is better than the original model.
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