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ABSTRACT

Model predictive control is a widely used optimal control method for robot path planning and
obstacle avoidance. This control method, however, requires a system model to optimize control
over a finite time horizon and possible trajectories. Certain types of robots, such as soft
robots, continuum robots, and transforming robots, can be challenging to model, especially
in unstructured or unknown environments. Kinematic-model-free control can overcome these
challenges by learning local linear models online. This paper presents a novel perception-based
robot motion controller, the kinematic-model-free predictive controller, that is capable of controlling
robot manipulators without any prior knowledge of the robot’s kinematic structure and dynamic
parameters and is able to perform end-effector obstacle avoidance. Simulations and physical
experiments were conducted to demonstrate the ability and adaptability of the controller to
perform simultaneous target reaching and obstacle avoidance.

Keywords: kinematic-model-free, predictive control, target reaching, obstacle avoidance, adaptive control, model-free control

1 INTRODUCTION

Researchers over the past few decades studied optimal control, especially for applications where systems
dynamics and constraints require proper handling (Zanon et al., 2017). Model Predictive Control (MPC) is
an advance control method widely used in academia and industry (Forbes et al., 2015). MPCs are widely
used in robotics due to their ability to handle constraints and run in real-time (Saputra et al., 2021). In
general, MPCs require a system model prior to control in order to optimize the controller over a finite
horizon (Stenman, 1999) which can be challenging to obtain or maintain for certain types of robots (e.g.
soft robots, continuum robots, transforming robots, etc.) (AlAttar et al., 2021). The kinematic-model-free
(KMF) controller is capable of controlling robot manipulators without any previous knowledge of the
robot’s kinematic structure or dynamic properties. The controller works by building local linear models
that are used to perform reaching tasks (AlAttar and Kormushev, 2020). However, the KMF controller up
to date have not been applied to high-level tasks such as trajectory planning and obstacle avoidance as
they are concerned with low-level control. Along with the merits of MPCs, integrated together, they can
perform high-level tasks. In this paper, a novel kinematic-model-free predictive controller (KMF-PC), that
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Figure 1. Experimental setup to test the adaptability of the proposed KMF-PC controller. The magenta
circle represents the initial point prior to robot motion, the red circle represents a virtual obstacle, and
the blue circle represents the target position. The green circle on the robot is the tracked point. Midway
reaching, the end effector is modified to demonstrate the adaptability of the controller. Four tests were
conducted: (a) the end effector was shortened by moving the tracked point down the second link; (b) the
end effector was lengthen by adding a rigid extension; (c) the end effector was offset at an angle; (d) the
end effector was extended using a soft link.

is capable of performing end-effector reaching and obstacle avoidance for robot manipulators, is presented.
The controller was tested in simulation as well as on a physical 2-degrees-of-freedom (2-DOF) manipulator
shown in Figure 1.

1.1 Contributions

The contributions of the paper are: presenting a novel model-free controller, KMF-PC, capable of
controlling a robot arm without any prior knowledge of the robot’s kinematics or dynamics and achieving
end-effector obstacle avoidance using a kinematic-model-free approach. Furthermore, the adaptability of
the controller is tested by modifying the end effector during execution.

1.2 Paper Structure

The paper is organized as follows: Section II introduces work in the literature that is relevant to the
research presented, Section 3 presents the formulation of the KMF-PC controller, Section 4 presents
simulation and experimental results, and finally Section 5 concludes the paper.

2 RELATED WORK

MPC is a control method that uses a system model to predict future behavior which can be sensitive to
prediction errors, especially in the case of nonlinear plants. To mitigate such sensitivities, adaptive model
predictive control, where the plant model and nominal conditions are continuously adapted, is used (Franco
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and Santos, 2019). MPCs gained popularity due to its ability to handle constraints and its capacity to
run in real-time, which allowed it to be widely used in robotics (Saputra et al., 2021). MPCs have been
used for path planning and collision avoidance of road vehicles (Ji et al., 2016) and multiple micro aerial
vehicles (Kamel et al., 2017). Krämer et al. (2020) controlled a manipulator to perform reaching tasks
while avoiding a dynamic obstacle. Nikou et al. (2017) used a nonlinear-MPC to control N robots for
cooperative manipulation of objects whilst avoiding obstacles. Li and Xiong (2019) performed obstacle
avoidance of mobile manipulators using an MPC.

Li et al. (2021) used MPC for trajectory tracking and obstacle avoidance of mobile robots. Oleinikov
et al. (2021) used MPC for controlling a robot manipulator that avoids fixed and human obstacles. Ashe
and Krishna (2020) used MPC for dynamic target tracking and obstacle avoidance for a person-following
robot. Pankert and Hutter (2020) used MPC for continuous mobile manipulation and collision avoidance.
Other researchers used MPC for controlling an autonomous vehicle and performing obstacle avoidance
(Song and Huh, 2021; Quirynen et al., 2020). Wang et al. (2021) used a MPC for controlling a dog robot
for helping vision-impaired people to navigate around obstacles.

In general, MPCs require a system model for predicting the state of the system over a finite horizon Dao
et al. (2021). This imposes that the system to be controlled and its dynamic model must be known prior to
control. Furthermore, nonlinear models can burden the controller with heavy computational requirements
(Stenman, 1999). This can be challenging in robotics as some robots, such as soft and continuum robots,
are not straightforward to model accurately, while others might change, adapt, morph, transform, or evolve,
such as robots that change their kinematic structure or dynamic properties during movement or robots that
get accidentally damaged or bent (AlAttar et al., 2021).

On the other hand, KMF control methods can overcome these challenges as these control methods do not
require any prior knowledge of the robot’s kinematic or dynamic models. Kinematic-model-free controllers
work by gathering information through short exploratory actuations, building a local linear model that
approximates the robot’s local kinematic and dynamic behaviour, and estimating an actuation signal that
moves the robot towards a given reference target. In our previous work, we’ve demonstrated KMF position
control of a robot manipulator capable of performing target-reaching tasks (Kormushev et al., 2015a,b).
The controller was then experimented on a pneumatically-actuated soft continuum robot (Frazelle et al.,
2021) for space applications. We, then, presented a pose (position and orientation) controller that controls a
robot’s end-effector pose using locally weighed dual quaternions (AlAttar and Kormushev, 2020). Finally,
we scaled up the degrees-of-freedom to be controlled by tracking and controlling multiple points along the
robot’s kinematic chain (AlAttar et al., 2021).

Although model-free predictive control methods were previously studied (Stenman, 1999; Yamamoto,
2014; Li and Yamamoto, 2016), online kinematic-model-free predictive control for robot manipulators is
an unexplored area of research up to our knowledge.

3 PROBLEM FORMULATION

This section formulates the KMF-PC controller. The nonlinear model of a rigid-body robot manipulator
can be obtained using the following general dynamic equation:
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M(q(t)q̈ + c(q, q̇) + g(q(t)) + τf (t) = τ(t) (1)

where q are the joint angles, q̇ are the joint velocities, q̈ are the joint accelerations, M is the inertia matrix,
c is the Coriolis vector, g is the gravity vector, τf is the friction torque, and τ is the applied torque.

3.1 Kinematic-Model-Free Control

For a 2-DOF robot manipulator, let p̂ be the desired actuation primitive whose parameters τp(p̂) are to be
estimated to actuate the end effector towards the target position:

b1 =

[
τ1p (p̂)

τ2p (p̂)

]
(2)

Following the kinematic-model-free approach, b1 can be approximated as a linear combination of
actuation primitives as follows:

A1w = b1 (3)

where w = [w1, w2, · · · , wk]
T is the vector of unknown weights and A1, the actuation matrix, is defined

as follows:

A1 =

[
τ1p (p1) τ1p (p2) · · · τ1p (pk)

τ2p (p1) τ2p (p2) · · · τ2p (pk)

]
(4)

During exploration, the controller applies pseudo-random actuation primitives with the following curve:

τ(t) =

{
τp t ∈ [t0, t0 +

dp
2 )

0 otherwise
. (5)

The resulting end-effector displacements are recorded into the observation matrix:

A2 =

∆x(p1) ∆x(p2) ... ∆x(pk)
∆y(p1) ∆y(p2) ... ∆y(pk)
∆z(p1) ∆z(p2) ... ∆z(pk)

 (6)

where ∆i(pj) is the displacement effect on the end effector along the i-axis as a result of exerting
actuation pj . In the planar case, ∆z(pj) = 0. Let the desired effect be expressed as follows:

b2 =

∆x(p̂)
∆y(p̂)
∆z(p̂)

 (7)

The desired effect, b2, can be expressed as a linear combination of the kNN observed effects, A2, as
follows:
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A2w = b2 (8)

Note that many solutions might exists for w since A2 is might not be full rank. To resolve this issue, least
squares regression is used to find the smallest squared vector b2 that is a solution to the equation. This
calculated value can then be used in equation (3) to find the desired actuation primitive that will actuate the
end effector towards the desired target position. After every actuation, the actual and desired end-effector
positions are compared. In the case of significant discrepancy, another exploratory phase is triggered.

3.2 Model Predictive Control

The system model of linear MPC in state space form is as follows:

x(k + 1) = Ax(k) +Bu(k) (9)

y(k) = Cx(k) +Du(k) (10)

where matrices A, B, C, and D can vary with time and:

• k: current control time index
• x: system state variables
• u: manipulable inputs
• y: system outputs

In general, a system model is used to predict the future states of a dynamic system by the MPC to
generates a control signal that minimizes some cost function over a predefined prediction horizon (Afram
and Janabi-Sharifi, 2014). The cost function optimizes the control variables to achieve some desirable
reference which results in a sequence of N optimal actuations, of which the MPC only applies the first
(Khosravi et al., 2019). This process is then repeated after shifting the horizon forward. If the system
model is linear, analytical solutions to the MPC can be used for extremely fast computation. In the case of
rigid-body robots, the dynamic model shown in (1) is integrated in time, and becomes extremely non-linear
as more joints are added, making MPC challenging. The problem is often simplified by linearizing the
system dynamics, however this requires an accurate model of the system; something that is not possible for
unknown robots.

3.3 Kinematic-Model-Free Predictive Control

To make use of linear MPCs, a state space formulation for KMF control is required. The actuation
equation in KMF control can be premultiplied by the pseudoinverse of A1, the actuation matrix:

w = A†
1b1. (11)

This can then be substituted into the observation equation to yield the following:
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b2 = A2A
†
1b1 (12)

Since ∆x(k + 1) = b2 and u(k) = b1, we can easily notice that:

∆x(k + 1) = Bu(k) (13)

where

B = A2A
†
1 (14)

The cost function is defined as follows:

l(x, u) =∥ xdes − xu ∥ + ∥ u ∥ (15)

where xdes is the desired state of the system. Formally, the optimization problem is expressed as follows:

min
u

JN (x0, u) =
∑N−1

k=0 l(x(k), u(k)) (16)

s.t. ∆x(k + 1) = Bu(k) (17)

x(0) = x0 (18)

∥ u ∥≤ umax (19)

(x1(k)− a)2 + (x2(k)− b)2 ≥ r2 (20)

where x0 is the initial state of the system, umax is the maximum torque to be applied, xi(k) is the ith

system state variable, and {a, b, r} are the circular constraint parameters of the obstacle. Since the local
linear model built is volatile and is only used for the next actuation, a linear MPC sufficies. As with all
KMF controllers, stability and convergence are not guaranteed due to their exploratory nature.

4 RESULTS

In this section, simulation and physical experimentation results are presented and discussed. In the first
experiment, a simple reaching task on a simulated 2-DOF robot and a physical 2-DOF robot was performed
using classical KMF controller and the proposed KMF-PC. In the second experiment, reaching tasks on a
2-DOF, 3-DOF, and 4-DOF simulated robot as well as the 2-DOF physical robot was performed with one
and two circular obstacles. In the third experiment, the adaptability of the KMF-PC is demonstrated by
modifying the 2-DOF robot’s kinematic structure midway. All the robots are planar, restricting the motion
to the horizontal plane, to neglect the effects of gravity.

The simulation robots are simulated on MATLAB using Peter Corke’s Robotics Toolbox (Corke, 2017).
The KMF-PC makes use of CasADi (Andersson et al., 2019). End-effector position was easily obtained
using toolbox functions. On the other hand, the physical robot is comprised of aluminium links and Hebi
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Figure 2. Simulated and physical experimentation of KMF control and the proposed KMF-PC in the
absence of any obstacle. Comparing simulation results (a) and (b), both controllers performed similar,
reaching the target in a semi-straight line. As for the physical experiments, we notice that the KMF-PC took
a slightly more curved path to reach the target position. Nonetheless, both KMF and KMF-PC performed
similarly well, achieving the reaching task within 30 steps.

X-Series actuators, (X5-9) capable of delivering 9 Nm of continuous torque, which are controlled using
torque signals. The end effector of the robot is tracked using a calibrated webcam and a green marker.
Direct pixel coordinates is used for determining the end-effector position for physical experiments. Virtual
obstacles are used to emulate a circular obstacle that is to be avoided.

4.1 Experiment 1: reaching using classical KMF and KMF-PC

In this experiment, classical KMF and the proposed KMF-PC are used to perform a simple reaching
task on a simulated and a physical 2-DOF robot in the absence of any obstacle. Figure 2 shows both the
simulated and physical experimentation results of running both controllers.

It the evident that, in the absence of any obstacle, both controllers performed similarly and were able to
reach the target position in less than 30 steps.

4.2 Experiment 2: obstacle avoidance using KMF-PC

In the second experiment, obstacle avoidance is performed on a 2-DOF, 3-DOF, and 4-DOF simulated
robot and the 2-DOF physical robot. The results of simulations are summarized in Figure 3. The KMF-PC
is capable of avoiding obstacles along the reaching path. Despite the increase in complexity when an extra
DOF is added, the controller successfully performs the reaching task whilst avoiding the obstacles (2-DOF
and 3-DOF). It also also noted, due to the exploratory nature of the KMF approach, should the controller
trigger an exploratory phases near any obstacle, this might cause collision with the obstacle (evident in the
4-DOF case). As such, it is recommended to inflate the obstacles to avoid any collision due to exploratory
behaviour.
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Figure 3. Simulation results of simultaneous reaching and obstacle avoidance using KMF-PC on simulated
2-DOF, 3-DOF, and 4-DOF manipulator robots. It is noted in the 4-DOF case, where the complexity is
relatively higher, more exploratory motion is triggered which caused the end effector to penetrate the
virtual obstacle.

As for the physical experiments, the results are shown in Figure 4. The KMF-PC controller successfully
performed the reaching task whilst avoiding the obstacles. In both cases, single and two obstacles, the
KMF-PC controller brought the instances where the robot came close to the obstacle(s). As such, inflating
the obstacles is recommended.

When one obstacle was presented, the controller took 21 steps to reach the target end-effector position.
When two obstacles were in the way, the controller took 30 steps to reach the target.
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Figure 4. Physical experiment results of KMF-PC reaching and obstacle avoidance. In both cases, the end
effector reached close to the obstacle. As such, obstacle inflation is recommended. In the single obstacle
scenario, the robot reached the target in 21 steps. In the two obstacles scenario, it reached the target in 30
steps.

4.3 Experiment 3: adaptability of KMF-PC

In the third experiment, the adaptability of the proposed controller is demonstrated through a series of
tests in which the kinematic structure of the physical robot is modified midway the reaching task. The
results are summarized in Figure 5. First, the robot’s second link is shortened by moving the marker down
the link. Second, the link is extended by adding a rigid cardboard to the last link. Third, the end effector is
extended using a soft link. Fourth, the end effector is offset.

The end effector is altered by pausing the execution temporarily and manually modifying the end effector.
After the modification, the execution is resumed. In all cases, when the execution is resumed, the controller
goes into an exploratory phase which is triggered due to the discrepancy measured between the predicted
and actual state of the end effector. The controller, then after, resumes moving toward the target position.
In all cases, the robot managed to reach the target within 50 steps.

5 CONCLUSION

A novel KMF controller is proposed that is capable of obstacle avoidance, using an MPC approach, without
any prior knowledge of the robot’s model. KMF controllers make no assumption about the robot’s structure
nor the environment. The formulation of the proposed KMF-PC was derived in this paper, showing
how obstacle avoidance can be achieved without prior knowledge of the robot’s dynamics or kinematics.
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Figure 5. Physical experiment results of reaching and obstacle avoidance whilst modifying the end effector
during execution. When the end effector is altered, the controller triggers an exploration phase and resumes
reaching and obstacle avoidance right after. The modifications include shortening the end effector, rigid
and soft extensions, and offsetting the end effector.

Using this approach to allow MPC to be applied to unknown robots enables a greater level of control
to be achieved, with minimal computational complexity. Both simulated and physical experiments were
conducted. Running the KMF-PC controller in the absence of any obstacle behaved similar to the classical
KMF controller. Single and double obstacle avoidance was tested in simulation using 2-DOF, 3-DOF, and
4-DOF robots and on a physical 2-DOF robot. It is found that due to the exploratory nature of KMF control,
any exploratory actuations trigger near any obstacle might cause the robot’s end effector to penetrate or
collide with the obstacle. As such, obstacle inflation is recommended. Furthermore, the adaptability of
the KMF-PC was demonstrated through a series of tests where the end effector was modified halfway
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during execution. In all experiments, the robot managed to perform simultaneous reaching and obstacle
avoidance, reaching the target position in less than 50 steps. At the current state, KMF should be applied to
robot control problems where flexibility and adaptability is favoured over accuracy and speed. Future work
includes obstacle-aware exploratory actuations that take into account the obstacles to avoid collisions and
continuous control to allow for gravity compensation and, thus, non-planar control.
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