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It is essential for a successful completion of a robot object grasping and manipulation task to accurately
sense the manipulated object’s pose. Typically, computer vision is used to obtain this information, but
it may not be available or be reliable in certain situations. This paper presents a global optimisation
method where tactile and force sensing together with the robot’s proprioceptive data are used to find
an object’s pose. This method is used to either improve an estimate of the object’s pose given by
vision or globally estimating it when no vision is available. Results show that the proposed method
consistently improves an initial estimate (e.g. from vision) and is also able to find the object’s pose
without any prior estimate. To demonstrate the performance of the algorithm, an experiment is carried
out where the robot is handed a small object (a pencil) and inserts it into a narrow hole without any
use of vision.
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1. Introduction

Robot grasping and manipulation in unstructured environments is often hindered by the inability
of the robot to accurately estimate the pose (position and orientation) of the grasped object.
This can lead to wrong assumptions on the stability of a grasp or failure in “pick and place”
tasks.

Much research effort has been put into strategies which rely solely on vision (monocular, stereo
and RGB-D). Vision-based object tracking combined with grasp planning was first proposed by
Kragic et al. [1]. Yilmaz et al. [2] presented a review on different tracking strategies, and the
state-of-the-art in vision-based object tracking has recently seen further improvement [3-5].
Strategies that rely solely on vision such as [6, 7], however, have limitations, particularly during
manipulation tasks, where occlusions on the object are bound to occur as the robot fingers
get in front of the object or it leaves the camera’s field of view [8]. Furthermore, in hazardous
environments such as disaster scenarios, robots need to operate in settings with reduced visibility.
Examples include underwater operation, burning and smoke filled buildings or total darkness.
Hence, object tracking systems need to be complemented with other sensing modalities, such
as touch. In fact, an experiment by Rothwell et al. [9] proves that even humans fail to perform
accurate manipulation tasks when their tactile sensory system is impaired.

This work was supported by the United Kingdom Technology Strategy Board under Grant #131290
*Corresponding author. Email: hongbin.liu@kcl.ac.uk
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Early work that combined vision and force sensing for robot grasping can be traced back to Son
and colleagues [10], who investigated the advantages of combining these two sensing modalities
and Allen et al. [11] who, by adding different sensing capabilities to a robotic hand, showed the
advantages of vision, force, tactile sensing and their combination. In Honda et al. [12] vision is
used to track the object and tactile sensing to further refine its estimated pose by minimising
the distance from the finger to the object’s surface. Another approach uses a description of the
object’s facets that is done offline and, during runtime, finds possible combinations of facets that
match the current sensor measurements [13].

More recently, significant research has been focusing on the combination of vision and tactile
information to address the uncertainty on an object’s pose. Different combinations of tactile, force
and vision information for locating the handle and opening a door were tested and it was proved
that the combination of all three modalities outperformed any other possible arrangement [14].
A particle filter approach was used to estimate a tube’s pose using both positive and negative
contact information — the knowledge of which fingers are touching the object and which are
not [15]. Another approach was to model discrete states that contain the possible combinatorial
arrangements between fingers and object surfaces using an hybrid systems estimator, estimating
these discrete contact modes as well as continuous state variables — i.e. the object’s pose [16].
Another method used Bayesian Filtering together with a technique called Scaling Series, which
allows for successive refinement of the object pose estimate by increasing the granularity of the
search region [17]. A framework where the grasp, sensing data, stability and object attributes
such as pose are all modelled probabilistically is presented in [18]. Koval et al. [19] presented a
method to continuously track a continuously pushed object in two dimensions using a modified
particle filter. Object pose uncertainty can also be reduced by gaining tactile information from
attempted grasps and replanning the grasp to increase the chances of success [20]. In [21], an
approach is presented that uses tactile sensors to allow the recognition of the object and its 6-D
pose by means of exploring the object’s surface and edges using Iterative Closest Point combined
with a particle filter. A collision checker combined with a particle filter was also used to estimate
the in-hand object pose, starting from an initial pose acquired from vision and estimating the
pose according to the hand’s movements [22]. Extensively literature exists which deals with
the uncertainty of the object’s location and offer strategies to tackle the problem of unreliable
information, proposing methods to increase the robustness of a grasp, but do not attempt to
estimate the pose of objects [23-30].

The method proposed in this paper is based solely on force and proprioceptive data, and can
estimate the pose of a grasped object given only its current state, using a global search method
based on an evolutionary algorithm. The algorithm uses the rich contact information given by
custom designed sensors and finds object poses which are coherent with the measured contact
information. It extends the authors’ previous work [31, 32|, by making a global search instead
of a gradient-based optimisation. The advantages of a global search are two-fold: it avoids local
optima, which are prone to exist as the complexity of the handled object increases, and enables
the estimation to be carried out without any initial estimate. As such, the proposed method
can work under two different circumstances: correcting the pose information given by a 3D
vision-based system and finding the pose of a known object given no prior knowledge of the
object’s pose. It uses the joint encoders and the contact position and force normal from tactile
sensors and requires the object’s geometry. The proposed algorithm can also be used to provide
candidate poses which can be used as an initial proposal distribution in a sequential estimation
such as a particle filter. Objects with any degree of complexity can be tracked as long as there
is a sufficient number of contacts to discriminate between similar poses.

The problem is presented in the next chapter, as well as the description of the proposed method
along with some implementation details. Section 3 describes and discusses the results both in
simulation and with a real system. Section 3.2.3 presents a possible scenario where the method
is used in interaction with humans. Section 4 presents the conclusions of this work.
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2. Object Pose Estimation

2.1 Problem Description

The objective of this paper can be formulated as the estimation of a set of parameters x which
describe the pose of an object — position and orientation — which matches the current tactile
and kinematic information. In other words, given a certain hand posture and current contact
information, what object pose(s) satisfy these measurements. The parameters to be estimated
are a rotation and a translation (a vector and a quaternion), as shown in (1). The choice of
quaternions for parametrising the rotation was made taking into account the computational and
mathematical advantages over other notations, such as Euler angles or rotation matrices [33-35].

X= [ q,t ] = [Qwan7anQzatz7tyvtz]T (1)

Besides the geometric shape of the object, which needs to be known a priori, the available
sensor information consists of the contact location on the fingertips and the interaction forces.
This approach takes advantage of the fact that, for rigid contacts, the surface normal coincides
with the measured normal force direction. Taking into account this normal force information
not only improves the overall accuracy of the fitting but clearly discriminates on which of the
object’s face the finger is touching, which is fundamental for the success of a manipulation
task. The objective is then to find x such that the distance between our measured contact
location and the angle between the object surface normal vector and the measured contact normal
are both minimised. Since object models usually consist of thousands of vertexes, applying
transformations on all these points and their respective normals would be computationally very
expensive. Instead, the goal becomes to find the transform applied on the contacts until a result
is found. The inverse of this solution is then applied to the object.

The devised cost function shown in (2) consists of the sum of the cost for each of the k fingers
touching the object. It takes into account the squared distance from the contact location f,,, on
the finger to a point s belonging to a surface S in the vicinity of that contact location and the
angle between the surface normal n at that point and the measured normal force direction 1.
This sum is mediated by a weighting factor w, that is chosen according to the accuracy of the
object geometric model and of the sensor. || - || denotes the Euclidean norm and (-, -) denotes the
inner product.

k
G(x) =Y min (| (afna” + t) — sil]* + wa(l - (Qlmq", A;)) (2)
1 5,CS

As mentioned in the previous section, this paper presents two scenarios for a manipulation
task. First, the method can be used together with a vision tracker, starting from an initial guess
detected by vision and setting a reduced search space, allowing for a very fast detection of the
correct pose. The second method starts with no knowledge of the object pose and searches the
whole space around the robot hand to find suitable pose(s), ranking them according to how well
they fit the sensory data.

2.2 Method

2.2.1 Set up

The first step of the algorithm takes the object polygon mesh and computes the normal vector
for each face, using the cross product between two vectors defined by the vertices. Active contacts
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(contact force above a threshold) are then selected and transformed to be expressed on a common
coordinate frame with object mesh being transformed likewise. A k-d tree is constructed with
the object pointcloud to allow for easier distance queries. The creation of this k-d tree is done
using PCL kdtree flann implementation [36, 37].

2.2.2  Search Algorithm

The search method used to obtain the transformation parameters belongs to a class of methods
commonly called Monte Carlo, originally developed in the 1940’s by Metropolis and Ulam [38].
These methods, while originally devised for mathematical physics problems, have been exten-
sively used in the field of robotics, particularly in localisation problems for mobile robots [39-41]
and in global search for optimal policies in reinforcement learning[42, 43]. The idea behind
this class of methods is to randomly draw samples from an unknown distribution. The applica-
tions range from approximating parameters such as the expected value of a probabilistic event,
simulate stochastic processes or, as is the case in this paper, to estimate parameters in an op-
timisation problem. More specifically, the used method can be classified as an Evolutionary
Algorithm, where the purpose to find a set of parameters that minimise the cost function (2)
by sequentially replicating the most suitable guesses (henceforth referred to as particles) with a
probability related to each particle’s fitness (coherence with the sensor data).

2.2.3 Generating the Population

An initial “population” of pseudo-random particles is created, ensuring a distribution inside
the search space which is suitable for each of the two applications concerned in this paper. For
pose correction, it starts from a rough pose estimate given from vision, it is sufficient to create
random particles in a Gaussian distribution around the initial estimate. As for the global search,
where there is no initial estimate, we need to ensure the search space is evenly covered. For the
translation vector, this is done simply by creating a uniform pseudo-random distribution. For
the rotation quaternion it is accomplished both through the method suggested by Marsaglia [44]
and by creating a small set of particles in which ¢, is either 1 or —1 and one other element is
1. These latter ensure that, after normalisation, there will be particles in the population which
represent the object in six “straight” orientations (“upside down”, “left side up” etc.), which
everyday objects typically tend to be in.

2.2.4 Sampling

After the initial population has been generated, the algorithm should replicate the estimates
which best minimise the cost function. As such, an equation was devised which inversely relates
the probability of a particle to be replicated (its “weight” W) to its cost G. Equation (3), shows
the chosen equation where p, can be adjusted, again depending on the desired application. A
higher p, is used for pose correction, allowing a quicker convergence and a more “aggressive”
search, sacrificing however the possibility of finding multiple solutions. As for the global search,
where it is crucial not to be trapped in local minima, this value is lowered. Figure 1 represents
how the parameter p, affects this cost to weight conversion.

W a

N Tncd W (x) = (1 + HlG(X))p (3)

S

?

G

Figure 1.: Cost to Weight Function
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2.2.5 Noise addition

The addition of noise, or according to some authors, perturbation or wvariation, is another
essential step for the algorithm, as it allows the search to be performed locally around the sampled
particles. The selected scheme for adding noise consisted of creating normal pseudo-random
values with decreasing variance on each iteration. Also, only two parameters were changed at
one time — one in the rotation and one in the translation. These normal pseudo-random numbers
were created using Box-Muller transform [45], which conveniently creates a pair of normally
distributed numbers each time. The way the standard deviation evolves over the particle number
J, given a desired total number of iterations n, is shown in (4). This added noise is initially set
to og and tends to zero as it approaches the end of runtime and the rate at which it decreases
is defined by changing the power p,,.

”— 00(1 _ Tj) (4)

The algorithm runs for a chosen maximum number of iterations and the best cost is saved,
along with the last 1% of all particles. The fact that the population is always increasing and
not replaced as it is commonly done in Genetic Algorithms has to do with the computational
efficiency, as it would not present any advantage in terms of performance, as discussed in Section
2.2.8. In order to reduce the run time of the method, a stopping criterion was created, against
which the current lowest cost was tested every thousand iterations. Since the cost G(x) does not,
on its own, provide enough information about the quality of this estimate, a confidence indicator
was devised, which takes into account the number of contacts k and the selection of w,,. This
confidence indicator C'(x) can be seen as the inverse of the average error over the k contacts,
scaled to the range 0 < C(x) < 100.

2.2.6 FEvolution of the algorithm

O(x) = 100/(1 + 100(%)) (5)

Figure 2 shows the evolution of the particle cost (note the log scale) where each particle is
shown as a blue dot, the average cost is shown in red and the current best estimate in green. It
can be seen that the algorithm keeps converging to particles with lower cost. In this example,
the algorithm ran for the maximum number of iterations, not reaching the previously mentioned
stopping criterion.

Particle cost
Current minimum
Moving average

Iterations wig*

Figure 2.: Progress of algorithm — cost over iterations

2.2.7 Post processing

When finding the pose of an object without any initial estimate, some objects can yield
multiple solutions. This can arise from having few fingers touching the object or from object
symmetry. As such, the algorithm outputs a number of possible poses which can then be kept
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for posterior evaluation. The algorithm requires that two solutions have sufficiently different
positions or orientations to be deemed different.

After a group of solutions is obtained, these solutions are tested for collisions with the robot.
In order to have a computationally fast evaluation, the collision checking was made as simple as
possible, requiring only that the object does not have any of the points in its surface in a the
vicinity of a number of points inside the robot (knuckles, palm, etc.). If a possible pose violates
this condition, it is intersecting the robot’s geometry and it is discarded.

Finally, a Levenberg-Marquardt gradient search [46] is performed, further improving the esti-
mate. The details of this step were previously shown by the authors [32]. This step ensures that
the solution found is a minimum in that region.

2.2.8 Computational Remarks

In order to improve the computational performance of the algorithm, different tactics were
used on each step to allow the pose correction to be run at similar frequency as the vision
tracker and the global search with no initial estimate to run within reasonable time (around two
seconds).

The first strategy, as already described concerned the use of quaternions, allowing rotations to
be applied without the use of trigonometric functions, known to be computationally expensive.
The second consideration was to find the transformation on the finger, avoiding the operation
to be done on the object, which could contain tens of thousands of vertexes and normal vectors
at every iteration. Thirdly, the use of a k-d tree allowed evaluations of the cost function to be
done much more efficiently.

Finally, the implementation of the importance sampling scheme was made carefully considering
computational performance. Each time a particle is generated, its weight is saved into an array
and added to an accumulated sum oyy. To generate a new particle, a uniform pseudo-random
number 7, € [0, 1] is multiplied by this accumulated sum to obtain a number 7 in the interval
[0, ow]. The particle z4 to be replicated will be the one which, on the array of these accumulated
weights, will be located where ZZ:O W (k) > r . The procedure here is to begin the search from
the end of the array, taking advantage of the fact that, as the algorithm progresses, particles
with higher weight (lower cost) will be at the end of the array. Figure 3 shows an example of how
these weights may be distributed. If the particle to be sampled sits at the position pointed by
the red arrow, which is approximately in the middle point, much less operations will be needed
if one starts subtracting from the end of the array than adding from the beginning. This allows
for a much faster sampling while maintaining the conditions for Importance Sampling.

The choice of maintaining all previous particles, instead of having a smaller number of particles
that are replaced, was made due to practical and computational considerations. First, it allows
to keep the diversity of the population, avoiding “particle deprivation” [41]. Computationally,
this strategy presents the advantage of not requiring the weights of each previous particle to
be recalculated. The trade-off in this strategy is of course memory requirements, but given the
availability of memory in modern computers, it does not pose a problem, as the required memory
will be typically in the range of a few megabytes.

1
0 2 x10° 2.5

LT | — ‘L—‘ —
0.5 1 1.5
Figure 3.: Weights of particles over time

Figure 4 shows the computation time to generate each thousand particles. Typically, the
generation of each particle would require increasing time with the number of previous particle it
samples from. Using these strategies however, allows the algorithm to maintain nearly a constant
duration, making the algorithm’s computation time to depend linearly on the number of particles
required. Depending on the selection of p, in equation (3), a more “agressive” search will decrease
the runtime of the algorithm. In the case of figure 4, which had a high p,, sampling from the
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existing distribution becomes even faster than the initial generation of population. This is due
to the fact that to generate an initial particle requires six pseudo-random values, sampling and
adding noise requires only three (one for importance sampling and two for noise addition).

6 7

3 4 5
n-th thousand particle

Figure 4.: Computation time to generate each thousand particles

3. Results

This section presents the results obtained in both simulation and a real robot, validating the
proposed algorithm. The quantitative validation in section 3.1 takes place in a simulated envi-
ronment as accurate ground truth values can be obtained directly. Two sets of experiments were
carried out: On the first experiment, the object is displaced with a small rotation and a transla-
tion from its true location. This is done so as to simulate what is obtained from a vision-based
object tracker when the object is enveloped by the robot hand. The second experiment uses
a wine glass where no prior knowledge of its approximate location is available. The simulated
sensor data was altered with increasing Gaussian noise on the contact location and normals to
test the method’s robustness. The results are shown with respect to added noise and number of
fingers touching the object. It should be noted that each data point on the plot is a one-shot
estimate and it does not rely on previously estimated poses. This choice was made in order to
show the performance of the algorithm on its own, although in a practical situation the algo-
rithm’s initial condition could be the previously estimated pose. Section 3.2 shows results for a
real system and qualitative evaluation, because of the difficulty to have a sufficiently accurate
ground truth values.

3.1 Simulation

3.1.1 Pose correction

The first scenario uses the algorithm starting from a coarse estimate of the object’s pose. The
object was randomly displaced from its true location by a small amount in both rotation and
translation. The pose correction algorithm is then set to use a reduced search space — angle under
45° and a maximum translation of 5 cm. Figure 5 shows a result of the correction algorithm.
The tested object was a small 3D printed statue! and it can be seen that even for an object with
such complex geometry, the solution is very close to the ground truth.

Figure 6 shows the results for pose correction, where the upper row displays the initial error in
translation and rotation and the lower row the results after running the proposed algorithm. This
initial error acts as, for example, a vision system, which gives an approximate estimate of the
object pose, and was done in simulation by displacing the object randomly in every direction by
a small amount. The average distance between the frame at the ground truth and this displaced
pose was 33.2 mm and the average rotation angle was 16°. This is comparable to the typical
accuracies of vision tracking when a small object such as the statue is being grasped.

IThe bust of the poet Sappho was kindly provided by Artec3D — www.artec3d.com
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Figure 5.: Pose correction. Initial estimate in red, ground
truth in pink and result estimated pose in blue

In this example, random Gaussian noise was added to the contact location and normal direction
with means of 0.9 mm and 5°, which is above the errors existent on the real system described in
Section 3.2 and five fingers were touching the statue. After applying the proposed method, the
errors were reduced to an average of 4.05 mm and 5.0°, with standard deviations of 2.8 mm and
2.19° while the average run time was 0.64 seconds.

Initial Translation Error Initial Rotation Error

z 40 ‘ ‘ 5 40 : ‘
2 20 1 =3 20 1
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Error [mm] Error [deg]
Final Translation Error Final Rotation Error
> 60 > 40
40 | o
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g 20 ’ g
L0 o0
0 5 10 15 0 5 10 15
Error [mm] Error [deg]

Figure 6.: Histograms for initial and final errors on rotation and translation
for pose correction

To further evaluate the performance of the algorithm, the level of sensor noise was increased
and simulations were carried out where the object was being grasped by three, four and five
fingers. Also, an arbitrary threshold of 1 cm for translation and 15° for rotation was put in
place, considering successful any result that stays within this limits. It should be pointed out
that these errors are from the object’s frame of reference, which in the case of the statue is at its
base. The angle error is calculated according to the formula 6 = 2cos~!(gy), which encompasses
angle errors around every axis.

The histograms in figure 7 shows the mean error in rotation and translation according to the
noise level and number of contacts. Figure 8 shows the percentage of success according to the
previously defined criteria. It can be seen that the algorithm finds the correct pose over 90% of
the times when the noise is below 1.8 mm and 10° and five fingers are touching the object.
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Figure 7.: Mean errors after pose correction for different number of contacts and noise levels
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Figure 8.: Rate of success for pose correction for different number of contacts and noise
level. A trial is considered successful if the error is under 1 cm and 15°.

3.1.2  Global pose estimation

This experiment shows how the pose of the object can be determined using no vision input,
relying solely on the robot’s proprioception and the force sensors on the fingertips. Applications
of this method could range from situations or environments where it is unfeasible to have a
functioning vision system. The proposed example uses a wine glass, which common image or
RGB-D tracking systems would fail to track as it is transparent. Figure 9 shows a result of a
trial where the object is put at an arbitrary location and the resulting estimated pose overlays
the ground truth.

Figure 9.: Global pose estimation. Initial estimate in red, ground truth in
green and result pose in orange, force normals are displayed as red arrows

The results in this case are much more dependent on the number of fingers touching the object
than in the previous section where there was an initial estimate. This is due to the existing
symmetries in the object which, for a small number of contacts, can have a variety of poses that
fit those contacts. When using five fingers, and given that one finger is touching the glass stem,
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Figure 10.: Mean error in global pose estimation for different number of contacts and noise levels
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Figure 11.: Rate of success for global pose estimation different number of contacts and
noise level. A trial is considered successful if the error is under 1 cm and 15°.

so as to not yield “upside down” poses, the mean absolute error was 7.1 mm for position and
3.72° for the vertical angle. Standard deviations were 9.1 mm and 5.88° respectively, with an
average duration of 63 seconds.

3.2 Real System

3.2.1 Ezperimental Setup

The algorithm was implemented in a real system, using a Mitsubishi RV6SL robot and a
Shadow Dexterous Hand™ with only three force-torque sensors mounted on the fingertips. The
required contact information — contact location and normal force direction — are measured using
a scheme called intrinsic contact sensing, described in Bicchi et al. [47]. Equation 6 and Figure
12 illustrate this scheme where, using 6 axis force-torque sensing under a parametrisable convex
shape S — a semi-ellipsoid in this case — one can solve the system of equations consisting of
the surface equation and the force F = [F, F}, F;] and moment M = [m,, m,, m.] balance,
yielding a unique solution for the contact location p. and a torque 7 around the contact normal
n. From here, it is trivial to decompose the total measured force into its normal and tangential
components. This approach has been previously validated by the authors in Liu et al. [48] showing
an accuracy of 0.224 mm in contact location, corresponding to an error of 1.5° in contact normal.
This sensing strategy has found several successful applications, ranging from slip detection [49]
to surface following [50].

PpcexF+7=M
{ S(z,y,2) = 0 (©6)

Figure 12.: Intrinsic contact sensing strategy

A Microsoft Kinect™ together with PCL implementation of a point cloud tracker using a
Particle Filter [36] was used for tracking.

10
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3.2.2 Pose correction from vision

The first example of the application is analogous to the experiment done in 3.1.1. Figure 13
shows a situation where vision successfully locate an object when it is lying on a table(left hand
side), but as soon as the robot hand grasps the object and creates occlusions, the performance
of vision decays significantly (right hand side). The pose correction method is then applied,
accurately estimating the object’s pose. Figure 14 shows results for other objects.

2l L A
Figure 13.: Pose correction result — Vision based tracking results in yellow

before and after occlusions are created by the grasp. The pose corrected using
the proposed method is displayed in purple

Figure 14.: Pose correction results with different objects

3.2.3 Interacting with humans — Hand over and place

To illustrate a possible application of the proposed method, an experiment was set up, where
a robot collaborates with a human, in which the latter hands over an object to the robot, who
grasps the object and places it in a designed location.

The example object was a pencil, as it poses difficulties to a vision tracker due to its size. The
placing phase also entails some problems, as the pencil needs to be placed in a narrow hole in
a box (around 1.5 cm radius), requiring the estimate to be very accurate (under 1.5 cm or 15°
errors). Figure 15(a) shows the experimental setup. The point cloud obtained with the RGB-D
camera contains very few points belonging to the object, making it impossible to be tracked by
vision. The proposed method, however, can successfully estimate the pencil’s orientation without
any prior estimate of its pose. The result of the experiment is shown in Figure 15(b).

11
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(a) Clockwise from left: Robot grasping (b) Hand over and place experiment — a pencil is placed in the robot hand
a pencil; Point cloud overlaid with robot by a human operator, the goal is to place the object inside a box.
model; Result of the pose estimation

Figure 15.: Experiment - An operator hands over a pencil to the robot and the robot places it
through a hole in a box. The experiment uses solely tactile and proprioceptive sensing

3.3 Discussion

This section presented results for the proposed algorithm in two different settings: correcting the
pose with an initial prior (e.g. from vision) and estimating it without any information. Simulation
results show that the approach is accurate and robust for the levels of noise encountered in the
real system (contact location error smaller than 1 mm and 5°). Results also show that using a
prior estimate increases the accuracy and allows the correct pose to be detected even in high
levels of noise and low number of contacts.

Figure 16 shows the relation between translation and rotation errors during pose estimation
(both scales in the same plot) and the green line indicates the boundary where the initial and
final errors are equal. The right hand side of the green line indicates cases where the initial error
was improved. It should be noted that even in the four cases where the final rotation error is
higher than the initial, the translation error on these cases was reduced. It can be also seen from
the same plot that there is no significant correlation between initial and final error, which is
expected from a global search.
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Figure 16.: Initial vs. final errors in pose correction. Line y = z to outline the
improvement from an initial estimate

The number of tests carried out were 2978 for the pose correction and 1329 for the global pose
estimation. The runtime duration for pose correction and estimation was chosen to be around
0.5 seconds and one minute, as to compare it with other methods in the literature which have
similar runtime, but could be reduced to around 10 seconds by lowering the confidence criterion
in equation (5), allowing for less accurate estimations.

The search can also be tuned to fit particular situations, for example if the object is known a
priori to be symmetric, the search space can be reduced (in a sphere, for example, the rotation
search space can be set to zero). Furthermore, if the object is known to remain static or slowly
moving, this algorithm can be run continuously, sending as initial estimate the previous estima-
tion result and using new sensing data, increasing the accuracy of the estimation, particularly
with high levels of noise. However, to deal with dynamic situations, where the object is moving
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with respect to the hand, an update model should be developed to predict how the object will
move, changing particles accordingly at every step.

Particularly in the global pose estimation without an initial prior, the number of fingers
touching, as well as the choice of parameters can greatly influence the result of the method.
Figure 17 displays an example of a situation where few fingers were touching the object, resulting
in a mistaken pose. It can be seen that the bowl surface on the left side of the glass coincides
almost perfectly in those two completely different poses. This problem can only be overcome if
there are enough fingers contacting the object or if a exploration strategy is put in place.

Figure 17.: Example of a situation that might cause the algorithm to fail.
Parts of the object surface coincide almost perfectly in two different poses.

The results on this paper present a significant improvement on the authors’ previous results in
[31, 32] where the errors were over 2 cm for a pose correction from an initial vision estimate to 4
mm and 5° in the current form. These results are also comparable with other literature, which
reports results with errors under 1 cm [21] or 2cm [19], 2 mm and 8° [15], 5.2 mm and 3° [17],
5.2 mm and 1.51° [16] but typically require exploration and/or objects with simple geometry.

4. Conclusions

Object grasping and/or manipulation typically relies on vision to estimate the pose of the target
object. However, when the robot creates occlusions between the camera and the object the
tracking performance decreases significantly. This paper presents a method to estimate this pose
using current force, tactile and proprioceptive information, where an evolutionary algorithm
is used to find an object’s pose which is coherent with this sensor information. The proposed
method can be used both to improve an estimate given by vision or globally estimating the pose
when no prior estimate is available. The method can also be used to create an initial distribution
of candidate poses which can be used in a sequential estimator such as a particle filter.

Validation has shown an error below 1 cm and 15° and a consistent improvement from an initial
estimate. An example application was presented where the robot was handed over a pencil and
accurately placed it through a narrow hole using no vision input. Both the results in simulation
and the successful experiment show the validity of the proposed algorithm and the capabilities of
an advanced tactile sensing system, particularly in situations where vision might not be available
or accurate.
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