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Abstract— In this paper, a robot learning approach is pro-
posed which integrates Visuospatial Skill Learning, Imitation
Learning, and conventional planning methods. In our approach,
the sensorimotor skills (i.e., actions) are learned through a
learning from demonstration strategy. The sequence of per-
formed actions is learned through demonstrations using Visu-
ospatial Skill Learning. A standard action-level planner is used
to represent a symbolic description of the skill, which allows the
system to represent the skill in a discrete, symbolic form. The
Visuospatial Skill Learning module identifies the underlying
constraints of the task and extracts symbolic predicates (i.e.,
action preconditions and effects), thereby updating the planner
representation while the skills are being learned. Therefore the
planner maintains a generalized representation of each skill as
a reusable action, which can be planned and performed inde-
pendently during the learning phase. Preliminary experimental
results on the iCub robot are presented.

I. INTRODUCTION

Robot learning approaches based on demonstrations are
motivated by the fact that imitation enables humans to learn
new skills. As a result, many skill learning approaches have
been developed during the past decade that benefit from
human demonstrations [1]. Such approaches enable non-
experts to interact with robots and teach them new skills
efficiently with a few demonstrations.

These approaches can be categorized in two main sub-
classes: trajectory-based and goal-based approaches. The
former group focuses on recording and re-generating tra-
jectories [1], [2] or forces [3] to emulate the demonstrated
skill. For instance, in [4] a humanoid robot learns to play
air hockey by learning primitives. In many cases, however,
it is not the trajectory that is of central importance, but the
goal of the task (e.g., solving a jigsaw puzzle). Learning
every single trajectory in such tasks actually increases the
complexity of the learning process unnecessarily [5]. In order
to address this drawback, several goal-based approaches have
been proposed [6–8]. For instance, a number of symbolic
learning approaches exist that focus on goal configuration
rather than action execution [8]. However, in order to ground
the symbols, they comprise many steps inherently, namely
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Fig. 1: The iCub robot interacting with objects.

segmentation, clustering, object recognition, structure recog-
nition, symbol generation, syntactic task modeling, motion
grammar, rule generation, etc. Another drawback of such
approaches is that they require a significant amount of a
priori knowledge to be manually engineered into the sys-
tem [5], [7]. An alternative to motor skill learning approaches
are visual learning approaches [9–11]. These approaches are
based on observations acquired from human demonstrations
and using human-like visuospatial skills to replicate the
specified task [11–13]. Visuospatial skill is the capability to
visually perceive the spatial relationship among objects. In
our previous work [11], we have proposed a robot learning
approach based on visuospatial skill learning in humans for
solving tasks consisting of object reconfigurations. Visuospa-
tial Skill Learning (VSL) enables a robot to identify the
spatial relationship between objects and learn a sequence of
actions for achieving the goal of the task. VSL is capable
of learning and generalizing different skills such as object
reconfiguration, classification, and turn-taking interactions
from a single demonstration [11], [13].

One of the shortcomings of VSL is that the primitive
actions such as pick, place, and reach have to be manually
programmed into the robot. For instance, in [11], [13] a
simple trajectory generation module was devised that is able
to produce trajectories for pick and place. This issue can
be addressed by combining VSL with a trajectory-based
learning approach such as imitation learning. The obtained
approach can learn the primitive actions of the task using



conventional Learning from Demonstration strategy while it
learns the policy (e.g., sequence of actions), preconditions
and effects of the actions using VSL.

Although VSL has its own internal planner, in order to
utilize the advantages of standard symbolic planners, addi-
tionally in this work, we replaced the internal planner with
an already available action-level symbolic planner, namely
SGPlan [14]. In order to ground the actions, the symbolic
actions are defined in the planner and VSL maps identified
preconditions and effects in a formalism suitable to be used
at the symbolic level.

In this paper, we propose a new robot learning approach
by integrating a sensorimotor learning framework (imitation
learning), a visual learning approach (VSL), and a symbolic-
level action representation and planning layer. We evaluate
the capabilities and performance of our framework using
real-world experiments with an iCub humanoid robot.

II. RELATED WORK

A number of approaches have been proposed for teaching
skills to the robots at the symbolic and planning level based
on demonstrations. The work by Kuniyoshi and Inaba [9] is
one of the first papers to learn task-execution plans from
demonstrations. The method learns a plan for an object
manipulation task by observing the movements of the tutor’s
hand, using visual information. The objects, however, were
known to the robot in advance, and the primitive actions were
pre-programmed into the robot. The method decomposes the
demonstrated task into functional and symbolic units and
makes a hierarchical task plan. If the task is not learned
correctly there is no way to improve it.

The method proposed in [15], extracts knowledge about
a task from sequence of actions. The task is setting a
table using pick-and-place actions. The robot extracts the
proper primitive actions and the constraints of the task
from demonstrations. In [16], the learned motor skills from
demonstrations are encoded into a non-linear differential
equation that can reproduce those skills afterwards. In order
to provide primitive actions with semantics, the concept
of Object-Action Complexes [17] is utilized. However, the
resulting symbolic actions are never used in a high-level
planner.

Niekum et al., claim that, the most natural way to demon-
strate a task is by performing it continuously from start to fin-
ish [5]. In their proposed trajectory-based approach, a Beta-
Process Autoregressive Hidden Markov Model is employed
to segment and recognize an unstructured demonstration (i.e.,
continuous trajectory). The approach is combined with Dy-
namic Movement Primitives (DMP) to address the problem
of task representation and generalization. A coordinate frame
centered on each known object is defined and the objects
are detected using either stereo vision or visual fiducials.
Our approach is independent from the trajectories performed
by the tutor, in that we identify and extract the underlying
constraints of the task. Finally, they build a skill library
including the learned skills. However, the robot needs a new
demonstration to distinguish a skill from those present in

the library. A framework for manipulation tasks has been
introduced in [18]. The proposed framework includes two
main layers: the former optimizes the parameters of the
motor primitives, whereas the latter relies on pre- and post-
conditions to model actions. In contrast to our approach, the
pre- and the post-conditions are manually engineered into the
system. Aksoy et al., showed how symbolic representations
can be linked to the trajectory level using spatiotemporal
relations between objects and hands in the workspace [19].

The most similar work to our approach is that by Ekvall et
al., [20]. In their work, a task planning approach is used in
combination with robot learning from demonstration. The
robot generates states and identifies constraints of a task
incrementally according to the order of the action execution.
Imitation learning is employed to teach the task to the
robot. The constraints are identified in two ways: either the
tutor instructs the system or the constraints are considered
by merging of multiple observations. Differently from our
approach, the objects are first modeled geometrically and
a set of SIFT features for each object is extracted in off-
line mode and used during the learning phase. They build a
planning scenario that is bounded to the objects considered in
the learning phase, whereas we define actions whose validity
is not limited to the actual learning scenario.

III. OVERVIEW

The proposed learning approach consists of three layers:
• Imitation Learning (IL), which is suitable for teaching

trajectory-based skills (i.e. actions) to the robot [1]. For
instance, pouring and reaching.

• Visuospatial Skill Learning (VSL), which is a goal-based
approach based on visual perception [11]. It captures the
spatial relationship between an object and its surround-
ing objects and extracts a sequence of actions to reach
the goal of the task.

• Symbolic Planning (SP), which uses a symbolic repre-
sentation of actions, to plan or replan the execution of
the task.

In our framework, IL is employed to teach sensorimotor
skills to the robot (e.g., pull and push). The learned skills
are stored in a primitive action library, which is accessible
by the planner. VSL captures the object’s context for each
demonstrated action. This context is the basis of the visu-
ospatial representation and encodes implicitly the relative
positioning of the object with respect to multiple other
objects simultaneously. By capturing the spatial relationship
among objects, VSL extracts a sequence of actions to reach
the goal of the task. In addition, it is capable of identifying
the preconditions and effects for each action.

VSL is internally equipped with a simple planner which
has adequate capabilities as shown in [11] and [13]. In
order to employ the advantages of symbolic-level action
planners, PDDL 3.0 compliant planner is integrated with
IL and VSL to represent a general purpose representation
of a planning domain. In our system, VSL identifies action
preconditions and effects to modify their formal PDDL
definition (i.e., the planning domain). Once formal action



Fig. 2: A flow diagram illustrating the proposed approach consisting of three main layers. The robot learns to reproduce
primitive actions through imitation learning. It also learns the sequence of actions and identifies the constraints of the task
using VSL. The symbolic planner is employed to solve new symbolic tasks and execute the plans.

definitions are obtained, it is possible to exploit the planning
domain to reason upon scenarios that are not strictly related
to what has been learned, e.g., including different object
configuration, a varied number of objects or different objects
at all. One of the main advantages of the proposed approach
is that it extracts and utilizes multi-modal information from
demonstrations including both the sensorimotor information
and visual perception, which is used to build symbolic repre-
sentation structures for actions. A high-level flow diagram of
the proposed approach including the aforementioned layers
together with their input and output is depicted in Figure 2.

IV. METHODOLOGY

The robot learns the primitive trajectory-based actions
through IL. The layer requires a set of demonstrations for
each action, from which a set of attractors are learned
and used to reproduce the action. The learned actions are
stored in a primitive action library. In addition, the robot
learns the sequence of actions through VSL using visual
perception. The robot records a set of visual observations
during the demonstration phase. It can then identify and
reproduce the sequence of actions to reach the desired goal
of the demonstrated task using spatial relationships among
the objects [11]. As shown in Figure 2, both IL and VSL
observe similar demonstrations (not necessarily at the same
time) but utilize different types of data. IL uses sensorimotor
information (i.e., trajectories), whereas VSL uses visual
data. VSL also extracts the preconditions and effects of
each action, thereby updating the PDDL description of each
learned action, as well as (if required) the demonstrated
problem, including the strict sequence of shown actions.
Obviously enough, if the knowledge about such a sequence
is not considered in subsequent planning steps, the planner
is free to choose any suitable course of actions to solve a
given planning problem. Once a symbolic representation of
actions is obtained, SP can be used to solve new problems
in the learned domain, as well as reproduce plans learned
using VSL.

A. Learning Sensorimotor Skills by Imitation Learning

IL enables robots to learn and reproduce trajectory-based
skills from a set of demonstrations through kinesthetic teach-

ing [21]. In our framework, IL is utilized to teach primitive
actions (i.e., pull and push) to the robot. In particular, we
utilize Dynamic Movement Primitives (DMP) which are
designed for modeling attractor behaviors of autonomous
nonlinear dynamical systems [22].

In order to create a pattern for each action, multiple desired
trajectories in terms of position, velocity and acceleration
have to be demonstrated and recorded by a human operator,
in the form of a vector [ydemo(t), ẏdemo(t), ÿdemo(t)], where
t ∈ [1, ..., P ]. A controller converts desired position, velocity,
and acceleration, y, ẏ,and ÿ, into motor commands. DMP
employs a damped spring model that can be modulated
with nonlinear terms such that it achieves a desired attractor
behavior. The transformation system which represents dy-
namics of a damped spring system is as follows:

τ ż = αz(βz(g − y)− z) + f + Cf

τ ẏ = z
(1)

where y and z denote the position and the velocity respec-
tively, τ is a time constant and αz and βz are positive
constants. With βz = αz/4, y monotonically converges
toward the goal g. f is the forcing term; Cf is an application
dependent coupling term. Trajectories are recorded indepen-
dently of time. Instead, the canonical system, is defined as:

τ ẋ = −αxx+ Cc (2)

where αx is a constant and Cc is an application dependent
coupling term. x is a phase variable, where x = 1 indicates
the start of the time and the x close to zero means that
the goal g has been achieved. Starting from some arbitrarily
chosen initial state x0 such as x0 = 1 the state x converges
monotonically to zero. In addition, f , in (1) is chosen as
follows:

f(x) =

∑N
i=1 ψi(x)ωi∑N
i=1 ψi(x)

x(g − y0) (3)

where ψi(x) i = 1, . . . , N are fixed exponential basis
functions, ψi(x) = exp(−hi(x− ci)2), where σi and ci are
the width and centers of the basis functions respectively. wi

denote weights and y0 is the initial state y0 = y(t = 0). The



Fig. 3: The tutor is teaching the primitive actions including pull and push to the robot using kinesthetic teaching (For more
details, see Section IV-A).

parameter g is the target coinciding the end of the movement
g = ydemo(t = tfinal), y0 = ydemo(t = 0). The parameter τ
must be adjusted to the duration of the demonstration. The
learning process of the parameters wi is accomplished with
a locally weighted regression method, because it is very fast
and each kernel learns independent of others [22].

In the considered scenario, two primitive actions, namely
pull and push are used. For executing the push action on
an object, firstly, the robot needs to reach a location just
in front of the object; Whereas, for executing the pulling
action the robot needs to reach a location just beyond the
object. As the first step, the tutor demonstrates each primitive
action multiple times while holding and moving the robot’s
hand. Using the recorded set of trajectories and applying
DMP, the robot learns a set of attractors by which it can
reproduce the action starting from a different pose towards
a target. We decomposed the pull action into reach after
and move backward sub-actions and also decomposed the
push action into reach before and move forward sub-actions.
The recorded sets of demonstrations for both reach before
and reach after sub-actions are depicted as black curves
in Figure 4. Each red trajectory in Figure 4 illustrates a
reproduction. In both Figures the goal, (i.e., the object),
is shown in green. Finally, the learned primitive actions
are stored in the primitive action library. Later, the planner
connects the symbolic actions to the library of actions. The
move forward and move backward sub-actions are straight
line trajectories that can be either learned or implemented
directly by a trajectory generation module.

B. Learning Action Sequences by Visuospatial Skill Learning

At this stage, a library of primitive actions has been built.
The robot learns the sequence of actions required to achieve
the goal of the demonstrated task through VSL [11]. It
also identifies the spatial relationship between objects by
observing demonstrations.

The basic terms which are used to describe VSL consist
of, World: the workspace of the robot which is observable
by the robot. Frame: a bounding box which defines a cuboid
in 3D space or a rectangle in 2D space. Observation: the
captured context of the world from a predefined viewpoint
using a specific frame. An observation can be a 2D image or
a cloud of 3D points. Pre-action observation: An observation
which is captured just before the action is executed. The
robot searches for preconditions in the pre-action observa-
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(a) reach-before sub-action.
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(b) reach-after sub-action.

Fig. 4: The recorded set of demonstrations for two sub-
actions are shown in black. The reproduced trajectories from
an arbitrary initial position towards the target (the green
square) are shown in red (For more details, see Section IV-A).

tions before selecting and executing an action. Post-action
observation: An observation which is captured just after the
action is executed. The robot perceives the effects of the
executed actions in the post-action observations.

Formally, we define a process of VSL as a tuple V =
{W,O,F ,A, C,Π, φ}, whereW ∈ <m×n is a matrix which
represents the context of the world including the workspace
and all objects. WD and WR indicate the world during the
demonstration and reproduction phases respectively; O is a
set of observation dictionaries O = {Opre,Opost}; Opre and
Opost are observation dictionaries comprising a sequence of
pre-action and post-action observations respectively. F ∈
<m×n is an observation frame which is used for capturing
the observations. A is a set of primitive actions defined
in the learning task (e.g., pick). C is a set of constraint
dictionaries C = {Cpre, Cpost}; Cpre and Cpost are constraint
dictionaries comprising a sequence of pre-action, and post-
action constraints respectively. Π is a policy or an ordered
action sequence extracted from demonstrations. φ is a vector
containing extracted features from observations (e.g., SIFT
features). Pseudo-code of VSL is given in Algorithm 1.

At the beginning of the demonstration, the objects are
randomly placed in the world (WD). In case that, any
absolute landmark is being used in the demonstration (e.g.,
borderline in our experiments), the robot should be able to



Input : {W,F ,A}
Output: {O,P,Π, C,B, φ}

1 Initialization: detect absolute landmarks if defined
2 l=detectBorderline(W)
3 i = 1 , j = 1
// Part I : Demonstration

4 for each operation do
5 Opre

i = getPreActionObs(WD,FD)

6 Opost
i = getPostActionObs(WD,FD)

7 [Bi,Ppre
i ,Ppost

i , φi] = getObject(Opre
i ,Opost

i )

8 [Cprei , Cposti ] = getConstraint(Bi,Ppre
i ,Ppost

i , l)

9 Πi = getAction(A, Cprei , Cposti )
10 i = i+ 1
11 end
// Part II : Reproduction (this part is

used in absence of symbolic planner.)

12 for j = 1 to i do
13 P∗pre

j = findBestMatch(WR,Opre
j , φj , Cprej , l)

14 P∗post
j = findBestMatch(WR,Opost

j , φj , Cpostj , l)

15 executeAction(P∗pre
j ,P∗post

j ,Πj)

16 end

Algorithm 1: Pseudo-code for VSL.

detect it in the world (line 2). During the demonstration,
VSL captures one pre-action observation (Opre) and one
post-action observation (Opost) for each operation executed
by the tutor using the specified frame (FD) (lines 5,6). For
each detected object in the world, VSL creates a symbolic
representation (B) and extracts a feature vector (φ). The
symbolic object is used by the symbolic planner and the
extracted features are used by VSL for detecting the object
during the reproduction phase. VSL also extracts the pose of
the object before and after action execution (Ppre,Ppost).
The pose vectors together with the detected landmark (l) are
used to identify preconditions and effects of the executed
action through spatial reasoning (line 8). These predicates
are then utilized to identify the executed action from the
action set A (line 9). The sequence of identified actions
are then stored in a policy vector Π. In this framework, the
symbolic planner, utilizes the output of VSL to reproduce the
task properly. Furthermore, the second part of the algorithm
is able to execute the learned sequence of actions indepen-
dently [11], [13]. In such case, VSL observes the new world
(WR) in which the objects are replaced randomly. Comparing
the recorded pre- and post-action observations, VSL detects
the best matches for each object and executes the actions
from the learned policy.

C. Generalization of Learned Actions as Symbolic Action
Models

In order to use the learned primitive actions for general-
purpose task planning, the actions need to be represented
as a symbolic, discrete, scenario-independent form. To this
aim, we have defined a symbolic representation for both the
pull and push actions based on the PDDL 3.0 formalism.

However, it is necessary to learn preconditions and effects
for each action in the primitive action library. Instead of man-
ually defining them, we exploit the sensorimotor information
in the skill learning process to derive symbolic predicates.
So, we first let the robot perceive the initial workspace in
which one object is placed in far. Then we ask the robot
to execute the pull action, and after the action is finished,
the robot perceives the workspace again. The pre-action and
post-action observations are shown in Figure 5. The robot
uses VSL to extract the preconditions and effects of the
pull action. We repeat the same steps for the push action.
The domain file in the PDDL is updated automatically by
applying this procedure. The extracted preconditions and
effects for the pull and push actions are reported in table I.

Fig. 5: By extracting the preconditions and effects of the
primitive actions while executing them, the robot generalizes
the learned sensorimotor skills as symbolic actions (For more
details, see Section IV-C).

TABLE I: The preconditions and effects extracted by VSL
and written to the planner’s domain file (For more details, see
Section IV-C).

Action push pull
precondition ¬ (far ?b) (far ?b)
effect (far ?b) ¬ (far ?b)

V. IMPLEMENTATION

After the VSL model has been identified, it is possible to
generalize each action as well as the demonstrated action
sequences, using a PDDL 3.0 compliant formalism. It is
noteworthy that in the present work we do not bootstrap
symbolic knowledge from scratch. On the contrary, starting
from the knowledge of the performed action types during
the VSL demonstration, we update symbolic-level knowledge
with two kinds of constraints. The former class includes
constraints (in the form of PDDL predicates) related to
preconditions and effects. This is done by mapping the
elements of observation dictionaries Opre and Opost to
relevant predicates. In the considered scenario, one predicate
is enough to characterize push and pull actions, namely
(far ?b), where far is the predicate name and ?b is
a variable that can be grounded with a specific object that
can be pushed and pulled. Specifically, push(?b) is an
action that makes the predicate truth value switching from
¬(far ?b) to (far ?b), whereas the opposite holds for
pull(?b). Visual information about the location of objects
in the World is mapped to the proper truth value of the (far
?b) predicate. The execution of a push demonstration on



a green cube (as processed by VSL) allows the system to
understand that before the action ¬(far Bgreen) holds,
after the action (far Bgreen) holds, and the two predicates
contribute to the :precondition and :effect lists of
a push action defined in PDDL.

The second class includes constraints (in the form of
PDDL predicates) related to the trajectory of the plan that is
executed in the demonstration. This can be done analyzing
the sequence of actions as represented in the VSL model
(i.e., the implicit chain defined by predicates in Opost and
Opre observation dictionaries). In PDDL 3.0, it is possible
to define additional constraints, which implicitly limit the
search space when the planner attempts to find a solution
to the planning problem. In particular, given a specific
planning domain (in the form of push and pull actions, as
obtained by reasoning on the VSL model), the problem
can be constrained to force the planner to follow a specific
trajectory in the solution space. One possible constraint is
to impose, for instance, the sequence of satisfiability of
predicate truth values. As an example, let us assume the
VSL model represents the fact that Bgreen must be always
pushed after Bblue. According to our formal definition,
this implies that the predicate (far Bgreen) must hold
sometime after the predicate (far Bblue) holds. To en-
code this constraint in PDDL formalism, it is sufficient to
use the constraint (somewhere-after (far Bgreen)
(far Bblue)). If the constraint is used in the planning
problem, the planner attempts to find a plan where this
sequence is preserved, thereby executing push(Bgreen)
strictly after push(Bgreen). Finally, it is noteworthy that if
we remove such a constraint, the planner is free to choose any
suitable sequence of actions to be executed (independently
of the demonstration), provided that the goal state is reached.

VI. EXPERIMENTAL SETUP

In order to evaluate the capabilities and performance of
our approach, a set of real-world experiments is performed
with an iCub humanoid robot. As shown in Figure 1, the
robot is standing in front of a tabletop including some
polyhedral objects. All the objects have equivalent size but
different colors and textures. Firstly, the tutor teaches the
primitive actions to the robot using imitation learning. The
primitive actions include push and pull movements. The tutor
performs a set of demonstrations for each primitive action
by holding and moving the robot’s hand while the robot is
perceiving the workspace (see Figure 3). Using the recorded
set of demonstrations, the robot learns to reproduce each
action from different initial position of the hand towards a
desired object. The learned primitive actions are stored in
the primitive action library.

To introduce the concept of far and near in our ex-
periments, a black line, which is a borderline, is placed in
the middle of the robot’s workspace. The robot can detect
the line using conventional edge detection and thresholding
techniques. In addition, the size of the frames (FD,FR) are
defined equal to the size of the world.

During the demonstration phase, for each operation, the
tutor removes the object from the world, and brings it back
after an observation has been captured. Figure 6 shows
some instances of image processing in VSL. Since image
processing is not the focus of this paper, a number of simple
techniques have been used for this purpose. In our previous
research, the object detection is done using background
subtraction technique and it has been shown that the object
identification process can be done using 2D and 3D match
finding techniques (e.g., SIFT) [11], [13]. In this paper,
however, we utilize blob detection and filtering by color on
plane, considering the fact that the iCub robot is capable
of detecting the height of the table at the beginning of the
experiment by touching it. To detect the object which is
moved and the place that the object has been moved to,
background subtraction is used. For both cases, the center of
the detected object and the center of the detected area are
estimated and are shown with a red marker in Figure 6.

Furthermore, a simple (boolean) spatial reasoning has
been applied to the VSL algorithm that utilizes the detected
pose of the object and the detected borderline, and then
decides that the object is far or near. However, to extract
more sophisticated constraints, qualitative spatial reasoning
languages such as region connection calculus [23] can be
employed.

The video accompanying this paper shows the execution
of the tasks and is available online at [24].

Fig. 6: (a) and (b) are rectified pre-action and post-action
observations; (c) is a rectified pre-action observation for the
next operation; (d) is the result of background subtraction
between (a) and (b); (e) is the result of background sub-
traction between (b) and (c); (f) is the result of detecting
the borderline for spatial reasoning (For more details, see
Section VI).

VII. EXPERIMENTAL VALIDATION

A. A Simple VSL Task

In order to evaluate the obtained connection between the
symbolic actions and their equivalent sensorimotor skills, we
conducted the following experiment. Initially, there are three
objects on the table. The tutor provides the robot with a
sequence of actions depicted in Figure 7. The robot perceives
the demonstration, records the observations and extracts the
sequence of actions using VSL. In the reproduction phase,
the objects are reshuffled in the workspace. For the repro-
duction of the task, instead of the generic SP, the internal
planner of VSL is exploited. Starting from a different initial
configuration of the objects in the workspace, VSL is capable
of extracting the ordered sequence of actions and reproduce
the same task effortlessly. As shown in Figure 8, the robot
achieves the goal of the task using VSL. This experiment



shows that the robot can relate the learned primitive actions
including push and pull, with their preconditions.

Fig. 7: The set of demonstrations by the tutor for a simple
VSL task. The bottom row shows the workspace from the
robot’s point of view (For more details, see Section VII-A).

Fig. 8: Starting from a new configuration, the robot repro-
duces the learned task using VSL. (a) and (c) show initial and
final configurations. The bottom row shows the workspace
from the robot’s point of view (For more details, see Section VII-
A).

B. Keeping All Objects Near

In the previous experiment, we have shown that the
internal planner of VSL is capable of reproducing the task.
However, SP is more capable in generalizing the learned
skill. In this experiment, we want to teach the robot a
simple game including an implicit rule: keep all objects
near. For each object, two properties are defined: color and
position. SP provides our approach with the capability of
generalizing over the number and even shape of the objects.
In order to utilize this capability, the tutor performs a set of
demonstrations to eliminate the effect of the color implying
that any object independent of its color should not be far
from the robot. Three sets of demonstrations are performed
by the tutor which are shown in Figure 9. Each demonstration
starts with a different initial configuration of the objects. The
performed demonstrations imply the following rules:

r11 : 〈Bgreen → near〉 IF 〈Borange is far〉
r21 : 〈Borange → near〉 IF 〈Bgreen is near〉
r12 : 〈Bgreen → near〉 IF 〈Borange is near〉
r13 : 〈Borange → near〉 IF 〈Bgreen is far〉

(4)

where rji indicates the jth rule extracted from the ith demon-
stration. The first demonstration includes two rules r11, r

2
1

because two actions are executed. It can be seen that the right
parts of r11 and r12 and the right parts of r21 and r13 eliminate
each other. Also the color attribute on the left side of the rules
eliminates the effect of the color on action execution. During
the demonstration, for each object, the robot extracts the
spatial relationships between the objects and the borderline,
and decides if the object is far or near (i.e., not far). It
then applies the extracted precondition of r11 : 〈B? → near〉
to that object. Afterwards, the robot is capable of performing
the learned skill on a various number of objects and even
unknown objects with different colors.

C. Pull All Objects in a Given Order

In the previous experiment, the robot learned that all
objects must be kept close, without giving importance to
the order of actions. In this experiment, we include the color
attribute for each object to give priority to the sequence of
actions to be performed. For instance, consider the ordered
set 〈orange, green, yellow〉 in which the orange cube and
the yellow cube are the most and least important cubes,
respectively. This means that we want the orange cube to
be moved before the green one, and the green cube before
the yellow one. The robot has to learn that the most important
cube has to be operated first. Besides, learning a sequence
of actions in which the order is important, is one of the main
capabilities of VSL. Therefore, if the task was demonstrated
once and the reproduction part was done separately by VSL
(and not by SP) the robot would learn the task using one
single demonstration. In addition, VSL provides the robot
with the capability of generalizing the task over the initial
configuration of the objects.

Furthermore, it is possible to encode such an ordering
also in a planning domain, at the cost of adding extra
constraints (in the form of predicate) to the definition of the
planning problem. In this case the planner should include
two extra predicates, namely (somewhere-after (far
Bgreen) (far Borange)) and (somewhere-after
(far Byellow) (far Bgreen)). The inclusion of these
predicates must be managed at an extra-logic level, e.g.,
by extracting the sequence of actions using VSL and in-
serting the corresponding constrains in the planner problem
definition. In this case, there is no need to have more
demonstrations, but expressing the order of sequence as
preconditions may be done automatically.

VIII. CONCLUSIONS

We have proposed a robot learning approach by integrating
Imitation Learning (IL), Visuospatial Skill Learning (VSL),



Fig. 9: Three different sets of demonstrations devised by the tutor for implying the rules of the game in the second experiment
(For more details, see Section VII-B).

Fig. 10: In the third experiment, using SP the robot needs six
sets of demonstrations for each of which the initial (a) and
final (b) configurations of the objects are shown. While using
VSL the robot requires a single demonstration for which
the sequence of actions are shown (a-d) (For more details, see
Section VII-C).

and conventional planning methods. Our approach is capable
of learning sequential tasks by observing demonstrations.
The primitive actions which are trajectory-based skills are
learned using IL. VSL learns the sequence of operations
through visual perception. VSL not only extracts the spatial
relationships among objects and learns the sequence of
operations, but also identifies the underlying constraints of a
task and extracts symbolic predicates. A standard action-level
planner has been utilized to represent a symbolic description
of the skill, which allows the system to generalize the skill
into a symbolic form. In the performed experiments we
have shown that although the symbolic planner provides
the proposed approach with more generalization capabilities,
when the order of actions is important, the planner can still
benefit from this feature of VSL.
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