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Abstract: Robots have been predominantly controlled using conventional control methods that
require prior knowledge of the robots’ kinematic and dynamic models. These controllers can be
challenging to tune and cannot directly adapt to changes in kinematic structure or dynamic properties.
On the other hand, model-learning controllers can overcome such challenges. Our recently proposed
model-learning orientation controller has shown promising ability to simultaneously control a three-
degrees-of-freedom robot manipulator’s end-effector pose. However, this controller does not perform
optimally with robots of higher degrees-of-freedom nor does it resolve redundancies. The research
presented in this paper extends the state-of-the-art kinematic-model-free controller to perform pose
control of hyper-redundant robot manipulators and resolve redundancies by tracking and controlling
multiple points along the robot’s serial chain. The results show that with more control points, the
controller is able to reach desired poses in fewer steps, yielding an improvement of up to 66%, and
capable of achieving complex configurations. The algorithm was validated by running the simulation
100 times, and it was found that, in 82% of the times, the robot successfully reached the desired target
pose within 150 steps.

Keywords: kinematic-model-free control; model-learning control; redundancy resolution; multi-
point tracking; adaptive control

1. Introduction

Conventional robot controllers require both the kinematic and dynamic models (heron
cumulatively referred to as kinodynamic model) of the robot in order to perform accu-
rate control [1]. These controllers require an accurate model of the robot. However, soft
robots, morphing robots, malleable robots, transforming robots, and evolving robots can
be challenging to model accurately and control. Model-based approaches have remained
the dominant control method for over 50 years [2]. Model-based control of soft/continuum
robots underperform because modeling these structures are achieved by means of approxi-
mations. Therefore, learning-based or model-free techniques may be preferred to overcome
some of these challenges.

Recently, a new class of model-learning controllers emerged, showing promising
ability to bypass the need for any prior robot model. These controllers directly learn a kino-
dynamic model online to control a robot. In our original work, the Encoderless controller [3]
and Kinematic-Free controller [4], the end-effector position of a two-degree-of-freedom
(2-degrees-of-freedom) robot manipulator was controlled in task space. The controller
works by generating local linear models that represent the robot’s local kinodynamics,
which are used to actuate the robot’s end effector towards a given target position. In our
most recent work, the model-learning orientation controller [5] has successfully controlled
the position and orientation of a 3-degrees-of-freedom robot manipulator’s end effector in
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task space without any predefined kinodynamic model of the robot. However, this con-
troller underperforms, taking longer than required to converge to the desired pose, when
higher-degrees-of-freedom robots are to be controlled, leaving redundancies unresolved,
as well.

The Kinematic-Model-Free (KMF) Multi-Point controller presented in this paper
extends the state-of-the-art kinematic-model-free orientation controller, enabling the control
of hyper-redundant robot manipulators and resolving redundancies in these manipulators
by tracking and controlling multiple points along the kinematic chain of such robots.

1.1. Contributions

The contributions of this papers are as follows: (1) the novel kinematic-model-free
multi-point controller presented in this paper expands the state-of-the-art kinematic-model-
free controller to control the pose of multiple points along a robot’s kinematic chain; (2) the
controller allows for the control of robots with high degrees-of-freedom, scaling up from
the 3-degrees-of-freedom manipulator in our previous work; and (3) the controller is also
capable of resolving redundancies in highly redundant system, such as continuum robots.

1.2. Paper Structure

Section 2 introduces work related to the research presented in this paper. Section
3 summarizes the fundamental mathematical background required to understand the
working principles of the novel kinematic-model-free multi-point controller. Section 4
introduces the proposed controller along with its mathematical equations. Section 5
presents experimental results. Finally, Section 6 concludes the paper.

2. Related Work

Model-based controllers have been the predominant method of control for robot
manipulation. The Jacobian of a robot, which relates the joint velocities to the end-effector
velocity, is calculated prior to control [6], after which it is controlled using forward and
inverse kinematics [7]. Using such models imposes many limitations [8] and assumes
the Denavit-Hartenberg parameters, that define the robots kinematics, to be static. One
example of model-based control is visual servoing that uses an external camera to calculate
the required end-effector velocity to reach a desired target [9]. However, this assumption
falls apart in the case of soft robots, when robots are damaged, or when robots transform
or evolve in any way, such as altering the end effector by changing its gripper. Therefore,
model-based conventional controllers are accurate but not adaptable.

Other researchers performed model-free control by approximating a Jacobian that
is later used to actuate a robot. Researchers in Reference [10] controlled a deformable
manipulator and in Reference [11] controlled a soft manipulator by approximating its
Jacobian model. Other researchers controlled a dynamically-undefined robot by first
estimating the robot’s dynamic parameters and then controlled a robot using conventional
methods [12]. Learning methods, such as motor babbling, that start with no predefined
model of a robot’s kinodynamics are used to approximate a model to control robots [13].
Other researchers use machine learning [14] and reinforcement learning algorithms [15] to
control robots.

On the other hand, researchers in Reference [16] directly controlled current motors to
actuate an unmanned underwater vehicle by means of deterministic artificial intelligence
where uncertainties are ignored by making use of first principles. Researchers in Refer-
ence [17] controlled a SCARA robot’s position through motor voltages using extended state
observer to estimate system dynamics. Other researchers studied hybrid model-free and
model-based approaches to increase the performance of robot navigation [18]. However,
most of these learning approaches require encoder feedback for estimating the robot’s pose.

The classical kinematic-model-free position controllers, the Encoderless [3] and
Kinematic-Free [4] controllers, do not require any prior model of the robot. They operate
by generating psuedo-random actuation signals that actuate a planar 2-degrees-of-freedom
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robot’s joints causing a positional displacement on the robot’s end effector. The effect on
the robot’s end effector is observed using an external camera and is recorded. The recorded
data are then used to generate a local linear model that actuates the robot’s end effector
towards a given target. Any discrepancies will re-trigger another exploratory phase. The
classical kinematic-model-free controller was then extended to simultaneously control the
position and orientation of a 3-degrees-of-freedom robot’s end effector [5] using locally-
weighted dual quaternions. These kinematic-model-free controllers, however, are unable
to resolve redundancies in redundant robots, such as manipulators with high degrees of
freedom [19] and continuum robots [20].

3. Mathematical Background
3.1. Quaternions

Quaternions, introduced by Hamilton in 1844 [21], are extend the complex number
system used to represent rigid-body rotations. A quaternion q is the sum of a scalar s and
a vector v = (q1, q2, q3):

q = s + v = s + q1i + q2j + q3k, (1)

where i, j, k are unit vectors pointing in the x, y, z directions.
The conjugate of a quaternion q is defined as:

q∗ = s− v = s− q1i− q2j− q3k, (2)

which is used to calculate the norm of a quaternion as follows:

‖ q ‖=
√

q∗q. (3)

Unit quaternions satisfy s2 + q2
1 + q2

2 + q2
3 = 1 or simply ‖ q ‖= 1.

More information on quaternions can be found in Reference [22].

3.2. Dual Quaternions

Dual quaternions, presented by Clifford in 1871 [23], are extend the dual number
system. A dual quaternion q̂ is defined as the sum of two quaternions:

q̂ = p + εq, (4)

where p = sp + vp is the real part, and q = sq + vq is the dual part. The dual element ε is
nilpotent, i.e., ε2 = 0.

The conjugate of a dual quaternion is defined as:

q̂∗ = p∗ + εq∗, (5)

which is used to calculate the dual quaternion norm:

‖ q̂ ‖=
√

q̂∗q̂. (6)

A unit dual quaternion satisfies s2
p + p2

1& + p2
2 + p2

3 = 1 and spsq + p1q1& + p2q2 +
p3q3 = 0, or simply ‖ q̂ ‖= 1 and 〈p, q〉 = 0. The vec8 operator maps the elements of a
dual quaternion to an 8-dimensional vector as follows:

vec8(q̂) = (sp, p1, p2, p3, sq, q1, q2, q3). (7)

3.3. Rigid Transformation

Rigid-body transformations are represented using dual quaternions as follows:

q̂ = r +
ε

2
tr, (8)
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where r is the rotation quaternion, and t is the translation quaternion [24]. Note that the
scalar part is always zero for the translation quaternion, i.e., t = 0 + vt = vt.

3.4. Interpolation

Shoemake introduced the Spherical Linear Interpolation to interpolate between two
quaternions [25]:

m = Φ(p, q, t) = p(p∗q)t, (9)

where t ∈ [0, 1]. On the other hand, Screw Linear Interpolation for dual quaternions is
defined similarly as p̂(p̂∗q̂)t.

3.5. Relative Dual Quaternions

The relative rotational displacement, brel , between two quaternions, p and q is found
as follows:

brel = p∗q. (10)

On the other hand, the relative dual quaternion between two dual quaternions, p̂ and
q̂, is [5]:

DQrel(p̂, q̂) = b̂rel = r∗1r2 +
ε

2
(t∗1 + t2)r∗1r2. (11)

Note that b̂rel must be normalized if not.

3.6. Dual Quaternion Distance

The same distance metric defined in Reference [5] will be adopted for the proposed
controller, which provides a measure of how close a control point is to a target point:

DQdist(q̂1, q̂2) =‖ vec8(0̂)− vec8(DQrel(q̂1, q̂2)) ‖, (12)

where 0̂ is the null dual quaternion.

3.7. Dual Quaternion Regression

To find the regression coefficients or weights, w = [w1, w2, ..., wn], of the dual quater-
nions Q̂ = [q̂1, q̂2, ..., q̂n] that yield some desired dual quaternion q̂d, the following cost
function is optimized:

DQreg(q̂d, Q̂) = min
w

DQdist(q̂d, q̂r), (13)

where

q̂r = DQLC(Q̂, w), (14)

which can be optimized using a generic optimization algorithm, such as MATLAB’s FMIN-
CON optimization algorithm. The Dual Quaternion Linear Combination (DQLC) function
is defined as:

DQLC(Q̂, w) = DQLC(q̂1, ... , q̂n, w1, ... , wn), (15)

=
n

∏
i=1

rwi
i +

ε

2

n

∑
i=1

witi

n

∏
i=1

rwi
i . (16)

4. Proposed Approach

After specifying the control points that are to be controlled via markers or trackers, the
controller first goes through an actuators discovery phase. Each actuator, j ∈ J, is moved
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one after another but in no particular order, where J is the set of all actuators. For each
control point i ∈ I, the actuators that can contribute to displacing it are assigned to that
point, where I is the set of all control points. Thus, actuators could be assigned to multiple
control points. The control point that can be displaced by all actuators, most probably
being the end effector of the robot, is assigned an index i = n, where n is the cardinality of
set I. The discovery phase produces the following Boolean matrix:

S =


s1
s2
...

sn

 =


δ1

1 δ1
2 · · · δ1

m
δ2

1 δ2
2 · · · δ2

m
...

...
. . .

...
δn

1 δn
2 · · · δn

m

, (17)

where m is the cardinality of set J. The function above is defined as: δi
j = 1 if actuator j

can displace control point i and δi
j = 0 otherwise. To find the number of actuators that

contribute to some control point i, the dot product can be used ai = si · si. A vector of the
number of such actuators can be defined as a = [a1, a2, · · · , an].

The kinematic-model-free multi-point controller, just like any other kinematic-model-
free controller, assumes that the local kinodynamics information of the manipulator is
attainable. This information is attained by generating pseudo-random actuation signals
to actuate the robot joints and observing their result on the robot’s control point(s). A
high-level diagram summarizing the kinematic-model-free multi-point approach is shown
in Figure 1.

Figure 1. Flowchart of kinematic-model-free multi-point control.

The actuation primitives produce signals τ(t) which are sent to each of the robot’s
actuators and are defined as:

τ(t) =


τp t ∈ [t0, t0 +

dp
2 )

−τp t ∈ [t0 +
dp
2 , t0 + dp]

0 otherwise
. (18)

Note that actuation primitives could be motor torques, motor currents, joint posi-
tions, etc. The controller tracks the poses of the control points, q̂i, using dual quaternion
representation which yield the controlled points vector:

φ̂φφ = [q̂i, · · · , q̂n]. (19)
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The controller attempts to bring the points q̂i towards desired target poses d̂
f
i , yielding

the desired poses vector as follows:

γ̂γγ = [d̂
f
i , · · · , d̂

f
n]. (20)

By controlling multiple points, redundancies can be easily resolved by specifying
the desired poses of other points along the robot’s serial chain. The controller terminates
when φ̂φφ = γ̂γγ, i.e., when the poses of the controlled points of interest coincide with their
corresponding desired poses. This condition can be relaxed by allow the controlled points’
poses to reach within some deviation σ of their respective desired target poses. Otherwise,
the controller is to actuate the control points towards a set of intermediate poses d̂

t
i that

lead to the final desired target poses d̂
f
i in discrete steps. The intermediate poses are found

using screw linear interpolation interpolation between the current poses of the controlled

points, q̂i, and desired target poses, d̂
f
i . At each step, the kinematic-model-free multi-point

controller estimates actuation primitives, bi, to move each controlled point i ∈ I towards
their respective desired poses:

bi =


τ1

p( p̂)
τ2

p( p̂)
...

τm
p ( p̂)

, (21)

where τ
j
p( p̂) is the magnitude of the actuation primitive of actuator j. After each step where

the robot joints have been actuated, the displacement of the control points are recorded as
observations, which are calculated using the DQrel function. The nearest k observation
dual quaternions to each point i ∈ I form the observation matrix:

ψ̂ψψ =


ψ̂ψψ1
ψ̂ψψ2
...

ψ̂ψψn

 =


ô1

1 ô1
2 ... ô1

k
ô2

1 ô2
2 ... ô2

k
...

...
. . .

...
ôn

1 ôn
2 ... ôn

k

, (22)

where ôi
k is the kth closest observation dual quaternion of controlled point i. The actuation

primitives corresponding to these observations form the actuation matrix:

Ai =


τ1

p(p1) τ1
p(p2) · · · τ1

p(pk)

τ2
p(p1) τ2

p(p2) ... τ2
p(pk)

...
...

. . .
...

τ
ai
p (p1) τ

ai
p (p2) · · · τ

ai
p (pk)

. (23)

The desired actuation primitives, bi, is assumed to be a linear combination of the k
nearest actuation primitives such that:

Aiwi = bi, (24)

where wi = [wi
1, wi

2, ..., wi
k]

T is a set of unknown weights. The weights are estimated by
minimizing the following:

DQreg(d̂
t
i , ψ̂ψψi) = min

wi
DQdist(d̂

t
i , DQLC(ψ̂ψψi, wi)). (25)

With the weights for each control point, the desired actuation is then computed using
Equation (24) for each control point. The respective actuation matrix is used in the calcula-
tion. After the primitive for each control point has been obtained, the following averaging
is done to dampen and stir the actuation of joints that contribute to the displacement of the
control points:
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b′i =
∑r=i

r=1 ηi
rZ(br)

∑r=i
r=1 ηi

r
, (26)

where the operator Z adds zero padding to a vector to keep the length equal to m, and the
averaging weights matrix is a lower triangular matrix:

H =



η1
1 0 0 0 · · · 0

η2
1 η2

2 0 0 · · · 0
η3

1 η3
2 η3

3 0 · · · 0
...

...
...

...
. . .

...

ηn
1 ηn

2 ηn
3 ηn

4
. . . ηn

n

. (27)

In the case that the averaging weights for each control point is normalized,
Equation (26) would simply be:

b′i =
r=i

∑
r=1

ηr
i Z(br). (28)

Alternatively, to reduce the number of optimizations required, it is possible to fuse
the optimization of each control point together into a wholesome expression as follows:

DQreg(γ̂γγ, ψ̂ψψ) = min
w

i=n

∑
i=1

DQdist(d̂
t
i , DQLC(ψ̂ψψi, w)), (29)

where the weights are later used in Anw = b to estimate the required actuation. After each
discrete actuation, the resulting displacement on the pose of each control point is compared
to the expected displacement. Should the difference be significant, a new exploratory phase
is triggered to collect more data about the robot’s local kinodynamics as shown in Figure 1.
The controller leaves the exploratory phase once it has completed a predefined number of
exploratory steps. The controller terminates once all control point poses have reached the
desired poses or close enough to them, DQdist(q̂, d̂) < σ.

This controller, just like its other kinematic-model-free predecessors, does not require
any prior model of the robot’s kinodynamics. As such, the controller is agnostic to any
kinodynamic changes in the robot, such as alteration in the robot’s link dimensions. Since
the kinematic-model-free multi-point controller is not based on any accurate robot model,
the accuracy of the controller is less than conventional controllers. Moreover, this controller
operates in discrete steps, making it significantly slower than other controllers and the
motion can be relatively jerky. As with other complex models, such as those found in
Reference [26,27], it is difficult to proof the convergence of the kinematic-model-free
controller due to the nonlinear functions that are involved.

5. Simulation Results

The controller is tested on a simulated redundant 9-degrees-of-freedom continuum
robot, shown in Figure 2.
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Figure 2. The simulated 9-degrees-of-freedom continuum robot.

The robot was simulated using Matlab’s Robotics Toolbox [28] and DQ Robotics
Toolbox [29]. The actuation primitives used were joint position command signals to drive
the control points towards the target poses. The Denavit–Hartenberg parameters of the
robot is listed in Table 1.

Table 1. Denavit–Hartenberg parameters of redundant robot.

Link di θi ai αi

1 0 0 0.05 1.5708
2 0 0 0.05 1.5708
3 0 0 0.05 −1.5708
4 0 0 0.05 1.5708
5 0 0 0.05 −1.5708
6 0 0 0.05 1.5708
7 0 0 0.05 −1.5708
8 0 0 0.05 1.5708
9 0 0 0.05 0

The controller was programmed as described in Section 4 using k = 4 nearest neigh-
bors that comprise of actuation primitive and observation pairs. Since the experiments
were conducted in simulation, a tracking camera was not needed to determine the poses
of the control points. In addition, actuators discovery was also omitted in the simulation.
Instead, the simulator provided these information directly. Furthermore, gravity was
omitted in the simulation to keep the focus on multi-point pose control, deferring gravity
compensation to future work.

Three experiments were performed to study the capabilities of the proposed kinematic-
model-free multi-point controller. The first experiment involved end-effector pose control
for the continuum robot with increasing number of degrees of freedom enabled. This
experiment shows the degrading performance of the controller when increasing the num-
ber of degrees of freedom using a single control point. In the second experiment, the
9-degrees-of-freedom continuum robot was controlled using 1, 2, and 3 control point(s).
This experiment highlights the capability of the kinematic-model-free multi-point con-
troller to control robots of high degrees of freedom and resolve redundancies. Lastly, the
robustness of the kinematic-model-free multi-point controller was measured by executing
the simulation experiment 100 times with randomly-generated configurations.

5.1. Single-Point Control

In the first experiment, a single control point situated at the end effector of the contin-
uum robot was used to actuate the robot towards a desired target pose. Initially, only the
last 2 joints of the robot were enabled. Gradually, an extra joint was enabled, increasing the
robot’s degrees of freedom. The robot began from the home pose where the control-point’s
task-space position was (0, 0, 0.4500), and orientation was (0, 0, 3.1416). Orientations in this
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paper are specified in ZYX Euler angle representation for simplicity. The target position
was (0.4218, 0.0240, 0.0605) and orientation was (0.6202, −0.6009, 2.7578). The results are
shown in Figure 3 and tabulated in Table 2.

Figure 3. The controller performed the task of reaching, bringing a single control point at the end
effector to a desired target pose. As more joints were enabled, the performance was degraded. In
particular, in the 2-degrees-of-freedom case, the robot reaches the target in 21 steps, while, in the
9-degrees-of-freedom case, the robot reaches the target in 150 steps.
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Table 2. Reaching steps for different degrees of freedom enabled.

Degrees of Freedom Steps to Reach

2 21 steps
3 40 steps
4 42 steps
5 35 steps
6 41 steps
7 76 steps
8 127 steps
9 150 steps

In the simple 2-degrees-of-freedom case, the control point converged to the target pose
within 25 steps. When increasing the degrees of freedom, it is noted that the controller takes
longer to converge. Although it is evidently possible to reach the target pose within 25
steps, the added redundancies introduced additional nonlinearities that require excessive
exploratory behavior. In the case where all 9 joints of the robot were enabled, the control
point reached the target pose in 150 steps, a significant decrease in performance. With the
stopping condition (DQdist < σ) applied, it can be seen that the controller can terminate
before fully reaching the target pose.

5.2. Multi-Point Control

In this experiment, multiple control points were added to the continuum robot. In
the first arrangement, only a single control point was added that was situated at the end
effector. In the second arrangement, 2 control points were added, one at the end effector
and one at the end of link 5. Finally, in the third arrangement, the 3 control points were
added that were evenly distributed throughout the robot’s kinematic chain. The placements
of the control point for each arrangement are summarized in Table 3.

Table 3. Control points placement.

Arrangement Control Point 1 Control Point 2 Control Point 3

1 end effector - -
2 end of link 5 end effector -
3 end of link 3 end of link 6 end effector

These arrangements are depicted in Figure 4. Three reaching tasks were preformed
with each arrangement. All desired poses were within the robot’s configuration space. See
Figure 5. The reaching tasks increased in complexity in terms of dexterity required. We
note that arrangement 1 corresponds to kinematic-model-free control of the end-effector
pose. Thus, this experiment also serves as a comparison with the kinematic-model-free
orientation controller in Reference [5]. The results are shown in Figure 6 and tabulated in
Table 4.
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Figure 4. The three arrangements of the control points (CP’s) along the robot’s kinematic chain. In
the first arrangement, only one control point was used which was placed at the end effector. In the
second and third arrangements, two and three equally spaced control points were used, respectively.

Figure 5. The three reaching tasks to be performed. The translucent pose is the initial configuration
from which the robot is to actuate towards the opaque pose.

Figure 6. The controller performed three reaching tasks. In all 3 tasks, the controller converged faster
when using more control points (CPs).
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Table 4. Steps required to complete three reaching tasks using three arrangements of control points.

Task
Arrangement

1 2 3

1 70 steps 64 steps 46 steps
2 93 steps 59 steps 35 steps
3 185 steps 147 steps 92 steps

Only the pose distance of the control point situated at the end effector is shown. It can
be seen that the controller converges faster to the desired pose when using more control
points situated along the robot’s kinematic chain. In task 1, we note that a 66% improvement
in convergence speed when using 3 control points. In task 2 and 3, there was a 38% and
50% improvement was measured, respectively. These results indicate that adding more
control points will improve convergence and resolve redundancies in hyper-redundant
systems. As for accuracy, the termination criteria was set to DQdist < 0.03, achieving a
close enough reaching accuracy.

Furthermore, to demonstrate the joints’ position during an execution, the joint position
are shown in Figure 7. The larger jitters in joint positions correspond to exploratory
behavior, which is triggered whenever there is deficiency in local kinodynamic information.

Figure 7. These joint positions correspond to reaching task 1. The larger jitters are due to exploratory
behavior, which is triggered to collect more information about the robot’s local kinodynamics.

5.3. Robustness

The robustness of the algorithm was measured by executing the simulation 100 times.
Each time, the robot must reach a randomly-generated pose that is within its configuration
space and it reachable within 150 steps. If the controller takes longer, the simulation is
restarted. Three control points were used. One interesting configuration is shown in
Figure 8. The controller managed to achieve this bent arch configuration within 150 steps.
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Figure 8. In this simulation run, the controller attempted to actuate the robot to a back arching
configuration. It achieved to reach this configuration within 150 steps.

It was observed that 82% of the runs, the controller manages to reach to the target
pose. However, in 18% of the runs, the controller did not successfully converge to the
solutions that brought the robot’s end effector to the desired poses. This can occur when
the optimization is stuck in a local minimum, which results in an inaccurate actuation
signal that does not optimally move the control points towards the target poses.

6. Conclusions

This paper presents a novel kinematic-model-free control for controlling the pose of
multiple points along the kinematic chain of a continuum robot. The proposed controller is
able to resolve redundancies and converge faster to a desired configuration. The controller
works by actuating the robot using randomly-generated actuation primitives and observing
their effects on the control points. This information is then used to build a local linear
model using locally weighted dual quaternions. The local linear model is then used to
calculate an actuation primitive and actuate the continuum robot towards a desired pose.

In the first experiment, it was evident that the performance of the controller worsened
in terms of convergence when increasing the degrees of freedom of the robot. The higher
the degrees of freedom, the longer it took to converge. This is due to the nonlinearities
introduced, making the local linear model less accurate.

We presented the generalized kinematic-model-free multi-point controller and the
method by which observations are used to calculate actuation primitives that will reduce
the distance between a robot’s current pose and its desired target pose. The simulation
results in the second experiment show that this novel controller is capable of performing
reaching tasks without any prior kinematic model of the robot, successfully actuating the
poses of the control points towards some desired configuration.

Three arrangements for the control points were tested on a simulated 9-degrees-of-
freedom continuum robot. Three different robot configurations were targeted, all of which
are within the robot’s configuration space. It was noted that, when more control points
were used, the controller performed better and converged faster to the desired target robot
pose. Controlling multiple points along a robot did not only resolves redundancies, but
proved to converge faster to the desired pose.

Finally, the controller’s robustness was tested by executing the simulation 100 times
using random target configurations which the controller had to reach. The random target
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configurations lied within the robot’s configuration space. The kinematic-model-free multi-
point controller succeeded in reaching the target poses within 150 steps 82% of the times.

The proposed controller can be used in applications where simultaneous translational
and rotational reaching of redundant robots is required. The controller is useful for re-
solving redundancies of continuum robots. The kinematic-model-free approach in general
can be used for new robots where a model is not readily-available or for robots that are
hard to model. In general, the controller is applicable where flexibility is favored over
precision and speed. Examples of such applications include use of soft robots for reaching,
drawing, picking-and-placing, etc. As for future work, continuous control, gravity com-
pensation, joint limits, joint friction, and physical implementations, are promising research
directions to be investigated. These challenges must be addressed before deploying the
kinematic-model-free controller on any physical system.
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