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Abstract. Performing subsea intervention tasks is a challenge due to the complex-
ities of the underwater domain. We propose to use a learning by demonstraition
algorithm to intuitively teach an intervention autonomous underwater vehicle (I-
AUV) how to perform a given task. Taking as an input few operator demonstra-
tions, the algorithm generalizes the task into a model and simultaneously controls
the vehicle and the manipulator (using 8 degrees of freedom) to reproduce the task.
A complete framework has been implemented in order to integrate the LbD algo-
rithm with the different onboard sensors and actuators. A valve turning intervention
task is used to validate the full framework through real experiments conducted in a
water tank.
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Introduction

The interest for having human operators interacting and working side by side with robots
has been increasingly growing during the last decade. Two key elements are necessary to
achieve this goal. The first one is to settle a safety work space in which human operators
can not be hurt by the robots. The second element, which is related to the focus of this
paper, concerns about how an operator can teach a new task to a robot in a natural way.

A recent example of this progress in the industrial environment is the Baxter[1]
robot. It is an industrial robot with two arms that can share the same work area with
human operators. Moreover, Baxter is programed by means of an operator moving its
compliant arms and recording the desired waypoints to perform a particular task.

A more general way to teach a new task to a robot is using a learning by demonstra-
tion (LbD) algorithm [2]. This algorithm allows a robot to learn a new task through a set
of demonstrations. Distinctly to the Baxter’s way of teaching, where only some points
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are stored, the LbD algorithm records several demonstration trajectories and then, they
are used to generate a representative model of the task.

Our aim in this paper is to apply a LbD technique to an intervention autonomous
underwater vehicles (I-AUV) to enable it to learn an intervention task. This type of ve-
hicles are designed to explore the underwater world autonomously and interact with it
using a manipulator. By using LbD we will provide the possibility to easily use the I-
AUV for different tasks. In this way, every new task just requires an operator to perform
demonstrations thus avoiding the implementation of new code every time.

Some research projects have begun to demonstrate similar capabilities with I-AUVs,
although none of them uses machine learning but classical manipulation theory. The
SAUVIM project [3] proposed a system to recover objects of the seafloor. In the TRI-
DENT project [4] a system to search and recover objects with a light I-AUV was pre-
sented. The TRITON project [5] shows some manipulation with an I-AUV docked in a
sub-sea panel. The work presented here is conducted in the context of the PANDORA
project, and for the first time machine learning, in form of LbD, is applied on an I-AUV
that has the goal of performing a valve turning task in free floating mode.

The application of LbD techniques in the underwater domain presents several added
complications due to water perturbations (i.e. current, waves), reduced visibility, diffi-
culties in understanding the scene and high sensorial uncertainty for navigation and per-
ception. For this reason, the LbD implementation presented here has required the devel-
opment of a complete framework to successfully integrate the algorithms.

The proposed framework learns 8 degrees of freedom (DoF) to control the trajec-
tory of an AUV and its manipulator simultaneously. To perceive the environment, the
framework uses the vehicle cameras and also a force and torque (F/T) sensor to detect
the contact between the manipulator and the target. Information from all these sensors
is acquired whilst a pilot is performing the intervention task to be learned. Then from a
set of demonstrations, the proposed LbD algorithm generalizes , a control policy able to
accomplish the intervention task with the same performance than the human operator.

To validate the proposed approach we present experiments in the context of a valve
turning intervention task. An AUV equipped with a manipulator, two cameras, a F/T
sensor and a haptic device is set to perform the turning of a valve placed on an sub-sea
panel in free floating mode. Results show good performance when attempting the task
both in normal conditions and under external perturbations.

The rest of this paper is organized as follows. Section 1 overviews related work on
LbD for robotics and describes the LbD algorithm that has been used. Section 2 de-
scribes the vehicle used to perform the intervention task as well as the software architec-
ture. Results obtained from the valve turning test scenario are presented and analyzed in
Section 3. Section 4 summarizes, and concludes the work.

1. Learning by Demonstration

LbD is a machine learning technique designed to transfer the knowledge from an ex-
pert to a machine. This type of algorithm follows three sequential phases: first, a set of
demonstrations of the task are recorded; second, the algorithm /earns by generalising all
demonstrations and creating a model; finally, the algorithm loads the model and uses it
to reproduce the task.



There are mainly two methods to transfer the knowledge: Imitation, where the
teacher performs the task by itself and the robot extracts the information; and Demon-
stration, where the robot is used to perform the task by tele-operation or by a kinesthetic
teaching, where the robot is moved by the teacher. The learned controllers can generate
trajectories adaptable to the current robot state.

1.1. LbD related work

Several LbD algorithms have been proposed depending on the application requirements.
D.R.Faria [6] proposed to learn the manipulation and grasping of an object using ge-
ometry, based on the position of fingers and their pressure, representing them with a
probabilistic volumetric model. Calinon [7] proposed to represent trajectories using a
Gaussian mixture model (GMM). This representation was extended by Kruger [8] using
Incremental GMM to automatically set the number of Gaussians. Furthermore, Calinon
[9] used different types of parametrized regressions to adjust the trajectory learnt during
the demonstrations. Similarly to the GMM, a hidden Markov model (HMM) [10] can
be used to represent a trajectory and parametrized [11]. A different option to encode the
trajectory is using dynamic movement primitives (DMP) [12], which can be extended for
working in closed loop [13]. Moreover, forces exert along the trajectory can be learned
by an extended DMP[14].

1.2. Dynamic movement primitives

Considering the context of this work, we have chosen to use DMP as the base of our
learning framework. The main motivation is the fact that it dynamically generates the
trajectories during the reproduction, which makes the approach robust to external pertur-
bations. Also, the flexibility and simplicity of the representation allows the adaptation of
the algorithm to specific requirements, as it will be described in Section 2.2.4.

DMP is an algorithm where the learned skill is encapsulated in a superposition of
basis motion fields (see Figure 1). The method used in this paper is an extension of DMP
proposed by Kormushev [14].
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Figure 1. Left figure shows a set of 2D demonstrated trajectories (black) and one reproduction (red). In this
case, the demonstrated trajectory has to pass between the two depicted obstacles. On the right, the h function
is represented. The encoding of the trajectories using a DMP algorithm has been done using 5 Gaussians
adequately weighted over time.



To better understand this encoding, we can imagine a mass attached to different
damped strings. These strings attract the mass changing their forces along the time of the
experiment, moving the mass following the desired trajectory.

To generate the superposition each attractor has an associated weight which changes
along the time defined by the h;(t) function (1). The weight of each attractor is repre-
sented with a Gaussian, whose centers 1! are equally distributed in time, and whose vari-
ance parameters X7 = total_time/K are set to a constant value inversely proportional
to the number of Gaussians (K).

_ N(tpl, 3T
S ,
et N, 2F)

Instead of using the real time a decay term is used, to obtain a time invariant model:

ey

hi(t)

In(s . . .
t= L, where s is a canonical system : $ = s — as, 2)
Q

and the « value is selected by the user depending on the duration of the demonstrated
task.

The number of attractors is preselected by the user and represented using Gaussians,
depending on the complexity of the task. The position of the attractor is the center of
the Gaussian (p5) and the stiffness (matrix KiP ) is represented by the covariance. The
values are learned from the observed data through least-squares regressions. All the data
from the demonstrations is concatenated in a matrix ¥ = [x% + x%‘; + x|, where
x, £ and & are the position, velocity and acceleration recorded at each time instant of
the demonstrations. Also the weights at each time instant are concatenated to obtain
matrix H. With these two matrices, the linear equation Y = Hp® can be written . The
least-square solution to estimate the attractor center is then given by u* = HTY, where
H' = (HTH) " 'HT is the pseudo-inverse of H.

The user needs to define a minimum K2, and maximum K7 to define the limits

of the stiffness and to estimate the damping as follows:

KP —KP.
KP — Kf;", 4 max 5 min , KV =9 /KP. (3)
To take into account variability and correlation along the movement and among the
different demonstrations, the residual errors of the least-squares estimations are com-
puted in the form of covariance matrices, for each Gaussian (i € {1,...K}).
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In Equation 4, the Y;' is the mean of Y. over the N datapoints.
Finally, the residual terms of the regression process are used to estimate the K}
through the eigen components decomposition.

Kl =ViD;v; ", (©)
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In the Equation above, the \; and the V; are the concatenated eigenvalues and eigenvector
fo the inverse covariance matrix (%) 1. The basic idea is to determine a stiffness matrix
proportional to the inverse of the observed covariance.

To sum up, the model for the task will be composed by: the k7 matrices and u?
centers representing the Gaussians; h;(t) representing the influence of each matrix func-
tions; KV representing the damping; and o, which is assigned according to the duration
of the sample. Figure 1 shows a simple example where the learned data is represented.

Finally, to reproduce the learned skill, the desired acceleration is generated with

K
= hK (S - x) - K'd], (8)
=1

where x and & are the current position and velocity.

2. Intervention Framework

The intervention framework can be divided in two different parts. First, the hardware
components, namely the I-AUV and the manipulator. Second, the software architecture
which interprets the information gathered by the sensors, sends commands to the actua-
tors, and learns the demonstrated task controlling both the AUV and the manipulator.

2.1. Hardware components

The Girona 500 I-AUV [15] is a compact and lightweight AUV with hovering capabil-
ities which can fulfill the particular needs of a wide diversity of applications by means
of mission-specific payloads and a reconfigurable propulsion system. For the purpose of
this paper, the propulsion system is configured with 5 thrusters to control 4 DoFs (surge,
sway, heave and yaw). To perform intervention tasks, the Girona 500 I-AUV is equipped
with an under-actuated manipulator (see Figure 2), with 4 DoFs (slew, elbow, elevation
and roll) and custom end-effector.

The custom end-effector is composed of three different parts (see Figure 2). The first
one is a compliant passive gripper to absorb small impacts. Since we aim to demonstrate
a valve turning task, the gripper has been designed with a V-shape in order to easily drive
the handle of a T-bar valve to the end-effector center. The second element consists of a
camera in hand which has been installed in the center of the gripper to provide a visual
feedback of what the end-effector is manipulating. This camera has been placed to pre-
vent the occlusion of the vehicle’s camera by the manipulator during the demonstration
of the intervention. Finally, a F/T sensor, provides information about the quality of the
grasping and the necessary torque to turn the valve during the manipulation.



Figure 2. On the right, the Girona 500 I-AUV in a water tank with a mock up of a sub-sea panel at the
background and a Sea-eye thruster (on the right) used to introduce perturbations during the manipulation. On
the left, a 3D model of the customized end-effector, in which the three blocks can be distinguished: 1 passive
gripper, 2 camera in-hand and 3 F/T sensor.

2.2. Software Architecture

The software architecture for intervention is composed of several modules which are
organized in several layers, see Figure 3. Starting from the bottom, the first layer contains
all the sensors and actuators. Next layer has all perception systems to process sensor
information, such as the localization module and the perception systems that process
cameras and F/T sensor data. On top of it, the AUV and manipulator velocity controllers
are in charge of following the set points of the LbD architecture. Finally, in the top level
layer, the LbD architecture is in charge of acquiring data from demonstrations (phase 1),
learning the model (phase 2) and reproducing the task by generating velocity setpoints
(phase 3).
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Figure 3. Diagram of software architecture showing the LbD architecture and its connection to the AUV
control architecture.

2.2.1. Localization and tracking of elements

A simultaneous localization and mapping algorithm, based on an extended Kalman filter
with simultaneous localization and mapping (EKF-SLAM) is used to obtain a robust



AUV navigation [16]. The EKF-SLAM system combines different navigation sensors
and merges their information through a constant motion model to obtain an estimation
of its position.

Furthermore, the EKF-SLAM can include information about landmarks to improve
the AUV navigation. In our proposal, the pose of the target of interest (the goal valve) is
included as a landmark into the system.

2.2.2. Perception module

AUVs have different sensors to perceive the environment. To identify the target of in-
terest, a vision-based algorithm analyzes the gathered images and compares them with
an a priori target template. With this information, the main system is able to obtain the
position of the target with respect to the AUV.

Additionally, during the intervention task, the F/T sensor mounted in the end-
effector is used to obtain contact information.

2.2.3. Control system

In general, AUV and manipulator controllers accept velocity or pose requests. Our strat-
egy uses two independent velocity controllers: one dealing with the 4 DoF of the AUV
and another controlling the 4 DoF of the manipulator.

The AUV velocity controller computes the force and torque to be generated to reach
the desired velocity. The force output is a combination of an standard 4 DoF proportional-
integral-dervative (PID) controller and an open-loop controller based on a model.

The low-level controller for the manipulator controls the velocity for each joint (¢ €
;%) in order to reach the desired velocity of the end-effector in the Cartesian space.
To this end, the desired velocity is transformed to an increment in Cartesian space (),
and using the pseudo-inverse Jacobian (.JT) of the manipulator, ¢ is obtained as follows:
g=J%.

2.2.4. LbD architecture for underwater intervention

The LbD approach introduced in Section 1.2 has been tailored to the complexities of the
underwater environment and the need of a tight cooperation between the vehicle and the
manipulator. The implemented LbD architecture is divided in 3 phases that we detail in
the following lines, describing also the particular modifications that have been performed
at each stage.

e Demonstration: The operator performs the task by teleo-perating the I-AUYV, us-
ing the feedback from the onboard camera and the F/T sensor. Knowing the target
pose, the manipulator and AUV poses are transformed with respect to a frame lo-
cated at the target’s center (i.e the center of the valve). The tele-operation phase is
paramount for the proper functioning of the system, as the quality of the learning
will depend on the quality of the demonstrations. Toward that end, we propose to
use a haptic device with force feedback to control the vehicle and the manipula-
tor. Furthermore, for a better feedback while performing the demonstration, the
operator uses a Graphical User Interface (GUI) to watch the vehicle’s camera as
well as a 3D representation of the AUV pose.



e Learning: After several demonstrations, the LbD algorithm generates a model of
Gaussians attractors defined by the position of its centers and the stiffness matri-
ces, using a modified version of the DMP algorithm explained in Section 1.2. The
DMP algorithm has been adapted to allow an efficient control of both, the vehicle
and the manipulator. This implied the addition of the vehicle’s yaw orientation,
and the end-effector’s position in the Cartesian space x,y,z and roll orientation.
Hence, the modified DMP controls 8 DoF instead of 3 DoF. To take in consid-
eration the relation between the movement of the vehicle and the manipulator,
the requested manipulator velocities are computed by subtracting the end-effector
requested velocities from the AUV requested velocities. Besides, the DMP has
been modified to integrate a finalization condition using the information of the
F/T sensor, to detect the contact with the valve and thus the accomplishment of
the trajectory.

e Reproduction: The LbD Reproductor loads the task model and using the same in-
puts as in the demonstration phase, generates the AUV and manipulator requested
velocities to perform the task.

3. Results

To validate the proposed LbD framework a valve turning intervention task has been pro-
posed. The task is divided in 3 steps: approaching the panel, moving the manipulator to
an appropriate configuration to grasp the valve, and finally turning the valve. Results are
presented by following the 3 phases of the LbD algorithm.

3.1. Demonstration

In the demonstration phase, the AUV is placed approximately at 4m from the panel. The
operator, using the haptic device, drives the vehicle to a position where the intervention
can start (around 1.5 to 2 m from the panel). When Girona 500 I-AUV reaches this
position the operator moves the manipulator to obtain a desired configuration to grasp
the valve. Finally the valve is turned.

3.2. Learning

The learning algorithm uses the previously demonstrated trajectories from the beginning
of the approximation until the valve is grasped (steps 1 and 2). The last step, turning the
valve, is not part of the learned model. For that, we use a controller that given a maximum
torque and a desired angle turns the valve.

In the proposed experiment, the learning algorithm used 20 attractors points and 5
demonstrations to learn the task.

3.3. Reproduction
Figure 4 shows the 8 DoF learned in independent plots comparing the 5 demonstrations

against an autonomously performed trajectory. As it can be observed, the LbD reproduc-
tion follows the desired trajectory producing smoother movements than the human oper-



ator. This can be easily appreciated in the Z axis. Also the LbD can generate more strict
or flexible constraints, depending on the variability of the demonstrated trajectories. For
example, in the Roll graph, the reproduced trajectory is flexible until the second 80, and
then it strictly follows the reproduced trajectories after that.
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Figure 4. Demonstrated trajectories (black and slashed line) and autonomous trajectory (red and blood line)
for the valve grasping task. All trajectories are represented in the frame of the target valve. Each plot shows a
single DoF for the manipulator and the end-effector. In the demonstration and the reproduction the time used
is the real time of the experiments which in the reproduction is the equivalent to the one generated by the
canonical system.

Regarding the overall performance, 13 of the 16 reproductions have been successful.
Most of the failures are caused by errors in the alignment between the valve and the
end-effector. This errors are introduced in the vision-based system to detect the valves
orientations and should be further investigated.

OXauv Ovauy 0Zsuv OYawayy OXpp Ovpp %Zpp ORolipp
0.0713m | 0.0812m | 0207l m | 0.0633rad | 0.0984m | 0.1056m | 0.2198 m | 0.925 rad
Table 1. The average of the standard deviation along the completed reproduction of the 13 successful
reproductions.

To show the similarity of all the successful reproductions have been computed the
standard deviation between them. Table 1 shows the average of the standard deviation
obtained for each axis during the reproduction time. All the axes have obtained a small
deviation proving the similarities between them. The roll of the end effector has the
biggest deviation due to the flexibility in the learned model. On the other hand, the X and
Y axes of the AUV and the end-effector have a similar small values while the Z axis has
bigger values, because of the difficulty to stabilize the AUV after modifying the depth.

4. Conclusions

This paper has presented, for the first time, the use of machine learning in the context
of an I-AUV task showing real experiments in a controlled water tank. We have imple-



mented a LbD algorithm integrated in a full framework that allows to intuitively teach a
task using few operator demonstrations. The core of the implemented LbD consists in a
DMP algorithm that has been tailored to control simultaneously the vehicle and the ma-
nipulator (8 DoF). In this way, we achieve a tight cooperation between both components
and greater stability in the performed trajectories. The validation experiments have been
performed with the Girona 500 I-AUV equipped with a manipulator and a custom end-
effector in the context of a valve turning intervention task. The results of the experiments
have proved the suitability of the proposed method obtaining similar or better results than
a human operator.

Future work will focus on dealing with high perturbations and detecting failures
during the evolution of the intervention, trying to adapt the strategy to the new conditions
or aborting the task. Also, F/T sensor data will be included in the DMP algorithm to
learn/reproduce how the human operator interacts with the target.
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