
Online Discovery of AUV Control Policies
to Overcome Thruster Failures

Seyed Reza Ahmadzadeh1, Matteo Leonetti2, Arnau Carrera3,
Marc Carreras3, Petar Kormushev1, and Darwin G. Caldwell1

Abstract— We investigate methods to improve fault-tolerance
of Autonomous Underwater Vehicles (AUVs) to increase their
reliability and persistent autonomy. We propose a learning-
based approach that is able to discover new control policies
to overcome thruster failures as they happen. The proposed
approach is a model-based direct policy search that learns
on an on-board simulated model of the AUV. The model is
adapted to a new condition when a fault is detected and isolated.
Since the approach generates an optimal trajectory, the learned
fault-tolerant policy is able to navigate the AUV towards a
specified target with minimum cost. Finally, the learned policy
is executed on the real robot in a closed-loop using the state
feedback of the AUV. Unlike most existing methods which rely
on the redundancy of thrusters, our approach is also applicable
when the AUV becomes under-actuated in the presence of a
fault. To validate the feasibility and efficiency of the presented
approach, we evaluate it with three learning algorithms and
three policy representations with increasing complexity. The
proposed method is tested on a real AUV, Girona500.

I. INTRODUCTION

Nowadays Autonomous Underwater Vehicles (AUVs) are
required to operate over longer missions while dealing with
extreme uncertainties in unstructured environments. In such
conditions an undetected failure can lead to the loss of the
vehicle, which is a dramatic event. Even in the case that
the failure is detected, in order to terminate the mission
and rescue the AUV safely, a fault-tolerant strategy must be
considered. In Remotely Operated Vehicles (ROVs), a failure
detection strategy helps a skilled human operator to make a
proper decision. The human expert then decides whether to
terminate the mission or to take a proportionate fault-tolerant
strategy, e.g., turning off a thruster and use the others instead.

Although the failure can happen in all subsystems of the
ROV or AUV, in this paper we focus on the case of thruster
failure. Thruster blocking, rotor failure, and flooded thrusters
are some of the factors that can lead to a thruster failure in
real missions [2].

By definition, fault detection is the process of monitoring a
system in order to recognize the presence of a failure; fault
isolation or diagnosis is the capability to determine which

This research was supported by the PANDORA EU FP7 project [1] under
the grant agreement No. ICT-288273. http://persistentautonomy.com/

1 Department of Advanced Robotics, Istituto Italiano di Tecnolo-
gia, Via Morego, 30 16163, Genova, Italy. {reza.ahmadzadeh,
petar.kormushev, darwin.caldwell} @iit.it

2 Department of Computer Science, The University of Texas at Austin,
2317 Speedway, Austin, TX 78712, matteo@cs.utexas.edu

3 Computer Vision and Robotics Group (VICOROB), University
of Girona, 17071, Girona, Spain. {marc.carreras,
arnau.carrera}@udg.edu

Fig. 1. The Girona500 AUV equipped with 5 thrusters (3 are visible in
the photo). In our experiment, one of the surge thrusters is broken.

specific subsystem (thruster in our case), is subject to failure.
The fault detection and isolation scheme for thruster failures
has been extensively investigated in the literature and has
several effective solutions [2], [3], [4], [5].

Fault tolerance is the capability to complete the mis-
sion despite the failure of one or more subsystems. It is
referred to also as fault control, fault accommodation or
control reconfiguration. Most of the existing fault-tolerant
schemes consider some actuator redundancies, so that the
vehicle remains actuated in the Degree of Freedom (DOF)
of interest, even if a fault occurs in one of the thrusters.
For this category of problems a general solution has been
found: reallocating the desired forces on the vehicle over
the working thrusters [3], [2], [6], [7]. While the problem
has been extensively considered in the case of actuator-
redundant vehicles, the literature is still lacking a unifying
approach if a broken thruster makes the AUV under-actuated
[8]. A few works are targeted at AUV controlled with
surfaces [9], [10], [11]. Those methods are specific to the
kinematics and dynamics models of the considered AUV.
Our method, on the other hand, makes use of the model
for simulation, but not in the derivation of the controller,
which is of a pre-defined form. We use a linear function
approximator to represent the policy, whose parameters are
learned depending on the AUV model and the particular task
at hand. M. Andonian et al. [12], design trajectories for an
AUV to overcome an actuator failure and accomplishing the
mission using geometric control theory. They model the AUV
as a forced affine connection control system, and develop
the control strategies through the use of integral curves.
They present a scenario and compute the control signals in

simulation. The presented geometric control is an open-loop
control strategy, therefore its validity is mainly theoretical,
because of the inevitable presence of unmodeled dynamics
and external disturbances. Finally, Choi and Kondo [13],
provide an analysis of the thruster failure combinations for a
vehicle similar to ours. Their method is simple and in some
circumstances applicable to our problem. However, as most
of the other papers, it addresses the problem of tracking a
given trajectory, and does not take into account the trajectory
generation. While this is a common and relevant control
problem, in the case of a thruster failure the pre-defined
trajectory for a functional AUV may not be optimal for
the faulty AUV anymore. Our method generates an optimal
trajectory, that is a trajectory that accomplishes the given
task achieving the lowest cost in the presence of the fault.
Nonetheless, their method could be combined with our open-
loop policy, providing an alternative way of having feedback
control on a trajectory designed for the faulty AUV.

We consider the problem of using the functional thrusters
to bring the vehicle safely to a station where it can be
rescued, when the thruster failure reduces the mobility of
the vehicle, and hence it cannot maneuver as previously
prescribed. We build on the work by Leonetti et al. [14]
which introduced a method to compute a fault-tolerant policy,
and can be utilized in both the cases of redundant and
under-actuated AUVs. The original work is limited in its
applicability in open water by the fact that the only policy
that can be computed online is an open-loop function of
time. In this paper, we performed extensive simulated exper-
iments and individuated an optimization algorithm that can
compute online a state-dependent policy, closing the loop
with perceptions. Consequently, we are able to evaluate the
resulting controller on the real AUV. The AUV we use for our
experiments is Girona500 [15] which is used in PANDORA
[1]. Girona500 is a reconfigurable AUV equipped with
typical navigation sensors (e.g. Doppler Velocity Log, etc.),
basic survey equipments (e.g. side scan sonar, video camera,
etc.), and various thruster layouts. In the layout we selected,
the AUV is equipped with 5 thrusters: 2 heave, 2 surge, and
1 sway thrusters.

II. METHODOLOGY

We frame our approach in the context of model-based
direct policy search for reinforcement learning. This frame-
work comprises a dynamic model of the vehicle (Equation
1), a parameterized representation for the control policy, a
cost function, and an optimization algorithm.

A. AUV Model

According to the standard modeling procedure for under-
water vehicles [16], an AUV can be modeled as a rigid body
subject to external forces and torques while moving in a fluid
environment. The 6 DOF equations of motion for the AUV
are given in a compact form in (1).

η̇ = J(η)ν

MRBν̇ +CRB (ν)ν =−MAν̇−CA (ν)ν

−D(ν)ν−g(η)+Bu
(1)

where η , [x y z φ θ ψ]T is the pose (position and orien-
tation) vector with respect to the inertial frame and ν ,
[u v w p q r]T is the body velocity vector defined in the
body-fixed frame. J(η) is the velocity transformation matrix,
MRB is the rigid body inertia matrix, CRB is the rigid body
Coriolis and centripetal matrix, MA is the hydrodynamic
added mass matrix, CA is the added mass Coriolis and
centripetal matrix, D is the hydrodynamic damping matrix,
g(η) is the hydrostatic restoring force vector, B is the
actuator configuration matrix, and the vector u the control
input vector or command vector. More details about the equa-
tions of motion can be found in [16]. In order to complete
the dynamic model of the AUV, we use the hydrodynamic
parameters of Girona500, which have been extracted using an
online identification method and reported in [17]. In addition,
it should be considered in the modeling of the system that
the Girona500 AUV was designed to have passive stability
in roll and pitch.
For over-actuated systems, since the vehicle remains redun-
dant even after thruster failure, most approaches operate on
the matrix B, to obtain the required forces/torques by reallo-
cating the command on the functional thrusters. The simplest
way to modify B is ignoring the columns correspondent to
the faulty thrusters. In this paper, on the other hand, we
propose a different approach by computing a new command
function u to reach a given target without modifying the
matrix B. Our approach is applicable in both cases of over-
actuated and under-actuated vehicles.

B. Policy Representation

In this work we consider the control input vector u as
a function Π(χ|θ) of observation vector χ depending on
a parameter vector θ . The policy is represented with a
linear function approximator, that is a function of the form
u = Π(χ|θ) = θ T Φ(χ), where Φ(χ) is a matrix of basis
functions or feature vectors (φi(χ)). Here we use Fourier
basis functions because they are easy to compute accurately
even for high orders, and their arguments are formed by
multiplication and summation rather than exponentiation. In
addition, the Fourier basis seems like a natural choice for
value function approximation [18]. For each Fourier basis
function φi = cos(πci · χ), the coefficient ci determines the
order of the approximation and the correlation between the
observation variables. There are different choices for the
observation vector χ , a number of which will be discussed
in section IV.

C. Cost Function

The performance of the vehicle is measured through a cost
function:

J(θ) =
T

∑
t=0

ct(ηt)

∣∣∣∣∣
Π(χ|θ)

(2)

where ct is the immediate cost, and depends on the current
state ηt , which in turn is determined by the policy and
its parameters. Therefore, the aim of the agent is to tune
the policy’s parameters in order to minimize the cumulative
cost J over a horizon T . We employ a model-based policy
search approach where trials are performed on the model
and not directly by the vehicle. For AUVs this is not a
practical limitation, as their dynamics has been modeled
accurately. The cost function is the other degree of freedom
of our approach. Many different definitions of the immediate
costs are possible. In policy search over a finite horizon, the
particular path followed by the agent in the state space can be
ignored, and the optimization treated with black-box methods
over θ .

D. Optimization Algorithms

We implement three optimization algorithms to compare
the quality and the computational feasibility of the solution
for online discovery of the fault-tolerant policy. We use a
derivative-free optimization algorithm introduced by Leonetti
et al. [19], the well-known Simulated Annealing [20], and
the powerful stochastic evolutionary algorithm, Differential
Evolution [21]. The first algorithm was used for online
identification of Girona500 as well [17]. Policy gradient
approaches can be used as an alternative solution, because
they estimate the derivative of the policy with respect to
the parameters of the model. The main issue is that the
estimation procedure of these approaches is expensive, so
derivative-free methods are chosen to be applied in this
particular case.

1) Modified Price’s Algorithm: Modified Price’s (MP)
[19] is a global, derivative-free, and iterative black-box op-
timization algorithm with a great potential in its application
to policy search for robotic reinforcement learning tasks.
MP is a combination of a global and a local derivative-free
method, designed for optimization of the non-linear, multi-
modal, and multivariate functions. The global part of the
MP algorithm which has been introduced by Brachetti et al.
[22] is a population-based method. Recently, Leonetti et al.
[19] combined this global search with a deterministic local
search. So, the global phase is used to find a neighbourhood
of the global minimum, and then the local search explores
the neighbourhood to find the global minimum. In this work,
the initial population size for the algorithm is set to 20 times
the number of the parameters and other parameters are set
according to [19].

2) Simulated Annealing: Simulated Annealing (SA) is a
probabilistic meta-heuristic that mimics the physical process
of annealing, in which a material is heated and then the
temperature is slowly lowered to decrease defects, thus mini-
mizing the system energy [20]. The choice of the temperature
or cooling scheduling and the next candidate distribution
are the most important decisions in the definition of the
SA algorithm [23]. Although there are different variants of
this algorithm [24], in this paper we use the standard SA
algorithm. The initial temperature, re-annealing interval, and

temperature function options are set to 100, 100, and ‘fast
annealing’ scheme respectively.

3) Differential Evolution: The Differential evolution (DE)
algorithm, proposed by Storn and Price [21] is simple yet
powerful population-based, stochastic, heuristic evolutionary
algorithm, which is an efficient and effective global opti-
mizer in the continuous search domain. DE uses a similar
crossover, and selection strategies to the genetic algorithm
but a stronger mutation strategies. The standard DE algorithm
includes 10 different options to define the algorithmic struc-
ture (2 crossover schemes and 5 mutation strategies) [21].
According to the classic notation DE/x/y/z, the particular
variant of DE that is used in this work can be classified
as DE/rand/1/bin (where: rand specifies the vector to be
mutated, 1 is the number of difference vectors used, and bin
represents the binomial crossover scheme). In this paper, we
use the standard implementation of the DE algorithm which
can be found in [25]. We set the number of parents N p to 10
times the number of the parameters, and consider weighting
factor F ∈ [0.8,0.9], and crossover constant CR ∈ [0.9,1]
according to [26].

E. Online Procedure

In our scenario, when a thruster is deemed faulty, a
function J is created to represent the cost of a path to the
target location. The on-board model of the AUV is adapted to
the failure conditions (i.e. the isolated thrusters are specified
and ignored in the model). The optimization algorithm is
then used to compute the optimal policy, in the given policy
representation, that takes the AUV as close as possible to
the target location using only the functional thrusters. The
optimization algorithm computes the optimal policy based
on the on-board model of the AUV. The discovered policy
Π substitutes the AUV’s controller that would work under
normal operating conditions. Finally, the learned policy is
executed on the real robot in a closed-loop using the state
feedback of the AUV. It is also possible to use the target
location as a waypoint, by adding a secondary optimization
objective (appropriately weighed) to J. As will be seen
subsequently, the secondary objective enforces the robot to
reach the desired point with a given velocity.

III. EXPERIMENTAL SETUP

We performed our experiments on the dynamic model of
Girona500 presented in (1), whose parameters have been
identified in [17]. All of the experiments, are designed so
that the thruster failure occurs in the horizontal plane, while
the heave movement of the AUV is always controlled by
its original controller. We assume the right surge thruster
to be broken, so we turn it off during the failure recovery
experiments. In such a case, the Girona500 AUV can only
navigate using the left surge and the sway thrusters (the
lateral one). Thus the vehicle becomes under-actuated and
any attempt to change the allocation matrix B would be
ineffective. We use the following definition of the immediate

Fig. 2. Control architecture of the AUV including the controller level and
the fault recovery level. The green line shows the state feedback used in the
state-dependent policy representation (see Section.IV-A and IV-D for more
details).

cost:

ct(〈pt ,vt〉) =
{
‖ pt − pd ‖ if t < T

w ‖ vt − vd ‖ if t = T (3)

where the state χt = 〈pt ,vt〉 is composed by position and
velocity at time t, pd is the desired location, vd is the desired
velocity and w weighs the velocity objective with respect
to the positional one. The secondary objective is considered
only at the final state (t = T). For all our experiments we use
T = 60s, since all the target destinations are reachable in 60
seconds. We also designed the cost function so that when the
AUV reaches to an area close enough to the desired position,
‖ pt− pd ‖< 0.2m, the optimization algorithm is terminated.

IV. EXPERIMENTAL RESULT

A. Controller Test

A classical control architecture of an AUV includes a po-
sition/velocity controller that utilizes the desired inputs and
the sensory feedbacks of the vehicle to control the position
or velocity of the system. This architecture is illustrated in
Fig. 2 and is called the controller level. In order to evaluate
the capability of the original controller of Girona500 for
thruster failure recovery, a real-world experiment is designed.
Firstly, we command the AUV to move 3m in the surge
direction (x-axis) and record the thruster commands for all 5
thrusters of the robot. Secondly, we turn off the right surge
thruster and repeat the same test. The video accompanying
this paper includes both experiments and is available online
at [27]. In addition, the recorded data is depicted in Fig. 3. It
can be seen that in the second test the governing controller of
the system tries to use the same configuration of the thrusters
was used in the normal situation. And although the right
surge thruster is broken, the lateral thruster still remains
unused. This experiment shows that the original controller
of the system cannot recover the robot from thruster failure,
and a failure recovery level (the dashed blue box in Fig. 2)
needs to be concatenated to the control level architecture
of the AUV (the dashed red box in Fig. 2). Therefore,
when the fault detection and isolation module identifies a
failure, it sends a message to the higher-level supervisor and,
eventually, modifies the fault-tolerant controller and triggers
the switch.

−1

0

1
Normal AUV

T
hr

.1
S

ur
ge

−1

0

1
Damaged AUV

−1

0

1

T
hr

.2
S

ur
ge

−1

0

1

−1

0

1

T
hr

.3
H

ea
ve

−1

−0.5

0

−1

0

1

T
hr

.4
H

ea
ve

−1

−0.5

0

0 20 40
−1

0

1

time [sec]

T
hr

.5
S

w
ay

0 20 40
−1

0

1

time [sec]

Fig. 3. The recorded thruster commands for a normal AUV (left column)
and a damaged AUV (right column - the right surge thruster is broken)
while using the original controller scheme without failure recovery level
(see Section. IV-A for more details).

B. Constant Policy

In the first experiment, a constant policy (a Fourier ex-
pansion of order zero), Π(χ|θ) = θcte , is considered, which
operates as a set of constant commands, (i.e. voltage), given
to the undamaged thrusters. In this case the number of
optimization parameters is equal to the number of undam-
aged thrusters which is 2 in our experiment. Applying the
optimum constant policies computed by the three optimiza-
tion algorithms, the trajectories and velocity profiles can be
seen in Fig. 4(a), 4(b). Since all algorithms are stochastic,
the results may converge to various solutions in different
runs. So we repeated the optimization process 50 times for
each algorithm. The box-plots of the statistical results are
depicted in Fig. 4(c). The central mark presents the median,
the edges of the box are the 25th and 75th percentiles, and
the whiskers extend to the most extreme data-points that are
not considered as outliers. The result suggests that in this
case the Modified Price’s algorithm performs better than the
other two methods, because it needs less number of function
evaluations and converges to better solutions.

C. Time-dependent Policy

In the next experiment, the policy is represented as a
linear function approximator which depends only on time t,
Π(t|θ) = θ T Φ(t). In this representation θ is the parameter
vector and to represent Φ(t) we employ a 3rd order Fourier
basis [18]. In this case the control policy can be more flex-
ible than the constant policy representation in the previous
experiment. Also the desired velocity of 〈0,0〉 becomes more
relevant. The number of optimization parameters, which was
only 2 in the previous experiment, equals to 8 in this case.
As it can be seen in Fig. 4(d), 4(e), the obtained velocity
profiles are varied; however, the acquired trajectories are
similar. Once again, the optimization process was repeated
50 times for each optimization algorithm. The box-plots of
the statistical results are depicted in Fig. 4(f). Increasing
the number of optimization parameters, in this case the

differential Evolution algorithm shows better results.

D. State-dependent Policy

In the last policy representation experiment, we close
the loop by including feedback from the state variables
(i.e. position, orientation, together with linear and angular
velocities). In this case, the policy depends on the state
variables χ , π(χ|θ) = θ T Φ(χ), where θ is the parameter
vector. Employing a 3rd order Fourier basis to represent
Φ(χ), the number of optimization parameters becomes 16 for
each thruster. So, for the experiment in 2D plane including
2 undamaged and one broken thrusters, the total number of
optimization parameters equals to 32. As it can be seen in
Fig. 4(g), 4(h) the acquired velocity profiles are varying
but converged towards 〈0,0〉 more smoothly; however, the
acquired trajectories are similar. Once again, the optimization
process was repeated 50 times for each optimization algo-
rithm. The box-plots of the statistical results are depicted in
Fig. 4(i). Also in this case, the DE algorithm shows a better
performance in terms of the number of function evaluation
and the best value of the objective function.

E. Navigation through Waypoints

In this experiment, two trajectories are generated to reach
a point 50m far from the current position of the robot.
One of the trajectories is a straight line and the other is
an arc of circumference. Along each trajectory a waypoint
is generated every 5m. We iteratively pose the problem of
reaching the next waypoint from the current state (position
and velocity), with a target velocity pointing towards the sub-
sequent waypoint and norm equal to 0.7, the highest linear
velocity of Girona500. The trajectories and the orientation
of the AUV are shown in Fig. 5. The AUV learns to proceed
laterally, using the forward thruster to control the orientation.
Sometimes the AUV happens to turn around, but it is always
able to recover towards the next waypoint. This experiment
is feasible in the real-world using the state-dependent policy
representation and closing the loop. But in fact, either a larger
test facility or an onshore tank is required to validate the
experiment.

F. Learning Distributions

All the applied optimization algorithms generate the initial
population randomly distributed over the upper and lower
bounds of the parameter vector. We collect all the different
solutions from the 50 runs of the experiments in sections
IV-B, IV-C, and IV-D, then fit a normal distribution to each
parameter. Then, the uniform distribution in the algorithm
are replaced by the estimated means and standard deviations
for each parameter. Afterwards, the algorithm generates the
initial population from the learned distributions expecting
better fitness or better objective values. Using this method,
we can collect the best solutions in each experiment and
add them to the set of distributions as a new point. The
final set of distributions represents the internal dynamics
behavior of the model in the presence of failures. In our
experiment, as it is depicted Fig. 6, the optimization process

0 10 20 30 40 50
−5

0

5

10

15

20

25

30

X [m]

Y
 [m

]

Start point

Target point

Fig. 5. The desired and result trajectories in the case that the AUV
navigates through waypoints. The blue trajectory is the desired and the
red is the acquired trajectory. The arrows show the orientation of the AUV
(see Section.IV-E for more details).

0 100 200 300 400 500
100

200

300

400

500

600

700

800

cost function evaluations

co
st

 fu
nc

tio
n

va
lu

e
0

200

400

600

800

1: before (blue), 2: after (red)

Fig. 6. The comparison before and after learning the parameter distri-
butions. The learning algorithm needs less number of function evaluations
to reach the same results after learning the parameter distributions (see
Section. IV-F for more details).

shows better performance while using learned distribution,
because it starts from better solutions. Measuring the number
of function evaluations in both cases, the algorithm needs
90% less function evaluations when it utilizes the learned
distributions. This method not only decreases the online
computational cost and makes the approach practically faster,
but also employs the dynamical behavior of the system
using previously experienced knowledge. This method can
be considered as lifelong learning, that will improve the
efficiency of the learning algorithm in the long-term, so we
do not consider it in the discussion about computational cost
of the presented method in the next section.

G. Computational Cost

In order to check the feasibility of the presented approach
we need to assure that the policy optimization can be
performed on-board in a short time. So, we compute the
quality of the solution (i.e. distance from the target) over
time for a waypoint 5m away from the initial position of
the AUV. The optimization process was repeated 20 times

0 0.5 1 1.5 2 2.5 3
−1.5

−1

−0.5

0

0.5

X [m]

Y
 [m

]

(a) Trajectories in 2D plane.

0 5 10 15 20 25 30 35 40 45
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

time [sec]

V
el

oc
ity

 [m
/s

]

SA
SA
MP
MP
DE
DE

(b) Velocity profiles along X and Y axes. (c) Statistical result over 50 runs.

0 0.5 1 1.5 2 2.5 3

−0.5

0

0.5

1

1.5

X [m]

Y
 [m

]

DE

Start point

Targetdist < 0.2

MP

SA

(d) Trajectories in 2D plane.

0 5 10 15 20 25
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

time [sec]

V
el

oc
ity

 [m
/s

ec
]

SA
SA
MP
MP
DE
DE

(e) Velocity profiles along X and Y axes. (f) Statistical result over 50 runs.

0 0.5 1 1.5 2 2.5 3

−0.5

0

0.5

1

1.5

X [m]

Y
 [m

]

DESA

Start point

Target
dist < 0.2

MP

(g) Trajectories in 2D plane.

0 5 10 15
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

time [sec]

V
el

oc
ity

 [m
/s

ec
]

SA
SA
MP
Mp
DE
DE

(h) Velocity profiles along X and Y axes. (i) Statistical result over 50 runs.

Fig. 4. Acquired results for the 1st experiment with constant policy representation (a)-(c), the 2nd experiment with time-dependent policy representation
(d)-(f), and the 3rd experiment with state-dependent policy representation (g)-(i) (see section IV-B,IV-C, and IV-D for more details.)

and the average result shows that, it took 12 seconds to
find a solution able to take the AUV only 0.5m from the
target and it can find a good solution in less than 2 minutes.
All experiments took place on a single thread on an Intel R©

CoreTM i3-2350M CPU 2.30GHz.

H. Real-world Experiment

In this real-world experiment, we test our approach on
Girona500. As it is depicted in Fig. 7, firstly we command
the robot to move 3m along the surge direction while the
original controller of the system is navigating the AUV; the
blue trajectory in Fig. 7 shows the result. Secondly, we turn
off the right surge thruster and repeat the same experiment.
The behavior of the controller is plotted as the red trajectory
in Fig. 7. The result shows that the original controller of the
system cannot recover the AUV from the failure, and the po-
sition error is increasing gradually. Furthermore, we run the

simulation using the state-dependent policy representation
to find an optimal policy for this thruster failure situation.
The simulation result is plotted as the green trajectory in
Fig. 7. Finally, the same optimal solution is applied to the
real robot and the recorded trajectory is plotted as the black
trajectory in Fig. 7. The behavior of the robot is very similar
to the simulation. Although the presented approach is using
the model of the AUV, the main factors that make the real
and simulated data slightly different can be enumerated as:
1) a manipulator arm was attached to the robot during the
real-world experiment (for some other purpose), which was
not considered neither in the model of the AUV nor in
the identification process of the hydrodynamic parameters,
2) unmodeled disturbances from the dynamic environment
(e.g. currents, eddies and other sources of noise.) The video
accompanying this paper shows the real-world experiments

0 0.5 1 1.5 2 2.5 3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

X [m]

Y
 [m

]

Original Controller + Normal Condition
Original Controller + 1 Broken Thruster
Learned Policy + 1 Broken Thruster
Initial Position
Target Position
Simulated Policy + 1 Broken Thruster
Orientation of the AUV

Fig. 7. The trajectories recorded in different scenarios during the real-world
experiments (see Section.IV-H for more details).

and is available online at [27].

V. CONCLUSIONS

In this paper a learning-based approach for discovery
of new control policies to overcome thruster failures is
proposed. One of the advantages of this approach is that
it is applicable in both cases which the vehicle becomes
under-actuated or remains over-actuated in the presence of
the failure. In addition, the approach generates an optimal
trajectory that can take the AUV to the target with minimum
cost. In most other methods, on the other hand, trajectory
generation is ignored in the fault-tolerant control problem.
Furthermore, in this work a state-dependent policy is com-
puted online and the fault-tolerant control loop is closed
with state feedbacks. So, contrary to many existing methods,
we are able to evaluate the resulting controller on the real
AUV. Finally, the presented approach can be implemented in
multiple types of underwater vehicles, because the theoretical
aspect is independent of the choice of the vehicle. As far as
a dynamic model of the vehicle and related hydrodynamic
parameters are available the approach is applicable.

REFERENCES

[1] D. M. Lane, F. Maurelli, P. Kormushev, M. Carreras, M. Fox, and
K. Kyriakopoulos, “Persistent autonomy: the challenges of the PAN-
DORA project,” Proceedings of IFAC MCMC, 2012.

[2] M. Caccia, R. Bono, G. Bruzzone, G. Bruzzone, E. Spirandelli, and
G. Veruggio, “Experiences on actuator fault detection, diagnosis and
accomodation for rovs.”

[3] A. Alessandri, M. Caccia, and G. Veruggio, “A model-based approach
to fault diagnosis in unmanned underwater vehicles,” in OCEANS’98
Conference Proceedings, vol. 2. IEEE, 1998, pp. 825–829.

[4] K. Hamilton, D. Lane, N. Taylor, and K. Brown, “Fault diagno-
sis on autonomous robotic vehicles with recovery: an integrated
heterogeneous-knowledge approach,” in Robotics and Automation,
2001. Proceedings 2001 ICRA. IEEE International Conference on,
vol. 4. IEEE, 2001, pp. 3232–3237.

[5] G. Antonelli, “A survey of fault detection/tolerance strategies for auvs
and rovs,” in Fault diagnosis and fault tolerance for mechatronic
systems: Recent advances. Springer, 2003, pp. 109–127.

[6] T. Podder, G. Antonelli, and N. Sarkar, “Fault tolerant control of an au-
tonomous underwater vehicle under thruster redundancy: Simulations
and experiments,” in Robotics and Automation, 2000. Proceedings.
ICRA’00. IEEE International Conference on, vol. 2. IEEE, 2000, pp.
1251–1256.

[7] T. K. Podder and N. Sarkar, “Fault-tolerant control of an autonomous
underwater vehicle under thruster redundancy,” Robotics and Au-
tonomous Systems, vol. 34, no. 1, pp. 39–52, 2001.

[8] G. Antonelli, Underwater Robots: Motion and Force Control of
Vehicle-Manipulator Systems (Springer Tracts in Advanced Robotics).
Springer-Verlag New York, Inc., 2006.

[9] D. Perrault and M. Nahon, “Fault-tolerant control of an autonomous
underwater vehicle,” in OCEANS’98 Conference Proceedings, vol. 2.
IEEE, 1998, pp. 820–824.

[10] A. S.-f. Cheng and N. E. Leonard, “Fin failure compensation for an
unmanned underwater vehicle,” in Proceedings of the 11th Interna-
tional Symposium on Unmanned Untethered Submersible Technology.
Citeseer, 1999.

[11] M. L. Seto, “An agent to optimally re-distribute control in an un-
deractuated auv,” International Journal of Intelligent Defence Support
Systems, vol. 4, no. 1, pp. 3–19, 2011.

[12] M. Andonian, D. Cazzaro, L. Invernizzi, M. Chyba, and S. Gram-
matico, “Geometric control for autonomous underwater vehicles: over-
coming a thruster failure,” in Decision and Control (CDC), 2010 49th
IEEE Conference on. IEEE, 2010, pp. 7051–7056.

[13] J.-K. Choi and H. Kondo, “On fault-tolerant control of a hovering
auv with four horizontal and two vertical thrusters,” in OCEANS 2010
IEEE-Sydney. IEEE, 2010, pp. 1–6.

[14] M. Leonetti, S. R. Ahmadzadeh, and P. Kormushev, “On-line learning
to recover from thruster failures on autonomous underwater vehicles,”
in OCEANS 2013. IEEE, 2013.

[15] D. Ribas, N. Palomeras, P. Ridao, M. Carreras, and A. Mallios,
“Girona 500 auv: From survey to intervention,” Mechatronics,
IEEE/ASME Transactions on, vol. 17, no. 1, pp. 46–53, 2012.

[16] T. Fossen, “Guidance and control of ocean vehicles,” Wiley, New York,
1994.

[17] G. C. Karras, C. P. Bechlioulis, M. Leonetti, N. Palomeras, P. Kormu-
shev, K. J. Kyriakopoulos, and D. G. Caldwell, “On-line identification
of autonomous underwater vehicles through global derivative-free
optimization,” in Proc. IEEE/RSJ Intl Conf. on Intelligent Robots and
Systems (IROS), 2013.

[18] G. Konidaris, S. Osentoski, and P. S. Thomas, “Value function
approximation in reinforcement learning using the fourier basis.” in
AAAI, 2011.

[19] M. Leonetti, P. Kormushev, and S. Sagratella, “Combining local and
global direct derivative-free optimization for reinforcement learning,”
Cybernetics and Information Technologies, vol. 12, no. 3, pp. 53–65,
2012.

[20] S. Kirkpatrick, D. G. Jr., and M. P. Vecchi, “Optimization by simulated
annealing,” science, vol. 220, no. 4598, pp. 671–680, 1983.

[21] R. Storn and K. Price, “Differential evolution–a simple and efficient
heuristic for global optimization over continuous spaces,” Journal of
global optimization, vol. 11, no. 4, pp. 341–359, 1997.

[22] P. Brachetti, M. D. F. Ciccoli, G. Di Pillo, and S. Lucidi, “A new
version of the price’s algorithm for global optimization,” Journal of
Global Optimization, vol. 10, no. 2, pp. 165–184, 1997.

[23] M. Miki, T. Hiroyasu, and K. Ono, “Simulated annealing with ad-
vanced adaptive neighborhood,” in Second international workshop on
Intelligent systems design and application. Citeseer, 2002, pp. 113–
118.

[24] B. Suman and P. Kumar, “A survey of simulated annealing as a tool
for single and multiobjective optimization,” Journal of the operational
research society, vol. 57, no. 10, pp. 1143–1160, 2005.

[25] K. V. Price, R. M. Storn, and J. A. Lampinen, “Differential evolution
a practical approach to global optimization,” 2005.

[26] R. Gämperle, S. D. Müller, and P. Koumoutsakos, “A parameter
study for differential evolution,” Advances in intelligent systems, fuzzy
systems, evolutionary computation, vol. 10, pp. 293–298, 2002.

[27] Video, “Video accompanying this paper, available online,” http://
kormushev.com/goto/ICRA-2014 Reza, 2013.

