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Abstract— AUVs have experimentally done the first steps to
solve basic intervention tasks. First results have been promising
in the task of retrieving an object from the seabed. In this
paper we extend the complexity of the task with the help of
a Learning by Demonstration (LbD) approach. An extension
of a LbD algorithm to learn the pose and orientation of the
trajectory is presented to achieve a valve turning task. A batch
of demonstrations done in ROV mode is used by the LbD
to learn the trajectory, taking advantage of the experience of
the pilots. Moreover, the paper present a controller able to
coordinate the movement of the manipulator using the position
or the orientation of the end-effector and also moving the AUV
when is required. Both systems have been tested together in a
simulated environment to solve the task of interacting with a
valve located on a ROV panel. The experiments has been done
in an environment without perturbations and in an environment
with different perturbations. The method has been able to
overcome the perturbations and complete the task successfully.
Furthermore, the proposed controller has simplified the use
of the manipulator during the intervention task. The robot is
equipped with a 4 DOFs manipulator having a griper as end
effector to operate the T bar handles found in the panel. Panel
and valve handle position and orientation are detected by a
computer vision program based on template matching.

I. INTRODUCTION

Nowadays, the most common task where Autonomous
Underwater Vehicle (AUV) are used is the exploration of
the seabed or water column recollecting information using
different kind of sensors. Collected data can be used in
applications like seabed mapping, hull inspection or water
monitoring. Recently, AUVs have been used to recover
objects from the seabed using a robotic arm [1]. The results
obtained are promising but still not enough robust and gen-
eral to be applied in any different underwater intervention.

The Persistent Autonomy through learNing, aDaptation,
Observation and ReplAnning (PANDORA) project [2] has
the aim of making AUVs Persistently Autonomous. One of
the goals in this project is to improve the lack of skill of
AUVs, making feasible to perform an intervention task. In
one scenario the robot has to identify the appropriate valve
from a panel and turned it, while the vehicle is hovering in
front of the panel without docking. During the intervention,
the vehicle has to compensate the different perturbations or
even suspend the task to avoid possible damages. Figure
1 shows an image of the Girona500 AUV in front of the

Authors1,2,4,5 are with Computer Vision and Robotics
Group (VICOROB), University of Girona, 17071 Girona,
Spain. arnau.carrera, marc.carreras,
narcis.palomeras, sharad.nagappa at udg.edu

Author3 is with Department of Advanced Robotics, Istituto Italiano di
Tecnologia, via Morego, 30, 16163 Genova, Italy. petar.kormushev
at iit.it

valve panel and a representation of the valve panel and the
Girona500 with a manipulator in a simulator.

(a) Real image of the robot
keeping position in front of the
panel

(b) Simulated robot with the ma-
nipulator approaching the panel

Fig. 1. Girona500 AUV attempting the valve turning task.

To solve this kind of intervention it is important to follow
a particular trajectory to grasp the valve safely and avoiding
dangerous positions. This paper proposes the use of Learning
by Demonstration (LbD) to learn the trajectory using the
knowledge of experimented Remotely Operated underwater
Vehicles (ROV) pilots. This concept has been proved previ-
ously in a laboratory environment [3], [4]. The following
properties of the LbD make it suitable for planning the
movement of such intervention task: ease of representation
and learning, compactness of the representation, robustness
against perturbations and changes in a dynamic environment,
ease of reuse for related tasks and easy modification for new
tasks.

Usually LbD is used to learn any human skill which can
be represented by a trajectory. LbD has different methods for
encoding the trajectory. One option is to use a symbolic level
implementing a graph [5] or tree structure [6] to represent
the trajectory. Another option is to encode the trajectory in a
statistical representation based in a Gaussian Mixture Model
(GMM) [7] [8]. Also it is possible to encode the trajectory
using dynamic representations for example the Dynamic
Movement Primitive (DMP) [9] or evolutions of it [10]. LbD
can also be combined with other methods, such as Rein-
forcement Learning (RL) [11] which continues the learning
after the demonstrations according to future experience. Also
methods that combine LbD, RL and a prediction model [12]
adding robustness. Finally, there are other methods which
are able to learn from failed demonstrations, which can be
very useful when the task is too complex to be demonstrated
efficiently [13].

In the intervention task, the pilot controls the position
of the end-effector and the position of the AUV. This
paper presents a teleoperation system which controlling
the position of the end-effector controls both systems, the
manipulator and the robot position. This kind of controller
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is developed to do an intervention where the robot is really
close to the valve panel but can receive small perturbations
during the operation, making the goal not reachable without
correcting the position of the robot. With this combined
movement the same trajectory learnt can control the manip-
ulator and modify the position of the robot.

This paper shows the suitability of the approach in a
simulated environment using the UWSim [14] where the
Girona500 [15] AUV is simulated and equipped with a 4
DoF manipulator with a gripper as end-effector to manipulate
the valve in a T shape handle bar. Panel and valve handle
position and orientation are detected by a computer vision
program based on template matching. Handle orientation is
found with a Hough line transform. The experiments consist
in two steps. First, a set of demonstrations are done, where a
user controls the end-effector following different trajectories
to grasp the valve. Second, after learning from the batch of
demonstrations, the robot grasps the valve starting from a
new initial position and also receiving small perturbations
during the intervention.

This paper has been organized as follow. Section II details
the complete theoretical approach that has been used for
learning the manipulator trajectories. Section III describes
the intervention AUV set-up that has been used for the
experiments. Section IV presents the obtained results and,
finally, Section V summarizes and concludes the work.

II. THEORETICAL APPROACH

The aim of LbD is to program robots in a more natural
way, making them suitable for many different types of tasks.
There exist different methods to learn and reproduce the task
learnt, but all of them have the same three steps:

• Demonstration. In this step a batch of demonstrations
is recorded.

• Learning or Mapping the skill. The data recorded in
the previous step is processed and a mapping function
or a model of the skill is extracted.

• Reproduction of the skill. The model or the function
learnt is reproduced be generalizing the skill.

Fig. 2. Schema of the three step process used in LbD

There are several methods in LbD which are suitable to
solve this task, such as Dynamic Movement Primitive (DMP)
[16][17]. The trajectory is encoded as a superposition of basis
motion fields, represented by a mixture of gaussians which
are dynamically weighted (Figure 3).

The main advantages which have been considered to
choose this method are: Firstly, the desired trajectory is
generated dynamically during the reproduction making it
robust to external perturbations. Secondly, the flexibility and
simplicity of the representation makes it possible to adapt
the algorithm to different purposes adding few changes.

A. Dynamic Movement Primitive (DMP)

The DMP is a framework where the skill is encapsulated
in a superposition of basis motion fields. This method has a
compact representation and it generates movement trajecto-
ries that are robust against perturbations. The method used
is an extension of DMP [16] [17] proposed by Kormushev
[18].

To better understand this encoding, we can imagine that
we have a mass attached to different damped strings. These
strings attract the mass changing their forces along the time
of the experiment, moving the mass following the desired
trajectory. To represent the points where the mass is attached,
several gaussians uniformly set along the time are used.
To represent the damping gains and the stiffness of the
string, matrixes KV and KP are defined. And to represent
the influence of each attractor along the experiment, a set
of weights h is defined. Figure 3 shows en example of a
trajectory in 2D and how the attractors will be set. Figure 4
shows the weights associated to each gaussian of the encoded
trajectory.

Fig. 3. Top Figure shows the set of 2D demonstrated trajectories. Time is
not represented in the trajectory, and is used directly with weights. The
trajectory demonstrated has to pass between the two obstacles. Bottom
Figure shows the encoding of the trajectory with a DMP formed by 4
gaussians.

The data used to learn the trajectory consists of a set
of points having the position x, the velocity ẋ and the
acceleration ẍ, for each time step.

The set of K Gaussians is defined in time space, with



Fig. 4. Weights associated to each gaussian corresponding to the example
shown in Fig. 3

centres µi equally distributed in time, and variance param-
eters σ set to a constant value inversely proportional to the
number of states. By determining the weights hi(t) through
the decay term s , the system will sequentially converge to
the set of attractors in Cartesian space defined by centres
µx
i and stiffness matrices kPi , which are learned from the

dataset.
The desired acceleration to generate the trajectory is

computed using the Eq.1, where x and ẋ are the current
position and velocity.

ˆ̈x =
K∑
i=1

hi(t)[K
P
i (µX

i − x)− kvẋ] (1)

The time to determine the superposition of gaussians is an
implicit time generated using a decay term Eq.2 where s is
a canonical system Eq.3.

t =
ln(s)

α
(2)

ṡ = s− αs (3)

To summarize, DMP has the following favorable features:
• Any movement can be efficiently learned an generated.
• The representation is translational and time invariant.
• Temporal/spatial coupling term can be incorporated.

B. Learning the Manipulator Trajectory

The DMP algorithm is designed to move an object fol-
lowing a desired trajectory where the orientation is not
taken in consideration. In our case, to grasp the valve and
avoid collisions between the end-effector and the valve, it is
important to take in consideration the orientation between the
valve and the end-effector. For this reason we have included
three more dimensions in the DMP algorithm to represent
the position and the orientation in Euler angles.

This modification implies small changes in the algorithm
adding three dimensions to all the different variables of the
algorithm: the attractors and the inputs and outputs of the
generated data.

The trajectory learnt has the frame centre situated in the
valve’s position, and the orientation learnt is the difference
between the orientation of the valve and the orientation of the
end-effector. With this configuration the valve can be moved
to any different position and the learnt data will be valid to
reproduce the experiment.

III. REAL SET-UP

A. The vehicle and the manipulator

The Girona500 [15] is a compact and lightweight AUV
with hovering capabilities which can fulfil the particular
needs of any application by means of mission-specific pay-
loads and a reconfigurable propulsion system. The propulsion
system is configured with 5 thrusters to control 4 DoFs
(surge, sway, heave and yaw). To perform the intervention
task, Girona500 is equipped with a robotic arm (see Fig. 5),
with 4 DoFs (slew, elbow, elevation and roll) and a griper.

Fig. 5. A 3D model of Girona500 AUV with the CSIP 5E Micro
Manipulator integrated in the front.

Nowadays, the integration of the manipulator is still not
completed for this reason the experimental part has been
tested in the simulation environment.

The manipulator is an underactuated arm and it has a
small work area. To control the arm a system with two
different parts is used, see Figure 6. First an analytic Inverse
Kinematics (IK) is used which only controls the position
and not the orientations of the end-effector. The non use of
the orientation gives more possible positions, moreover some
positions are only reachable from one orientation. When
the arm controller receives a request of a position which
is not reachable using the IK, because the position is to
far or there is not possible configuration, the second part is
activated. If there is an orientation the controller will move
the joint which modify directly the orientation to the desired
one without consider the position of the end-effector. On the
other hand, the controller checks the distance between the
end-effector and the desired position and sends a velocity
command to move the AUV in the direction to the new pose.
This avoids having the end-effector stuck in the middle of a
trajectory and makes the whole system more robust against
perturbations giving the possibility to reach any position. The
controller has an hierarchical structure using the precision of
each system, from the more precise to the less, because the
movement of the AUV is less accurate than the movement
of the arm.

To teach the demonstrations, a joystick which sends x,
y, z, yaw and pitch increments to the end-effector in the
orientation frame of the AUV base is used. The joystick
sends the commands to the controller system explained
before.



Fig. 6. The schema shows how a movement request is handled by the
controller and how it hierarchically computes the command. First, using
the IK to compute the new configuration for the joints of the manipulator.
Second, if it is not possible to compute the IK, a new configuration will be
computed using the orientation and also a speed command will be sent to
move the AUV.

B. Navigation Module

The navigation module estimates the vehicle position and
linear velocity and maps the position of several landmarks
identified by a vision algorithm. The fusion algorithm in
charge of simultaneously locating the vehicle and mapping
(SLAM) these landmarks is an extended Kalman filter (EKF)
[19]. Vehicle orientation and angular velocity are not esti-
mated but directly measured by an internal motion reference
unit (IMU).

A visual detection algorithm, detailed in Section III-C,
gives information about the relative position of a landmark
with respect to the vehicle. This information not only updates
the detected landmark position but also the vehicle. The
visual detection algorithm uses an a priori known template to
identify and compute the relative position of these landmarks.

When the vehicle starts, its state vector contains only the
vehicle position and linear velocity. There are no landmarks
in the state vector. The first time the detection algorithm
observes an object that it is able to identify, the landmark
estimated position with respect to the world is introduced in
the state vector.

In our case, the centre of the valve panel is included in the
SLAM as landmark. Therefore, once the AUV has detected
the valve panel, the position will be always known. The
position will be an estimation with an uncertainty. This let to
the LbD algorithm read the estimation of panel position and
follow the desired trajectory without detecting it. As soon as,
the panel is detected the values are updated in the navigation
and the trajectory can be corrected finishing in the correct
position and avoiding the error of the estimation.

This is necessary because during the manipulation the arm
can interfere with the visual detector generating occlusions,
and it will loose the position of the valve. In these cases,
using the estimated position of the panel centre and the prior
knowledge of the position of the valve respect the centre the
position of the valve can be estimated and the trajectory can
be followed.

C. Panel and valve detection

Detection of the underwater panel is performed using
vision, by comparing the images from the camera against

an a priori known template of the panel. By detecting and
matching unique features in the camera image and template,
it is possible to detect the presence of the panel, as well as
accurately estimate the position/orientation when a sufficient
number of features are matched.

In this work, we choose the oriented FAST and rotated
BRIEF (ORB) [20] feature extractor for its suitability to
real-time applications. The ORB feature extractor relies
on features from accelerated segment test (FAST) corner
detection [21] to detect features, or keypoints, in the image.
These are obvious features to detect on man-made structures
and can be detected very quickly. Moreover, there is a
descriptor (binary) vector of the keypoint based on binary
robust independent elementary features (BRIEF) [22]. This
allows us to rapidly obtain the difference between descriptors
and allows real-time matching of keypoints at higher image
frame-rates when compared to the other commonly used
feature extractors such as scale invariant feature transform
(SIFT) [23] and speeded-up robust features (SURF) [24].

Figure 7 illustrates the matching between the panel tem-
plate and an image received from the camera. A minimum
number of keypoints must be matched between the template
and the camera image to satisfy the panel detection require-
ment. A low number of matched keypoints indicates that the
panel is not in the camera field of view. The correspondences
between the template and camera image can be used to
compute the transformation (or homography) of the template
image to the detected panel in the camera image. This allows
us to compute the image-coordinates of the corners of the
panel in the camera image. Using the known geometry of
the panel and the camera matrix, we are able to determine
the pose of the panel in the camera coordinate system.

Fig. 7. Detection of the panel and valves consists of the following steps:
1) Match keypoints between the template and camera image. 2) Estimate
corners of the panel in the camera image. 3) Estimate the translation and
rotation of the panel in the image by using the known geometry of the
panel. 4) Extract regions of interest and evaluate edges. 5) Estimate valve
orientation using Hough transform to detect lines from the edges.

Additionally, since the geometry of the panel is known,
the centres of valves on the panel is known in relation to
the panel centre. Taking advantage of this, we search a
small bounded region of the image for the orientation of the
valve. The Hough line transform provides a straightforward
method for detecting the orientation of the valves. Outliers
are limited by constraining the length of lines and permissible



orientations. The entire process of estimating the panel and
valves is illustrated in Figure 7.

IV. RESULTS

This section shows the results obtained in the conducted
experiments. Two experiments are presented, without and
with perturbations.

A. Approaching the valve

In this experiment the AUV has been previously set in a
proper position where the valve can be manipulated, and the
proposed algorithm follows the desired trajectory to grasp
the valve, see Figure 8. Figure 9 shows in the cartesian
space the trajectory of the end-effector using as the reference
frame the valve pose, making the goal pose approximately at
(0,0,0). Figures 10, 11 and 12 show the difference between
the orientation of the valve and the orientation of the end-
effector. In these experiments, twenty five attractors have
been used to obtain a big accuracy in the trajectory. The
trajectory in the x,y,z is the average of all the demonstration
trajectories, the roll pitch and yaw have small variation with
respect to the demonstrations because during the experiment,
the control has found few positions which are not reachable
using the IK. This fact confirms that the positions are only
reachable in a very similar angle configuration. For this
reason, to follow a trajectory using only the position is
possible.

Fig. 8. The figure shows a collection of representatives images from
the experiment done in the UWSim. In this experiment, the AUV has not
received any perturbation and grasped the valve successfully.

B. Approaching the valve with perturbations

For this experiment the AUV has been also located in
a proper position in front of the valve panel, but during
the experiment the AUV position has been perturbed twice,
forcing the controller to correct the auv position, see Figure
13. Figure 14 shows in the cartesian space the trajectory
of the end-effector using as the reference frame the valve
pose, making the goal pose at (0,0,0). In this case, figures
to represent the Roll, Pitch and Yaw are not showed be-
cause they are similar than in previous experiments. The
difference between the orientations cannot be modified by
the perturbations in simulation. In these experiments twenty
five attractors have also been used to obtain a big accuracy
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Fig. 9. The solid blue line is the trajectory in the x,y,z done by the end-
effector, and the five dashed black lines are the demonstrations. The red and
green points are the end position.
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Fig. 10. In this experiment, the AUV only grasps the valve and the roll
is kept in a constant position, equal to the valve orientation. The solid blue
line is the orientation during the experiment and the five dashed black lines
are the orientations recorded in the demonstrations

in the learnt trajectory. The trajectory in the x,y,z is the
average of all the demonstrated trajectories, except where
the robot received the perturbations. With this experiment is
proved the robustness of the algorithm and it shows how the
perturbation makes a modification in the desired trajectory
and the algorithm adapts to the new situation. While the
trajectory is corrected, the end-effector avoids part of the
learnt trajectory to continue it at some advanced point in
the trajectory. This feature avoids to keep stranded trying to
reach an impossible position during the reproduction.

V. CONCLUSIONS

This paper has proposed a system to solve the task to
operate a desired valve following a certain trajectory. The
trajectory is learnt from a pilot, extracting the significant
information from a batch of demonstrations using a Learning
by Demonstration (LbD) algorithm called Dynamic Move-
ment Primitive (DMP). The algorithm DMP has been mod-
ified to include the orientations. To overcome the limitation
of a manipulator installed in the AUV and compensate
perturbations, the paper has proposed a new controller to
manipulate the position of the end-effector using the position
or the orientation and furthermore moving the whole AUV
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Fig. 11. The solid blue line is the orientation during the experiment and the
five dashed black lines are the orientations recorded in the demonstrations.
In this case, the orientation of the valve has been rotated pi/2 to avoid the
problem of having the value between pi and −pi, where the discontinuity
of the value difficults the learning process.
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Fig. 12. The solid blue line is the orientation during the experiment and the
five dashed black lines are the orientations recorded in the demonstrations.

if necessary. The obtained result, with small perturbations,
has proved to be robust and flexibe. Moreover, the proposed
controller has helped to simplify the teleoperation of the
AUV during and intervention task, making possible to move
the AUV controlling the end-effector position.

Future work will consist on integrating the manipulator in
the AUV to perform real experiments. On the other hand,
the controller will be improved to allow the control of the
position and orientation at the same time, using the AUV for
compensating the under actuated arm.
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