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Abstract—This paper investigates learning approaches for
discovering fault-tolerant control policies to overcome thruster
failures in Autonomous Underwater Vehicles (AUV). The pro-
posed approach is a model-based direct policy search that learns
on an on-board simulated model of the vehicle. When a fault
is detected and isolated the model of the AUV is reconfigured
according to the new condition. To discover a set of optimal
solutions a multi-objective reinforcement learning approach is
employed which can deal with multiple conflicting objectives.
Each optimal solution can be used to generate a trajectory that
is able to navigate the AUV towards a specified target while
satisfying multiple objectives. The discovered policies are executed
on the robot in a closed-loop using AUV’s state feedback. Unlike
most existing methods which disregard the faulty thruster, our
approach can also deal with partially broken thrusters to increase
the persistent autonomy of the AUV. In addition, the proposed
approach is applicable when the AUV either becomes under-
actuated or remains redundant in the presence of a fault. We
validate the proposed approach on the model of the Girona500
AUV.

I. INTRODUCTION

Persistent Autonomy or operating over long missions with-
out any human assistance, is one of the most challenging goals
for Autonomous Underwater Vehicles (AUVs) that researchers
are striving to achieve. AUVs are supposed to deal with
extreme uncertainties in unstructured environments, where a
failure can endanger both the vehicle and the mission. A fault-
tolerant strategy enables a system to continue its intended
operation, possibly at a reduced level, rather than failing
completely. The fault-tolerance strategy consists of three steps:
fault detection, fault isolation, and fault tolerance. Fault de-
tection is the process of monitoring a system to recognize
the presence of a failure. Fault isolation or diagnosis is the
capability to determine which specific subsystem is subject to
failure. Both topics have been extensively investigated in the
literature and have several effective solutions [1–3]. After the
failure is detected and isolated a fault-tolerant strategy must
be considered to rescue the vehicle safely. Fault tolerance, is
the capability to complete the mission despite the failure of
one or more subsystems. It is referred to also as fault control,
fault accommodation or control reconfiguration.

Although the failure can happen in all subsystems of the
AUV, in this paper we consider only the failure in thrusters.
Thruster blocking, rotor failure, and flooded thrusters are some
of the factors that can lead to a thruster failure in real mis-
sions [1]. We propose a model-based direct policy search for
discovering fault-tolerant control policies to overcome thruster
failures in AUVs. The proposed approach learns on an on-
board simulated model of the AUV. In our previous research

[4–6] fault-tolerant control policies have been discovered con-
sidering the assumption that the failure makes the thruster
totally broken, meaning that a faulty thruster is equivalent to
a thruster which is turned off. One of the contributions of
this work is taking advantage of the remaining functionality
of a partially broken thruster. Therefore, our proposed method
can deal with partially broken thrusters and use them to reach
the desired goal. Furthermore, in the previous work a single-
objective optimization approach was used and we employed a
scalarized objective function, even though the defined objec-
tives were conflicting. In such case, although, the objectives
are prioritized by the associated weights, the approach finally
discovers a single optimal solution. In this paper, on the
other hand, a multi-objective algorithm is employed that is
capable of dealing with multiple conflicting objectives and
discovering multiple optimal solutions. Each optimal solution
can be used to generate a trajectory that is able to navigate the
AUV towards a specified target. In addition, we show that the
proposed approach is applicable when in the presence of a fault
the AUV either becomes under-actuated or remains redundant.
We evaluate the proposed approach on the simulated model of
the Girona500 AUV.

II. RELATED WORK

A. Failure Recovery

Most of the existing fault-tolerant schemes consider actu-
ator redundancies, such that the vehicle remains over-actuated
even if a fault occurs in one of the thrusters. For this cate-
gory of problems a general solution has been found that is
reallocating the desired forces on the vehicle over the working
thrusters [1], [7], [8]. Such methods are applicable in case
that even in the presence of the failure, the AUV remains
over-actuated. On the contrary, if a broken thruster makes the
AUV under-actuated the literature is still lacking a unifying
approach. M. Andonian et al. [9], design trajectories for an
AUV to overcome an actuator failure and accomplishing the
mission using geometric control theory. In their work the
AUV is modeled as a forced affine connection control system,
and they develop the control strategies using integral curves.
They devise a scenario and compute the control signals in
simulation. The presented geometric control is an open-loop
control strategy, therefore its validity is mainly theoretical,
because of the inevitable presence of un-modeled dynamics
and external disturbances. Choi and Kondo [10], provide
an analysis of the thruster failure combinations for a vehicle
similar to Girona500. Their method is simple and in some
circumstances applicable to our problem. However, as most of
the other papers, it addresses the problem of tracking a given



Fig. 1: The diagram shows the fault detection and fault recov-
ery modules. The fault recovery module includes a number
of elements such as policy representation, reward function
and dynamics model of the system. (see Section.III for more
details).

trajectory, and does not take into account the trajectory gener-
ation. While this is a common and relevant control problem,
in the case of a thruster failure the pre-defined trajectory for
a functional AUV may not be optimal for the faulty AUV
anymore. Our method generates optimal trajectories, that can
be used to accomplish the given task achieving the lowest cost
in the presence of the fault. In [11], the T-Resilience algorithm
aims at making the optimization process aware of the limits
of the simulation. It looks for the behaviors that only use
the reliable parts of the robots and avoids behaviors that it is
unable to achieve in the real world. On the contrary, the model
we use includes the dynamics equation of the AUV together
with identified hydrodynamic parameters of the system and our
approach generates an optimal trajectory that takes the AUV
to the target with minimum cost. A few works are utilizing
surfaces to control the AUV [12–14]. Those methods depends
on the kinematics and dynamics models of the considered
AUV. Our method, on the other hand, employs the dynamics
model for simulation, but not for derivation of the controller.
We use a linear function approximator to represent a control
policy, whose parameters are learned according to the model
and a specified task.

B. Multi-Objective Reinforcement Learning

Multi-objective reinforcement learning is the process of
maximizing multiple rewards which can be complementary,
conflicting, and independent. The existing methods can be
categorized into two groups: single-policy and multiple-policy.

The first group aims at finding an optimal policy among
many Pareto optimal policies that may exist. So the algorithm
must be provided with some guidance as to which of these
policies is to be preferred. Gabor et al. assume a fixed
ordering between different rewards [15]. In [16] a geometric
approach is proposed that performs learning on multiple reward
components. The approach results in expected rewards lying
in a particular region of reward space. An alternative approach
to specifying preferences is linear scalarization, [4], [17],
[18], in which the objective vector is scalarized according
to a weight vector. Varying the weights allows the user to

express the relative importance of the objectives. For instance,
increasing an objective’s weight will bias the learning towards
that objective. One of the issues is that the relationship between
the weights and the discovered policy may be unpredictable.
Depending on the nature of the Pareto Front small changes
in weights may produce large changes in the policy which is
learnt, or vice versa [19].

The goal of the second group is to learn multiple policies
that form an approximate to the Pareto Front. In [20] for each
objective a gradient in the parameter-policy space is calculated
and then these gradients are combined into a weighted gradient
form. By varying the weighting of the objective gradients a
range of policies can be discovered. In [21], a value-iteration
convex hull algorithm is proposed that in parallel learns all
deterministic policies which define the convex hull of the
Pareto Front, and finally forms mixture policies which lie
along the boundaries of this hull. An alternative approach
is employing evolutionary algorithms [22]. By evolving a
population of solutions, multi-objective evolutionary algo-
rithms are able to approximate the Pareto optimal set in a
single run. Differential Evolution (DE) [23] was originally
designed for scalar objective optimization. However because
of its efficiency and simplicity, several multi-objective DE
algorithms have been developed in recent years [24–26]. DE
uses weighted difference between solutions to perturb the
population and to create candidate solutions. The new trial
solutions are partly from the candidate solutions and partly
from the old population. We use the multi-objective differential
evolution (MODE) algorithm proposed in [27].

III. METHODOLOGY

As can be seen in Figure 1 when a thruster is deemed faulty,
the fault detection module sends a signal to the fault recovery
module. This module’s task is to discover a fault-tolerance
control policy using the remaining assets of the system. The
discovered control policy have to be able to safely bring the
AUV to a station where it can be rescued.

The proposed fault recovery module is framed in the
context of model-based direct policy search for reinforcement
learning. This framework comprises a dynamic model of the
vehicle, a parameterized representation for the control policy, a
reward function, and an optimization algorithm. The dynamics
model of the system is reconfigured according to the current
situation of the system. In the employed model-based policy
search approach the trials are performed on the on-board
dynamic model and not directly by the vehicle. For AUVs
this is not a practical limitation, as their dynamics have been
modeled accurately. The direct policy search utilizes a function
approximation technique and an optimization heuristic to learn
an optimal policy that can reach the goal specified by the
reward function. The optimization heuristic can be treated as
a black-box method because in policy search over a finite
horizon, the particular path followed by the agent in the state-
space can be ignored. In this section, all the components of
the fault recovery module depicted in Figure 1 are explained.

A. AUV Model

In this section a dynamic model of the AUV is formed
using a set of equations and a set of parameters. The obtained
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Fig. 2: The selected thruster layout in our experiments for
Girona500.

model is then used to find the optimal solutions that are
executed on the robot later. The dynamics equations of a 6DoF
rigid body subject to external forces and torques while moving
in a fluid environment can be generally formulated as follows,

η̇ = J(η)ν

(MRB +MA) ν̇ +(CRB (ν)+CA (ν)+D(ν))ν +g(η) = Bτ

(1)
where η , [x y z φ θ ψ]T is the pose (position and orien-
tation) vector with respect to the inertial frame and ν ,
[u v w p q r]T is the body velocity vector defined in the body-
fixed frame. J(η) is the velocity transformation matrix, MRB
is the rigid body inertia matrix, MA is the hydrodynamic
added mass matrix, CRB (ν) is the rigid body Coriolis and
centripetal matrix, CA (ν) is the added mass Coriolis and
centripetal matrix, D(ν) is the hydrodynamic damping matrix,
g(η) is the hydrostatic restoring force vector, B is the actuator
configuration matrix, and the vector τ the control input vector
or command vector.

In our experiments we use Girona500 [28] which is a
reconfigurable AUV equipped with typical navigation sensors
(e.g. Doppler Velocity Log Sensor), survey equipments (e.g.
stereo camera) and various thruster layouts. As depicted in
Figure 2, the selected thruster layout in this work consists of
five thrusters: 2 in heave direction, 2 in surge direction, and 1
in sway direction. In order to build a model of the system for
simulating the behaviors of the AUV, the hydrodynamic param-
eters of Girona500, are substitute in the dynamics equations
of the AUV (1). The hydrodynamic parameters are extracted
using an online identification method and are reported in [29].

B. Fault Detection Module

The process of monitoring a system in order to recognize
the presence of a failure is called fault detection. We only
consider the case of thruster failure which can take place due
to thruster blocking, rotor failure, flooded thrusters, etc. In
a real underwater vehicle sometimes the thruster may still
work but not as a fully functional module. For instance, some
sea plants may twist around the propeller of the thruster and
reduce its efficiency by a percentage. In this paper, we consider
a generic case in which a thruster can be fully functional,
partially broken or totally nonfunctional. Furthermore, failure
detection in AUVs and ROVs has been extensively studied [1–
3], and so, it is out of scope of this paper. Therefore, we assume
that the fault detection module is placed in a higher layer in
the architecture of the system (see Figure 1). This module
continuously monitors all the thrusters and sends information
about their coefficient of functionality (healthiness) to update
the other modules. The output of this module is a vector of

functionality coefficients in range [0,1], where 0 indicates a
totally nonfunctional thruster, 1 represents a fully functional
thruster, and for instance, 0.7 indicates a thruster with 70%
efficiency.

C. Policy Representation

Reinforcement learning (RL) in continuous state-space
requires function approximation. In this technique a param-
eterized representation of the final solution is formed. The
goal of the RL algorithm is to find a set of parameters that
lead to an optimal solution. In direct policy search, a policy
representation, a reward function, and a stochastic optimization
heuristic is utilized to maximize the long-term reward.

Using linear function approximation, a policy can be rep-
resented as a weighted linear sum of a set of features (known
as basis functions).

Π = ∑
n f
i=1θiφi = Θ

T
Φ (2)

where Π is the policy, n f is the number of features, φi ∈ Φ

is the ith feature, Φ is the set of features, θi ∈ Θ is the ith
parameter, and Θ is the parameter vector. The most common
choices for basis functions include polynomial basis, radial
basis, Proto-value, and Fourier basis schemes. We use Fourier
basis scheme because they are easy to compute accurately
even for high orders, and their arguments are formed by
multiplication and summation rather than exponentiation. In
addition, the Fourier basis seems like a natural choice for value
function approximation [30]. To deal with multiple variables in
the representation of the policy the nthorder Fourier expansion
of the multivariate function F(x) is used. Since a full Fourier
expansion includes both sin and cos terms, the number of
basis functions for the nthorder expansion with d variables is
2(n+1)d . This number can be reduced to (n+1)d by dropping
either of terms for each variable [30]. Thus the nthorder Fourier
expansion of d variables can be formulated as follows

φi(x) = cos
(
πς

ix
)

(3)

where ς i = [1, ...,ςd ], ς j ∈ [0, ...,n], 1 ≤ j ≤ d. The policy
represents the control input vector τ of the AUV which is
a function of parameters Θ and an observation vector O⊂ η .
The observation vector is the subset of state variables that we
observe during the learning process (here, O = [x y ψ u v]).

D. Vectorized Reward Function

The performance of the vehicle is measured through a
reward function:

R =
T

∑
t=0

rt(ηt)

∣∣∣∣∣
Π

(4)

where rt is the immediate reward vector, and depends on the
current state ηt , which in turn is determined by the policy
and its parameters. Therefore, the aim of the agent is to tune
the policy’s parameters in order to maximize the cumulative
reward vector R over a horizon T . Various definitions of the
immediate reward are possible. We defined a vectorized reward



function rt including three reward components r1
t , r2

t , and r3
t .

rt = [r1
t r2

t r3
t ]

r1
t =

1
‖Pt −Pd‖+ ε

r2
t =

1
‖Vt −Vd‖+ ε

r3
t =

1
|1− cos(∆ψ)|+ ε

(5)

where Pt and Pd are the current and the desired position vec-
tors, [x y], respectively. Vt and Vd are the current and the desired
linear velocity vectors, [u v], respectively. ∆ψ = (ψt − ψd)
and ψt and ψd are the current and the desired yaw angles
respectively. The first reward component, r1

t , is defined to
navigate the AUV towards the target. The second components,
r2

t , ensures the AUV reaches the target with minimum final
velocity. Consider a scenario that the path to reach a final
target is segmented into multiple via-points. In such case, it is
important to pass through all the via-points one by one with
the minimum final velocity and then execute the next policy.
Otherwise, the AUV needs to replan and discover new policies
at each via-point. Finally, the third component, r3

t , keeps the
orientation of the AUV always heading towards the target.

E. Multi-Objective Optimization Problem

A multi-objective optimization problem can be formulated
as

Minimize F(x) = [ f1(x), ..., fm(x)]T

s.t. x ∈Ω,
(6)

where Ω is the decision space and x = [x1,x2, ...,xn]
T is a

decision vector, and fi :Rn→R, i = 1, ...,k are the objective
functions.

Single-objective optimization problems may consist of a
number of objective functions, as far as the objectives are
not conflicting with each other. In this case a single solution
exists, which can optimize all the objectives. On the other
hand, if the objectives conflict, improvement of one may lead
to deterioration of another. The best solutions in such a case
are called Pareto optimal solutions. The following definitions
are used in the concept of Pareto optimality:

Definition 1. A vector u = [u1, ...,um]
T is said to dominate

another vector v = [v1, ...,vm]
T , denoted as u ≺ v, iff ∀i ∈

{1, ...,m},ui ≤ vi and u 6= v.

Definition 2. A feasible solution x∗ ∈ Ω is called a Pareto
optimal solution, iff @y ∈Ω such that F(y)≺ F(x∗).

Definition 3. Pareto Set (PS) is the set of all the Pareto optimal
solutions and can be denoted as

PS = {x ∈Ω|@y ∈Ω,F(y)≺ F(x)} (7)

The Pareto Front (PF) is the image of the PS in the objective
space

PF = {F(x)|x ∈ PS} (8)

F. Multi-Objective Optimization Algorithms

Among several existing optimization algorithms, evolu-
tionary algorithms are considered as a powerful alternative.
These algorithms are very effective in solving complex search
problems, including single-objective and multi-objective op-
timization problems [22]. Dealing with a group of candidate
solutions, makes them effective to find a group of optimal
solutions. Because of its simplicity and high efficiency, Differ-
ential Evolution [23] is one of the most popular evolutionary
algorithms over a continuous domain. The backbone of the
algorithm is based on weighted difference between solutions
to perturb the population and to create candidate solutions.
Previously, we compared the performance of single-objective
DE with two other population based algorithms [4–6]. In order
to solve the described multi-objective problem in this paper, a
multi-objective differential evolution algorithm is utilized. In
this section, firstly the standard differential evolution algorithm
is briefly explained. Furthermore, a multi-objective extension
of the differential evolution is discussed in more details.

1) Differential Evolution: DE is a population-based
stochastic method for global optimization and its recombina-
tion and mutation operators are the variation operators used
to generate new solutions. Unlike, Genetic Algorithm (GA)
and several ES approaches, solutions in DE are encoded with
real values. Moreover, DE does not use a fixed distribution as
the Gaussian distribution adopted in ES approaches; instead,
the current distribution of the solutions in the search space
determines the search direction and even the stepsize for each
individual. DE utilizes NP D-dimensional parameter vector
xi,G i = {1,2, ...,NP} as a population for each generation
G. In order to cover the entire parameter space, the initial
population is sampled using a uniform probability distribution.
The mutation operator works based on differences between
pairs of solutions with the aim of finding a search direction
using the distribution of the solutions in the current population.
DE generates new parameter vectors by adding the weighted
difference between two population vectors to a third vector.
The mutant vector is generated as

vi,G+1 = xρ1,G +Fc(xρ2,G−xρ3,G) (9)

where ρ1,ρ2,ρ3 ∈ {1,2, ...,NP} are random indices, and Fc ∈
(0,2] is a real and constant factor which controls the ampli-
fication of the differential variation. In the next phase, the
crossover operation is introduced to increase the diversity
of the perturbed parameter vector. The trial vector ui,G+1 =
(u1i,G+1,u2i,G+1, ...,uDi,G+1), is formed according to

u ji,G+1 =

{
v ji,G+1 if rand( j)≤CR or j = rnbr(i)
x ji,G otherwise

(10)

where, rand( j) is the jth evaluation of a uniform random
number. CR ∈ [0,1] is the crossover constant. rnbr(i) is a
randomly chosen index which ensures that ui,G+1 gets at least
one parameter from vi,G+1.

The selection operator is used to decide whether or not the
trial vector should become a member of the next generation.
By comparing the trial vector to the target vector, the selection
operator selects the vector with smaller cost.

In order to classify the different variants of DE the notation
DE/a/b/c is proposed by Storn and Price [23]. a specifies



the vector to be mutated. Two examples are rand and best.
b is the number of difference vectors used in the strategy. c
denotes the crossover scheme (e.g. bin). The explained DE
strategy can be written as: DE/rand/1/bin.

2) Multi-Objective Differential Evolution: Because of its
efficiency for solving problems, several multi-objective DE al-
gorithms have been developed in recent years [24–26]. We use
the multi-objective differential evolution (MODE) algorithm
proposed in [27]. This algorithm is inspired from elitist non-
dominated sorting genetic algorithm (NSGA-II). In a multi-
objective domain, the goal is to identify the Pareto Set (PS). In
MODE, a population of size NP is generated randomly and the
fitness functions are evaluated. The population is then sorted
based on dominance concept. In the next step, the operations
of DE are carried out over the individuals of the population.
Then the fitness of the trial vectors are evaluated. Unlike
DE, in MODE the trial vectors are not compared with the
corresponding parent vectors. Instead, both the parent vectors
and the trial vectors are combined to form a global population
of size, 2NP. The global population is then ranked by the
distance calculation. The best NP individuals are selected based
on their ranking and distance and act as the parent vector for
the next generation. Algorithm 1 shows a simplified pseudo
code of the MODE algorithm.

Algorithm 1 Multi-Objective Differential Evolution

1: Pparent ← Initialize random population
2: Jparent = eval(Pparent)
3: for i = 1 to Gmax do
4: for j = 1 to NP do
5: Pmutant = Mutation(Pparent)
6: Pchild = crossover(Pparent ,Pmutant)
7: end for
8: Jchild = eval(Pchild)
9: for j = 1 to NP do

10: [Pparent ,Jparent ] = selection(Jparent ,Jchild)
11: end for
12: PF = Jparent
13: PS = Pparent
14: end for
15: [PFout ,PSout ] = DominanceFilter(PF,PS)

IV. EXPERIMENTAL SETUP

The conducted experiments are based on 6DoF dynamics
model of Girona500 formulated in (1) which its hydrodynam-
ics parameters have been identified in [29]. In Girona500, the
heave thrusters not only control the vehicle in heave direction,
but also compensate the buoyancy force and keep the vehicle
submerged. Since, a broken heave thruster makes the AUV
float, the experiments are designed so that the thruster failure
occurs in the horizontal plane, while the heave movement
of the AUV is always controlled by its original controller.
Therefore, the 6DoF model is used for simulating the dynamics
behavior of the AUV, but the devised experiments utilize only
3DoF in the horizontal plane. In all the experiments the right
surge thruster is deemed faulty. We assume the fault detection
module not only detects the faulty thruster but also estimates
its coefficient of functionality (α ∈ [0,1]). So, in different
experiments α2 indicates the measure of the functionality of
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Fig. 3: Three optimal trajectories produced by employing the
discovered Pareto optimal solutions. The arrows show the
orientation of the AUV (see Section.V-A for more details).

the second surge thruster. However, the other two thrusters
are considered fully functional (α1 = α3 = 1). Unlike our
previous work [4], our proposed approach benefits from the
remaining functionality of the faulty thruster together with
the other healthy thrusters. For each experiment we specify
a final time, T , for each episode (e.g. T = 60s). The final
time is selected somehow that the target is reachable in T
seconds. We also designed the vectorized reward function so
that when the AUV reaches an area close enough to the desired
position, ‖Pt −Pd‖ < 0.2m, the current episode is terminated.
In all the experiments the policy depends on 5 state variables
of the system, O = [x y ψ u v] . Employing a 3rd order Fourier
basis to represent the features of the policy, the number of
optimization parameters is equal to 16 for each thruster. So,
for the navigation in 2D plane including 3 thrusters (totally or
partially functional ones), the total number of the optimization
parameters is 48.

V. EXPERIMENTAL RESULTS

A. A Fully Broken Thruster

In the first experiment, we consider the case in which the
right surge thruster is fully broken (α2 = 0). In such situation
the AUV becomes under-actuated and any attempt to reallocate
the actuator configuration matrix would be ineffective. In this
scenario, the target is located 4m in front of the AUV and
the algorithm tries to find a set of policies to satisfy the
multiple-objectives defined in section III-D. The set of optimal
trajectories generated by employing the discovered Pareto
optimal policies are depicted in Figure 3. The related velocities
are shown in Figure 4. The effect of the multiple conflicting
objectives can be seen in the figures. For instance, in Figure 3
the final heading error of the AUV with respect to the target
in the light blue trajectory is less than the other trajectories.
On the other hand, in Figure 4 the light green profile shows a
minimum final velocity.
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Fig. 4: The velocity profiles related to the optimal trajectories
in Figure 3. For each trajectory two linear velocity profiles
exist (u in x direction, v in y direction) (see Section.V-A for
more details).

B. A Partially Broken Thruster

In the second experiment, we consider the case in which
the right surge thruster is partially broken (α2 6= 0). In such
situation the AUV is considered as redundant, but the dynamic
behavior of the system is different. Similar to the previous
experiment, the target is located 4m in front of the AUV
and the algorithm tries to find a set of optimal policies to
satisfy the multiple-objectives defined in section III-D. We
repeated this experiment 11 times and each time the coefficient
of functionality for the faulty thruster (α2) is increased by
0.1 from 0 to 1. The optimal trajectories generated by the
discovered Pareto optimal policies in each case are depicted
in Figure 5. Since in each experiment, we kept the maximum
number of episodes fixed (50), in some cases the algorithm
discovered more Pareto optimal policies while in some others
it found less solutions. In addition, the maximum number of
function evaluations in each case is equal to 1000 times. All
the discovered control policies in this experiment are stored in
a lookup table and is used in the next experiment.

In order to investigate the optimization process in more
details, one of the experiments (α2 = 0.4) is repeated with
NP = 100,CR = 0.9,Fc = 0.85,Gmax = 50. The results are
reported in Figure 6. Three optimal solutions are reported in
separate plots (6a, 6b, and 6c). As it can be seen, Figure 6a
illustrates a trajectory that satisfies the shortest path objective.
The trajectory in Figure 6b satisfies the minimum final velocity
and the third trajectory in Figure 6c keeps the heading of
the AUV towards the target, to minimize the heading error.
In Figure 6d, the reward-space Pareto Front is plotted over
the first and third objectives, and the convergence of the
populations in each generation is depicted by a color gradient.

C. Improving the Performance

In future, we plan to evaluate the efficiency of the pro-
posed framework using real-world experiments, similar to our
experiments with scalarized objectives in [4]. Therefore, the
idea behind this experiment is to benefit from the previous
experience and increase the performance of the learning ap-
proach by decreasing the computation time. The Pareto optimal
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Fig. 6: Acquired results for the 2nd experiment with α2 = 0.4.
In sub-figures 6a, 6b, 6c the x and y axes show the surge (x)
and sway (y) respectively and the dimensions are in meters.
In sub-figure 6d, the reward-space Pareto Front is plotted over
two objectives, in which the dominant solutions are marked
as black. The movement of populations towards minimum
rewards is shown with a color gradient. The axis of Figure 6d
are dimensionless. (see section V-B for more details.)

solutions for different values of α2, which are extracted in the
previous experiment, are depicted in Figure 7. Each row in
Figure 7 is related to a thruster and in each row 16 parameters
of the policy θ are depicted. Each θ is plotted versus α

(α ∈ [0,0.1, . . . ,1]). Since the behavior of the parameters seems
to be nonlinear, using regression techniques to find a model
would be ineffective. Instead, we keep the previous experience
as a lookup table for initializing the first generation of parents.
We investigate the effect of using previous knowledge by
employing the nearest existing solution as initial population.

A new experiment is performed where α2 is not exactly
one of the previously experienced values. We initialize the ap-
proach with the nearest existing solution from the lookup table
to increase the efficiency of the approach. In this experiment,
α2 = 0.45 is assumed. All the other assumptions are similar
to the previous experiments. We first initialize the algorithm
with random population to discover an optimal control policy.
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Fig. 5: Acquired results for the 2nd experiment with various coefficient of functionality for the right surge thruster which is a
dimensionless quantity between [0,1]. In all sub-figures the x and y axes show the surge (x) and sway (y) respectively in the
horizontal plane of AUV and the dimensions are in meters. (see section V-B for more details.)
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Fig. 7: The discovered policy parameters from the 2nd experi-
ment. Each row in the plot is related to a thruster. In each row
16 parameter are depicted (parameters of the policy represen-
tation, θ , normalized between −1 and 1). And each parameter
is plotted versus α which is a measure of functionality of
a thruster. Both axes illustrate dimensionless quantities (see
Section.V-C for more details).

Then we repeated the same simulation, starting from the
existing optimal solution for α2 = 0.4. To be consistent, both
experiments were repeated 20 times. The result is depicted
in Figure 8. In the left, the number of function evaluations
and in the right, the time to reach the first optimal solution
are compared between two cases. All experiments took place
on a single thread on an Intel Core i3 CPU 2.30GHz. The
result suggests that starting from a neighbour solution can
increase the performance of the approach. This result suggests
that using such lookup table decreases the computation time
efficiently when running the approach on-line.

Fig. 8: This plot shows the effect of employing previously
experienced knowledge in the performance of the approach.
The first experiment starts from random values, whereas the
second experiment uses the nearest neighbor solution. The
left plot shows the number of function evaluations and the
right plot depicts the time needed to reach the goal. Both
experiments were averaged over 20 runs. (see Section.V-C for
more details).

VI. DISCUSSION AND CONCLUSIONS

In order to deal with multiple conflicting objectives, a
linear scalarization technique was used in our previous work
[4]. However, in this paper a multi-objective technique is
employed. In linear scalarization technique the objective vector
is scalarized according to a weight vector. The weight vector
specifies the relative importance of the objectives. Varying
weight of an objective will bias the learning towards that
objective. One of the disadvantages of scalarization is that
the relationship between the policy and the weights may be



unpredictable and small changes in weights may produce large
changes in the policy. On the other hand, multi-objective
optimization techniques with vectorized objectives address
this issue by investigating the nature of Pareto Front for the
specified scenario. However, after all they require a decision
making algorithm or the user to select the optimal solution.
Covering this issue is out of scope of this paper.

A model-based direct policy search for discovering fault-
tolerant control policies for thruster failure recovery in AUVs is
proposed. The on-board model of the AUV is first reconfigured
according to the detected and isolated fault. The approach
learns a fault-tolerant policy and then executes the optimal
policy on the AUV. The set of optimal solutions are discovered
using a multi-objective reinforcement learning approach. Our
framework can deal with both partially and totally broken
thrusters. In addition, the proposed approach is applicable
when the AUV either becomes under-actuated or remains
redundant in the presence of a fault. Finally, the efficiency of
the approach is increased by taking advantage of the previous
experiences embedded in a lookup table. This capability is
useful for further real-world experiments by decreasing the
computation time.
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