
Learning multiple strategies to perform a valve turning with
underwater currents using an I-AUV
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Abstract— Recent efforts in the field of intervention-
autonomous underwater vehicles (I-AUVs) have started to show
promising results in simple manipulation tasks. However, there
is still a long way to go to reach the complexity of the tasks
carried out by ROV pilots. This paper proposes an intervention
framework based on parametric Learning by Demonstration
(p-LbD) techniques in order to acquire multiple strategies to
perform an autonomous intervention task adapted to different
environment conditions. The manipulation skills of a pilot are
acquired thought a set of demonstrations done under different
environment circumstances, in our case different levels of water
current. The proposed algorithm is able to learn these different
strategies and depending on the estimated water current,
autonomously reproduce a combined strategy to perform the
task. The p-LbD algorithm as well as its interplay with the rest
of the modules that take part in the proposed framework are
described in this paper. We also present results on a free-floating
valve turning task, using the Girona 500 I-AUV equipped with
a manipulator and a customized end-effector. The obtained
results show the feasibility of the p-LbD algorithm to perform
autonomous intervention tasks combining the learned strategies
depending on the environment conditions.

I. INTRODUCTION

Technology advances in the past decades have fostered

underwater exploration by providing autonomous underwater

vehicles (AUVs), which allow to cover large underwater

areas while gathering all sorts of data. However, underwater

intervention tasks, still rely on manned submersibles or

remotely operated vehicles (ROVs), that require expensive

vessels with dynamic positioning systems and a dedicated

pilots for their operation.

The next natural step is to push AUV capabilities to

perform underwater intervention, with the aim of reducing

the costs of these kind of operations. Different research

projects have approached the autonomous underwater inter-

vention from distinct points of view. The SAUVIM project

[1] proposed an underwater intervention using a priority

order controller for the manipulator to recover objects of

the seafloor. In the TRIDENT project [2] a system to

search and recover objects with a light Intervention-AUV (I-

AUV) was presented. The I-AUV implements an underwater

vehicle manipulator scheme (UVMS) which is guided by a

visual system to grasp the object. The TRITON project [3]

demonstrated docked manipulation with an I-AUV connected
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in a sub-sea station. In this case only the manipulator is

actuated during the intervention. The work presented here

is conducted in the context of the PANDORA [4] project,

that has the goal to perform free-floating manipulation of a

sub-sea valve panel.

The experiments developed in the context of PANDORA

project have been performed with the Girona 500 I-AUV

(see Fig. 1) in a controlled environment were perturbations

were introduced artificially. In previous work [], the intensity

of the introduced perturbations was such that the low-level

controller could overcome them in the majority of the cases.

However, this paper aims to extend this work and perform

autonomous underwater intervention in a more challenging

environment, targeting a valve turning task under the influ-

ence of more intense underwater currents, which will require

different strategies to perform the task correctly.

Fig. 1. Girona 500 I-AUV in the water tank, equipped with the manipulator
and a customized end-effector. At the background there is a mock-up
of a valve panel (right) and 2 thrusters to generate lateral water current
perturbations (left).

An intervention framework based on a learning by demon-

stration (LbD) algorithm was previously proposed [5]. It is

based on a machine learning technique that enables a robotic

platform to easily learn a new task. To do it, rather than

analytically decompose the problem and manually program

a desired behavior, the LbD takes the knowledge from a set

of demonstrations performed by an operator. To approach

the problem under the presence of strong perturbations we

have developed a new parametric-LbD (p-LbD) algorithm

to extend the current implementation of the intervention

framework. The p-LbD creates parametrized models accord-

ing to the estimated environment perturbation conditions.

Then, once the task is learned, the AUV is able to infer

the appropriate reproduction from the models according to

the actual water currents.

The rest of this paper is organised as follows. Section II

presents the related work in LbD applied to manipulation.
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Section V lays out the proposed intervention framework for

an I-AUV and describes the used algorithm. Results obtained

from this valve turning scenario are presented and analyzed

in Section V. Finally, Section VI summarizes and concludes

the work.

II. RELATED WORK

LbD is a machine learning technique designed to transfer

the knowledge from an expert to a machine. This type of

algorithm usually follows three sequential phases: first, a set

of demonstrations of the task performed by a human operator

are recorded; second, the algorithm learns by generalising

all the demonstrations and creating a model; finally, the

algorithm uses the model to reproduce a new task.

Different LbD algorithms have been proposed throughout

the literature, depending on the method used to encode the

learned trajectory. [6] proposed a representation based on

Gaussian mixture model (GMM), which was later extended

by [7] using incremental GMM to automatically set the

number of Gaussians. Similar to the GMM, a hidden Markov

model (HMM) [8] has also been used to represent a trajec-

tory.

A different approach is to use dynamic movement primi-

tives (DMP) [9] [10]. Unlike GMM and HMM, DMP uses

the learned model to dynamically generate the required

commands to perform the reproduction of the trajectory. This

makes the approach more robust to external perturbations

and easily adaptable to different domains. DMP has been

extended by [11] to include a force associated with the

trajectory.

Therefore, given the simplicity of the representation and

its flexibility, DMP is more suitable in the context of this

work and constitutes the base of our learning framework.

A. Parametric Learning by Demonstration (p-LbD)

To model a task with a high degree of variability with and

LbD algorithm two strategies can be followed: either perform

a high number of demonstrations in order to capture the

variability of the task or learn one model for each different

situation. Both solutions present problems. The former leads

to a too generic model not representative of the task while

the later forces the user to create a new model every time that

the conditions change. The p-LbD algorithm overcome both

problems identifying the key parameter that differentiates

each situation and adapting the model consequently. Some

relevant examples of different implementations of p-LbD

algorithms are introduced next.

First, Kruger [12] proposed an LbD algorithm where

the task to be learned is divided in parametrised actions

represented by states in the HMM. To encode the action

and simplify the number of states the authors used the effect

of each action as the parametric value of the HMM. For

instance, moving one object has as a parameter the initial

and final position.

Recently, Calinon [13] proposed a p-LbD algorithm to

move a conic peg from one place to another. The algorithm

records the trajectories performed in the demonstration phase

from two different frames placed at the initial and final

position. These positions are the parameters used by the

algorithm. From the two sets of trajectories (one from

each frame) two models are computed and then, using the

Gaussians properties, both models are merged. Then, giving

as a parameters the initial and final positions, the algorithm

is able to instantiate a new model and reproduce the learned

task for these particular parameters.

Matsubara [14] proposed a parametric version of the DMP

algorithm. A user performs a set of demonstrations each one

with a different styles. For example, it moves a box from left

to right passing over zero, one or two other boxes. Then, all

the demonstrations are translated from the human right arm

joint space to manipulators four degrees of freedom (DoF)

joint space. Using the proposed style-DMP algorithm this

demonstrations are then compactly encoded in a movement

primitive that can be reproduced controlling its style pa-

rameter. A mapping between the height of the obstacle and

the corresponding style parameter can be empirically learned

from data.

In contrast to the previous approach we propose a para-

metric version of the DMP which learns different models

associated to an environment condition. In the reproduction

phase, a weighted combination of these models is generated

according to the current environment situation. The moti-

vation of this method is to represent different strategies to

resolve the same task depending on external factors which

are not represented in the learned model.

III. LEARNING A PARAMETRIC-DYNAMIC MOVEMENT

PRIMITIVE

We propose to parametrize the previous DMP algorithm

presented in [5], which was successfully used to perform an

underwater valve turning task.

That method was based on a modified version of the

original DMP proposed by Calinon [15], where the com-

mands are generated using a modification of a Gaussian

Mixture Regression (GMR), which behave similar to the

Vector Integration To Endpoint (VITE) originally proposed

[16].

A. Dynamic Movement Primitive (DMP)

The DMP encapsulates the trajectory to be learnt as

a superposition of basis motion fields (see Figure 2). To

generate the proper superposition, there are a set of attractors

with an associated weight that change its influence over the

trajectory along the time.

To generate the superposition, each attractor has an asso-

ciated weight which changes along the time defined by the

hi(t) function (1). The weight of each attractor is represented

with a Gaussian, whose centers μT
i are equally distributed in

time, and whose variance parameters ΣT
i = total time/K

are set to a constant value inversely proportional to the

number of Gaussians (K).

hi(t) =
N (t;μT

i ,Σ
T
i )∑K

k=1 N (t;μT
k ,Σ

T
k )

, (1)



Fig. 2. Top figure shows a set of 2D demonstrated trajectories (black) and
one reproduction (red). In this case, the demonstrated trajectory has to grasp
the valve aligning the fore arm of the manipulator with the valve. Below,
the weight of each Gaussian over the time is represented. The encoding of
the trajectories using a DMP algorithm has been done using 6 Gaussians.

Instead of using the real time, a decay term is used to

obtain a time invariant model:

t =
ln(s)

α
,

where s is a canonical system : ṡ = s− αs,
(2)

and the α value is selected by the user depending on the

duration of the demonstrated task.

The number of attractors is preselected by the user and

represented using Gaussians, depending on the complexity

of the task. The position of the attractor is the center of

the Gaussian (μx
i ) and the stiffness (matrix KP

i ) is rep-

resented by the covariance. The values are learned from

the observed data through least-squares regressions. All the

data from the demonstrations is concatenated in a matrix

Y = [ẍ 1
KP + ẋKV

KP + x], where x, ẋ and ẍ are the position,

velocity and acceleration recorded at each time instant of the

demonstrations. Also, the weights at each time instant are

concatenated to obtain matrix H . With these two matrices,

the linear equation Y = Hμx can be written . The least-

square solution to estimate the attractor center is then given

by μx = H†Y , where H† = (HTH)−1HT is the pseudo-

inverse of H .

The user needs to define a minimum KP
min, and maximum

KP
max to define the limits of the stiffness and to estimate the

damping as follows:

KP = KP
min +

KP
max −KP

min

2
, KV = 2

√
KP . (3)

To take into account variability and correlation along

the movement and among the different demonstrations, the

residual errors of the least-squares estimations are computed

in the form of covariance matrices, for each Gaussian (i ∈

{1, ...K}).

ΣX
i =

1

N

N∑
j=1

(Y ′j,i − Ȳi
′
)(Y ′j,i − Ȳi

′
)T , (4)

∀i ∈ {1, ...K},
where:

Y ′j,i = Hj,i(Yj − μx
i ). (5)

In Equation 4, the Ȳi
′

is the mean of Y ′i over the N

datapoints.

Finally, the residual terms of the regression process are

used to estimate the KP
i through the eigen components

decomposition.

KP
i = ViDiV

−1
i , (6)

where:

Di = kPmin + (kPmax − kPmin)
λi − λmin

λmax − λmin
. (7)

In the equations above, the λi and the Vi are the concatenated

eigenvalues and eigenvector for the inverse covariance matrix

(Σx
i )
−1. The underlying idea is to determine a stiffness

matrix proportional to the inverse of the observed covariance.

Therefore, the model for a given task will be composed by:

the kPi matrices and μx
i centers representing the Gaussians;

hi(t) representing the influence of each matrix functions;

KV representing the damping; and α, which is assigned

according to the duration of the sample. Figure 2 shows a

simple example where the learned data is represented.

Finally, to reproduce the learned skill, the desired accel-

eration is generated with

ˆ̈x =

K∑
i=1

hi(t)[K
P
i (μX

i − x)−Kvẋ], (8)

where x and ẋ are the current position and velocity.

B. Parametric-Dynamic Movement Primitive (p-DMP)

The p-DMP associates a parametric value to each recorded

demonstration. These parameters can be defined by several

values not related with the number of DoF learned. The

parameter value ought to be defined by some environment

condition. The only requirement to select a proper parameter

is that should be possible to relate its values using a distance

function.

All the demonstrations are grouped by the associated

values thus conforming different groups. For each group,

a representative model will be learned using the aforemen-

tioned DMP algorithm, with appropriate KP
max, KP

min and

number of attractors (K).

In the reproduction phase, the influence (m) of each model

is computed according to distance between the current value

of the parameter and the different models. The influence

value obtained with Equation (9) is normalized between the

0 and 1.

∀j ∈ J, mj = 1− dist(p, qj)∑J
i=1 dist(p, qi)

(9)



where dist is the function that defines the distance be-

tween the current set of parameters (p) and group parameters

(q) and J is the list of learned groups.

Moreover, the influence of each model is applied to

coordinate the advance of the time (n) for each group,

facilitating the combination of models with different duration

using time invariant model(t):

∀j ∈ J, tj =
ln(sj)

αj
,

where s is: ṡj = sj − αjsjnj ,

(10)

nj is the proportional advance computed as:

∀j ∈ J, nj =
uj∑J

i=1(uimi)
(11)

and u is the needed time to perform a regular reproduction

of the learned model. Finally the mixture of all the influences

is computed as follows:

ˆ̈x =

J∑
j=1

mjnj

(
K∑
i=1

hj,i(tj)[K
P
j,i(μ

X
j,i − x)−Kv

j ẋ]

)
,

(12)

to obtain the desired acceleration.

IV. INTERVENTION FRAMEWORK

The proposed intervention framework for an I-AUV can

be divided in two parts. First, the hardware components, the

vehicle and the manipulator. Second, the software architec-

ture which gathers information from all sensors, does the

computations and generates commands to control the I-AUV

in a desired behavior.

A. Hardware components

The Girona 500 I-AUV [17] is a compact and lightweight

AUV with hovering capabilities which can fulfil the par-

ticular needs of different application by means of mission-

specific payloads and a reconfigurable propulsion system.

The propulsion system is configured with five thrusters to

control four DoFs (surge(x), sway(y), heave(z) and yaw). To

perform the intervention task, the Girona500 is equipped with

a robotic arm (see Fig. 1), with four DoFs (slew, elbow,

elevation and roll) and a customized end-effector composed

by a passive gripper, camera in-hand and a force/torque (F/T)

sensor. The manipulator is installed in the front part of the

vehicle to allow the manipulation of vertical panels.

B. Intervention Framework for I-AUV

The intervention framework for I-AUV is composed by

several modules which are organized in four layers, (see

Fig. 3). Starting from the bottom, the first layer contains all

sensors and actuators drivers. Next layer has the perception

modules to process sensors information. Main modules in

this layer are the localization and the perception module, this

layer is able to track the target elements using both modules.

On top of it, there is the control layer in charge of fulfilling

the desired commands given by the p-LbD algorithm or the

teleoperation module. Finally, in the top layer there is the

teleoperation module and the LbD algorithm that is in charge

of acquiring data from demonstrations (phase 1), learning

the model (phase 2) and reproducing the task by generating

velocity set-points (phase 3).

Fig. 3. Diagram of the structure of the intervention framework.

Two new modules have been developed and added in

the existing intervention framework, the current estimation
module and the p-LbD algorithm. The next subsections will

focus on the explanation of this two modules.

1) Current Estimator: Since the Girona 500 I-AUV has

no specific sensor to measure the underwater currents, we

have developed a module to estimate the currents affecting

the AUV. This module requires an initialization phase where

the AUV needs to discover the necessary forces to keep a

static position during a period of time in regular conditions.

To obtain a better estimation the static position is relative

to a static landmark (i.e. in front of a sub-sea valve panel).

Once this phase has been performed the values are stored and

can be reused as long as the environment conditions do not

change. Before starting an intervention attempt, this module

is activated and tries to keep the same position for the same

period of time as in the initialization phase. Then, the forces

are compared and the current force is estimated.

2) Parametric-LbD: Due to the hydrodynamics of the

vehicle and the configuration of the thrusters, the AUV is

more robust to perturbations in some axes than in others, for

example the vehicle is more stable under a perturbation in

surge(x) than in sway (y). For this reason, the same tasks

can be resolved more efficiently with different strategies

according to the environment. The parameters selected for

this algorithm are the current forces in the 3 axis, and

the difference between the models is computed using the

euclidean distance.

Like in previous work, the p-LbD algorithm controls

the 8 DoFs. In this situation is important to control both

elements (AUV and manipulator) together instead of using

other approaches like underwater vehicle manipulator system

(UVMS) [18] where only the end-effector position and

orientation is controlled. In different strategies the position



of the end-effector at the end will be similar but the vehicle

position will have significant differences, which can not be

easily controlled using an UVMS.

The explained p-DMP that targets the control of a 3

DoF trajectory (such as the one performed by an industrial

manipulator) has been extended to control a total of eight

DoFs, four DoF to represent the trajectory of the AUV

and four DoF for the manipulator. Since DMP uses a n-

dimensional state vector, the addition of new variables, does

not affect the underlying formulation, however some changes

are required.

End-effector pose integration: the pose of the end-

effector is added to the learning model represented in the

Cartesian space (x, y, z).

Orientation integration: To represent the AUV orienta-

tion (ψ) and the end-effector roll (Φ) the reproduction for-

mula (8) has been modified to adapt to angles particularities.

Basically, the difference (μX
i −x) is normalized (between π

and −π).

End-effector interaction with the AUV: The requested

velocities sent to the manipulator are obtained subtracting

the AUV requested velocities to the end-effector velocities.

V. RESULTS

The proposed p-DMP and the adapted intervention frame-

work have been validated with experiments in a water tank

with water current perturbations. The proposed approach has

been validated under different degrees of perturbation, some

similar to the situation of the demonstrations and other in

new conditions. All the valves of the sub-sea panel have

been turned several times achieving different success rates.

The obtained results are explained according the three phases

of the p-DMP algorithm.

A. Demonstration

The valve turning validation has been performed in a water

tank using the Girona 500 I-AUV. To generate underwater

currents two thrusters (providing up to 14 kg) have been

placed in the vicinity of the intervention panel (Fig. 1 shows

the test environment).

Demonstrations have been performed under the effect

of two levels of perturbation: zero perturbations and high

perturbations. Each one of these scenarios requires a different

strategy to solve correctly the turning valve task. In the

first one, the thrusters do not generate any current. In this

situation, the strategy is to keep the AUV perpendicular

in front of the panel while the manipulator is moved to

an appropriate configuration to manipulate the valve, and

afterwards, the valve is grasped and turned combining the

movement of the AUV and the manipulator. In the second

case, we turn on the thrusters to approximately the 70% of

their thrust power. In this case, the AUV can not keep a

perpendicular position in front of the sub-sea panel. Then,

the panel is approached with an angle near to 45◦. At this

angle, the vehicle is able to keep the position and also detect

the panel. Meanwhile the manipulator is moved laterally to

an appropriate configuration to manipulate the valve. Finally,

after adjusting the position of the AUV and the manipulator

the valve is grasped and turned. Note that due to inherent

manipulator limitations it is only possible to operate the valve

from the right site of the AUV. For this reason the current

perturbations have been always applied from the same side

of the panel.

To obtain a more generic approach, the turning of the valve

is not included in the learning model allowing to reuse the

same learning for all the possible turns. Moreover, all the

models are learned with respect the target valve coordinate

frame thus allowing to use the same model for all different

valves.

B. Learning

Two different models have been learned, the zero pertur-

bation strategy has an average associated force of x=0.1,

y=0.5 and z=0.4 N and the high perturbations strategy has an

average associated force of x=1.2, y=8.5 and z=-2.5 N. We

can appreciate that the more affected parameter is the y axis

but the z and x axis become also affected as a consequence

(Fig. 4 shows the set of demonstrations).

Once the demonstrations have been grouped in these two

trajectory strategies, three different parameters have been

adjusted to adapt the p-DMP method to them.

The first parameter is the number of Gaussians used to

define the trajectory. A high number of Gaussians allows

the representation of movements with many restrictions and

low flexibility, while a small number is better to represent

trajectories with more variability. The duration of the demon-

strations also influences the number of Gaussians needed,

since they are distributed uniformly along the trajectory.

Thus, a longer experiment requires a bigger number of

Gaussians to be obtain good accuracy.

In our case, this value has been adjusted experimentally

to 11 and 15 Gaussians for the zero and the high current

strategies. Despite it may seem a large number for the kind

of learned trajectories, 11 and 15 Gaussians are required to

ensure an accurate trajectory following, given the workspace

limitations of the manipulator. The trajectory with no per-

turbations needs less time to resolve the task (75 seconds)

compared with the high perturbation strategy which needs

110 seconds, for this reason they require a different number

of Gaussians to obtain similar results.

The other two parameters to be set are KP
min and Kp

max.

These values define the limit and the initial value for the

search of the stiffness (KP ) and the damping of the system

(KV ) associated with each Gaussian. If the values are small

and close to each other, they produce a low and smooth

velocity command. Otherwise, if limits are big and the differ-

ence is high, the generated velocity commands will be bigger,

which can be unstable for controlling precise trajectories but

more suitable to external perturbations. Hence, the values of

these parameters have been chosen as a trade-off between

smoothness and robustness with values equal to 0.5 and 2.5

respectively for both models. Both KP
min and Kp

max are

equal for the two strategies learned since the values of this

parameters are also related with the hardware used, which in
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Fig. 4. Average trajectory (dashed-line) and upper and lower limit of the 4
demonstrated trajectories. Each plot shows a single DoF for the manipulator
and the end-effector. Depicted in blue, the group of no perturbations
and in green the demonstrations under perturbations. All trajectories are
represented in the frame of the target valve.

this case is exactly the same, and the kind of movement to

be learned, which in both strategies is similar.

C. Reproduction

We have performed an experiment consisting of three

turns for each four valves in three different environments: no

perturbations, moderate perturbations (40-50%), high pertur-

bations (70-80%). The success rate of correctly performed

valve turns along all the experiment has been of 80.05% (29

out of 36 attempts). The 19.95% of error can be attributed

to the sum of different small errors in the estimation of the

target’s pose (i.e. valve pose) and an error in the estimation

of the manipulator’s calibration. To diminish the problem in

the arm-calibration, a re-calibration procedure is performed

every two valve turning attempts. On the other hand, to

reduce the error in the detection of the target when the

vehicle is not perpendicular to the panel the camera in hand

is used to detect the valve position. Although this camera is

less precise than the vehicle camera due to the smaller field

of view and lower quality of the gathered images, merging

the information of both cameras improves the estimation.

no perturbation moderate perturbation high perturbation
91.6 % 75.0 % 75.0 %

TABLE I

SUCCESS RATE IN PERCENT (%) ASSOCIATED TO EACH PERTURBATION

GROUP.

Table I shows the success rate on the different environment

situations. It illustrates how the perturbations introduce more

instability in the performance of the AUV. However, although

the new strategy is more complex to perform, it is more

robust in front of perturbations. Comparing this results with

previous experiments [19] where there was only one strategy

(perpendicular approach) the success rate has increased from

65% to 75% in moderate perturbations and from 50% to 75%

in high perturbations.

Figure 5 shows the two groups of demonstrated trajec-

tories and one successful trajectory for each group. The

autonomous trajectories depicted in the figure for no pertur-

bation (x=0.0, y=0.41 and z=0.6 N) and high perturbations

(x=1.4, y=8.0 and z=-2.4 N) show how the AUV and the end-

effector follow the average trajectory of the demonstration

in a smooth movement. The moderate perturbation (x=0.7,

y=4.1 and z=-1.1 N ) trajectory follows a new strategy which

requires an average of 90 second to be performed and follows

a new trajectory which is a mixture of the two learned

models.

VI. CONCLUSIONS

The underwater domain is a challenging environment for

performing intervention tasks that require manipulation of

objects or structures. The implementation of these tasks is

not trivial if the traditional programming approach (i.e. give

a sequence of waypoints) is used. Moreover, in case of

changing to a new intervention task or developing the same
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Fig. 5. Three autonomous trajectories are depicted together with the
average, upper-limit and lower-limit of the two demonstrated groups (dashed
green and blue lines). The trajectory under no perturbations is depicted
in green, moderate-perturbations in red, high-perturbations in blue. All
trajectories are represented in the frame of the target valve. Each plot
shows a single DoF for the manipulator and the end-effector. The time
axis corresponds to the real time of the experiments which in this case is
the equivalent to the one generated by the canonical system.

task in different environment conditions reprogramming the

mission requires significant programming efforts.

To handle these issues, this paper has presented the

use of the p-LbD algorithm integrated in an intervention

framework for I-AUVs, which allows to learn, in a easy

and generic way, new capabilities from a human operator.

The p-LbD technique sits at the core of the framework,

using a new p-DMP algorithm which learns and reproduces

different strategies to resolve the same task according to the

actual environment situations. The intervention framework

controls independently eight DoF, four for the AUV and

four for the manipulator. Validation experiments have been

performed with the Girona 500 I-AUV equipped with a

manipulator and a custom end-effector in the context of a

valve turning intervention task in a dynamic environment

in which underwater currents can be set to different speed

levels.

A procedure to estimate such currents has been imple-

mented. This procedure measures the forces received by

the AUV while keeping a stable pose before starting the

intervention. The estimated current force is used as input

parameter on the p-DMP algorithm to select the appropriate

strategy. The results of this experiment have proved the suit-

ability of the proposed method obtaining similar results than

a human operator. Furthermore, the method has showed a

correct behaviour combining the strategies taught depending

on the environment conditions at each moment.

Future work will focus on trying to automatize the selec-

tion of the DMP parameters such as the number of required

Gaussians or the stiffness and damping values. This would

be of special interest when very different tasks must be

programmed, as determining the parameters experimentally

could turn into a cumbersome procedure. Also, it could

be interesting to include the F/T sensor data in the DMP

algorithm so that the system can learn/reproduce how the

human operator interacts, in terms of force, with the target.
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