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Abstract. Autonomous underwater vehicles are prone to various
factors that may lead a mission to fail and cause unrecoverable dam-
ages. Even robust controllers cannot make sure that the robot is able
to navigate to a safe location in such situations. In this paper we
propose an online learning method for reconfiguring the controller,
which tries to recover the robot and survive the mission using the
current asset of the system. The proposed method is framed in the
reinforcement learning setting, and in particular as a model-based
direct policy search approach. Since learning on a damaged vehicle
would be impossible owing to time and energy constraints, learn-
ing is performed on a model which is identified and kept updated
online. We evaluate the applicability of our method with different
policy representations and learning algorithms, on the model of the
vehicle Girona500.

1 INTRODUCTION
Autonomous Underwater Vehicles (AUVs) have to deal with long
missions in unknown environments. The risk of damage is of se-
vere concern, owing to many factors, among which: extreme pres-
sure, corrosive effects of sea water, the risk of damage due to waves
while on the surface, and collisions during launch or later. Improv-
ing the reliability of the robot is therefore critical, especially for
autonomous vehicles. Fault detection, isolation, and reconfiguration
(FDIR) is an important and challenging problem. If the fault is de-
tected and identified, appropriate reconfiguration control actions may
be taken [1]. The first part of the FDIR process, the Fault Detec-
tion and Identification (FDI) problem, consists of making a binary
decision - either something has gone wrong or not - and of deter-
mining the location as well as nature of the fault. The developed
and implemented FDI methods for ROVs and AUVs aim at gener-
ating robust error residuals that are insensitive to noise and uncer-
tainties, while sensitive to faults [1]. These methods can be grouped
in a few basic approaches as: observer-based methods [26], parity
relations approaches [30], optimization-based approaches, Kalman
filter-based approaches [14], stochastic approaches, system identifi-
cation approach, nonlinear approach, hybrid system approach, and
artificial intelligence methods.
The reconfiguration step of the FDIR process, which is the focus of
this paper, involves changing the controller in response to the fault
detected, in order to ensure safe or satisfactory operation of the sys-
tem. There are various methods of control reconfiguration, such as
those based on online learning or system identification. Many control
reconfiguration methods are based on techniques for fault detection
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Figure 1. The Girona500 AUV with 5 thrusters

and isolation. Multiple-model approaches [17] and adaptive control
approaches [20] are two examples. In multiple-model approaches,
a bank of parallel models is used to describe the subsystem under
normal operating mode and under various fault conditions, such as
thruster failure. A corresponding controller is designed for each of
these models. A suitably chosen switching mechanism is designed
to determine the mode of the system at each time step, and to se-
lect the corresponding controller designed for that mode. Another
common approach in reconfigurable control is to utilize an adap-
tive controller to ensure robust or acceptable level of performance
under abrupt changes in system parameters. In this paper, we take
a different stand and devise a new controller using online learning
approaches based on evolution strategy and reinforcement learning
techniques [28].
We demonstrated our method on Girona500 [24]. Girona500 is a re-
configurable AUV equipped with typical navigation sensors (DVL,
AHRS, pressure gauge and USBL) and basic survey equipment (pro-
filer sonar, side scan sonar, video camera and sound velocity sensor).
The layout we used has 5 thrusters (Figure 1): two vertical to actuate
the heave, one lateral for the sway, and two horizontal for the surge
and yaw.

2 AUV MODEL
According to the standard modeling procedure of underwater vehi-
cles [5], the Girona500 AUV can be modeled as a rigid body subject
to external forces and torques. Also we have to consider the actuated
and underactuated DoFs of the AUV that can be seen in Figure 2.



Figure 2. The Girona500 AUV. The blue color indicates actuated DoFs
and the red color indicates underactuated DoFs.

Mv̇+C (v)v+D(v)v+g(η) = τ

η̇ = J (η)v (1)

where:

• M = MRB +MA, where MRB and MA are the inertia matrix for a
rigid body and added mass respectively;

• C (v) =CRB (v)+CA (v) , where CRB (v) and CA (v) are the Corio-
lis and centripetal matrix for a rigid body and added mass respec-
tively;

• D(v) = Dquad (v)+Dlin (v) , where Dquad (v) and Dlin (v) are the
quadratic and linear drag matrix respectively;

• g(n) is the hydrostatic restoring force vector;
• J (η) is the Jacobian matrix transforming the velocities from the

body-fixed to the earth-fixed frame;
• η = [x y z φ θ ψ]T is the pose (position and orientation) vector;
• v= [u v w p q r]T is the body velocity vector;
• τ is the input (force/torque) vector.

3 METHODOLOGY
We frame our method in the context of model-based policy search for
reinforcement learning [28]. This framework comprises the dynamic
model of the vehicle Equation.1, a parameterized representation for
the control law, the definition of a cost function, and an optimiza-
tion algorithm. The control law is represented as a function π(t|θ)
of time (called policy) depending on a parameter vector θ . In this
work the policy is represented with a linear function approximator,
that is a function of the form π(t|θ) = θ T φ(t), using the Fourier ba-
sis functions for φ [10]. The output of the policy is the voltage for
the working thrusters. The performance of the vehicle is measured
through a cost function:

J(θ) =
T

∑
t=0

ct(st)

∣∣∣∣∣
π(t|θ)

(2)

where ct is the immediate cost, and depends on the current state,
which in turn is determined by the policy and its parameters.

Therefore, the aim of the agent is to tune the policy’s parameters
in order to minimize the cumulative cost J over a horizon T . We
implemented two global derivative-free optimization algorithms
to find an optimal policy for this task. The first algorithm is the
well-known Simulated Annealing (SA), which solve unconstrained
and bound-constrained [9]. The second algorithm which is a mod-
ified version of the Price algorithm combines a global controlled
stochastic search and a deterministic local search. Since it is a global
algorithm, it is particularly suitable for decision problems created
on-the-fly and solved online, without the possibility to engineer a
good initial solution.
In our scenario, when a thruster is deemed faulty, a function J is
created to represent the cost of a path to the target location. The
optimization algorithm is then used to compute the minimal policy,
in the given policy parametrization, that takes the AUV as close
as possible to the target location using only the working thrusters.
The function π computed, substitutes the AUV’s controller that
would work under normal operating conditions. It is also possible
to use the target location as a waypoint, by adding to J a secondary
optimization objective (appropriately weighed) to reach the point
with a given velocity, as will be shown in the following.

4 LEARNING ALGORITHMS
We implement derivative-free optimization algorithms because the
cost function is not available in closed form. We define the imme-
diate costs, but the total cost, which is what we aim at minimizing,
depends on both the policy and the environment (in this case the
model). We implement a well-known optimization algorithm, Simu-
lated Annealing, to find an optimum policy to the problem of thruster
failure recovery in the Girona500 AUV. In addition, we utilize an-
other derivative-free optimization algorithm which is introduced re-
cently by Leonetti et al. [11], to try different derivative free methods,
to evaluate the quality of the solutions found and the time required,
to verify their usability as on-line methods.

4.1 Simulated Annealing
Simulated Annealing (SA) is a probabilistic meta-heuristic has been
proposed in the area of combinatorial optimization [9] that is, when
the objective function is defined in a discrete domain. SA is pro-
posed for finding the global minimum of a cost function that may
possess several local minima [3]. The method is reported to perform
well in the presence of a very high number of variables (even tens of
thousands). The SA heuristic was modified in order to apply to the
optimization of multi-modal functions defined in continuous domain
[4].
SA comes from the Metropolis algorithm, a simulation of the recrys-
tallization of atoms in metal during its annealing (gradual and con-
trolled cooling). During annealing, atoms migrate naturally to config-
urations that minimize the total energy of the system, even if during
this migration the system undergoes high-energy configurations. The
observation of this behavior suggested the application of the simula-
tion of such a process to combinatorial optimization problems [29].
The choice of the temperature or cooling scheduling and the next
candidate distribution are the most important decisions in the defini-
tion of a SA algorithm [18]. The temperature schedule defines how
the temperature in SA is decreased. There exists a wide range of
methods to determine this temperature schedule [21]. Corana et al.
[4] proposed a self tuning SA algorithm the step size of which is



Algorithm 1 Pseudocode for the main Simulated Annealing.
1: Input: Problem Size: n, iterationsmax, tempmax
2: Output: Sbest
3: create n initial random solutions : Scurrent
4: Sbest = Scurrent
5: for i = 1 to iterationsmax do
6: create neighbor solution from Scurrent : S(i)
7: calculate current temperature tempmax : tempcurrent
8: if cost(S(i))≤ cost(Scurrent) then
9: Scurrent = S(i)

10: if cost(S(i)) ≤ cost(Sbest ) then
11: Sbest = S(i)
12: end if
13: else if exp( cost(Scurrent )−cost(S(i))

temp(S(i)) > rand()) then
14: Scurrent = S(i)
15: end if
16: end for
17: Return Sbest

configured in order to maintain a number of accepted solutions. The
probability distribution used by Corana et al. is flat. Ingber [6] pro-
posed to use a Cauchy distribution and a faster temperature decrease.
The very fast simulated re-annealing proposed by Ingber and Rosen
[8] searches for different sensitivities in parameters by processing the
first derivatives of the objective function. We use Boltzman tempera-
ture scheduling.
The SA algorithm proposed in [29] uses a Gaussian probability dis-
tribution with a self-controlled standard deviation in order to main-
tain the number of accepted solutions. The starting temperature must
be hot enough to allow a move to almost any neighborhood state. If
this is not done, the ending solution will be very close to the starting
solution. However, if the temperature starts at a too high value then
the search can move to any neighbor and thus transform the search
into a random search. Effectively, the search will be random until the
temperature is cool enough to start acting as a SA algorithm.
Several areas of application of SA can be enumerated, some of which
are: chemistry and chemical engineering [12], image processing [27],
economics and finance [7], electrical engineering and circuit design
[25], geometry and physics [16], machine learning [15], networking
and communication [23], etc.
The well-known SA algorithm is not described in detail here, just
a pseudocode listing of the main Simulated Annealing algorithm is
provided in Algorithm 1.

4.2 Modified Price’s algorithm

While Simulated Annealing provides our baseline, we perform our
experiments with another black-box optimization algorithm too, in-
troduced by Leonetti et al. [11]. We believe this algorithm has great
potential in its application to policy search for robotic reinforcement
learning tasks, and provide an evaluation on such a task in this paper.
The algorithm is a composition of a global and a local derivative-free
method, designed for the optimization of non-linear, multi-modal,
multi-variate functions. This algorithm is global, derivative-free, and
iterative.
The algorithm is divided into two phases: a controlled global
random-search phase, and a deterministic local line-search phase.
The algorithm used in the global phase has been introduced by Bra-
chetti et al. [2], and we report it in Algorithm 2. The global phase is
population-based, and the initial population is drawn at random over

D (line 3). It is also possible to add to the initial population any good
point known in advance by the designer.
The population at any time is composed by the best m points ever
sampled, where m is a parameter of the algorithm. The bigger m,
the more likely the algorithm is to avoid non-global minima. The
algorithm terminates when the difference between the best and the
worst point of the population is less then the parameter ε . The popu-
lation evolves by sampling a random family of n+1 points from the
population itself, where n is the dimensionality of the domain, and
computing the weighted centroid (lines 9–10). The next trial point is
computed as a weighted reflection of the worst point of the popula-
tion with respect to the weighted centroid (line 11).
This algorithm has been proved to converge to the global minimum
if uniform random sampling is performed together with the weighted
centroid reflection [2]. Since this step guarantees the convergence in
the limit by assigning a non-zero probability to the neighborhood of
any point on the domain, it often compromises the performance on
most functions in practice. Therefore, we chose not to perform the
uniform sampling, and to rely only on the heuristic provided by the
centroid reflection. This approach has been extensively numerically
evaluated in the literature [11, 2, 22]. We followed the approach pre-
sented by Leonetti et al. [11] and combine this global search with
a deterministic local search. Therefore, instead of employing Algo-
rithm 2 with a very small ε (typically in the order of 10−6) we let
ε = 10−2, and performed a deterministic local search in the neigh-
borhood represented by the population at the time the global search
is terminated. While global stochastic search is a powerful method to
avoid being trapped in local minima, the random nature of its sam-
pling makes it less effective when the region of the global minimizer
has been identified. Thus, the best point from the first global phase
is used as the starting point of the following local search, which em-
ploys a coordinate-search algorithm with line-search expansions [13]
reported in Algorithm 3.

The algorithm uses positive step sizes α j, j = 1, . . . ,2n along the
cardinal directions {e1, . . . ,en,−e1, . . . ,−en} to search for a point
that improves the current best point starting from θ 0. The parameters
are initially set to

α j =
median{‖xi− xS

min‖, xi ∈ S}
2

, j = 1, . . . ,2n (3)

where S is the final population from the previous algorithm. Thus,
the parameters α j, that is the initial steps in each direction, are set to
half the median of the distance between the points in the population
and the current best point (xS

min). This seamless integration between
the global and local phases, so that the parameter of the latter can be
computed from the population of the former, provides an improve-
ment over the original formulation of this method [11]. We consid-
ered other measures for the radius of the population, like the mean
or the maximum distance, but the median proved the most effective
in practice. If the largest step maxi=1,...,2n{α̃k

i } is smaller than the
parameter ε the algorithm terminates (line 3).
Trial points are subsequently generated, along the direction ei and
with steps αi. If a point along a direction ei starting at yk

i improves
yk

i of at least γ·(αk
i )

2, and also improves the current best point xk
i ,

then αk
i is increased by a factor δ , and a farther point along ei is

tried (lines 7–14). This is the expansion phase. If the trial point is
not sufficiently improving, αk

i is reduced by a factor σ in a contrac-
tion phase (lines 16–17), and other directions are polled. Typically
δ = 2 and σ = 1/2. When all the directions have been contracted up
to ε the algorithm terminates. This line search algorithm draws its
inspiration from gradient-based methods, and performs optimization



Algorithm 2 Controlled Random Search Phase
1: Input: a positive integer m≥ n+1, ε > 0
2: k = 0
3: compute the initial set: Sk = {θ k

1 , . . . ,θ
k
m} where the points θ k

i ,
i = 1, . . . ,m are chosen at random over a box D

4: evaluate J at each point θ k
i , i = 1, . . . ,m.

5: determine the points θ k
max, θ k

min and the values Jk
max, Jk

max such
that: Jk

max = J(θ k
max) = max

θ∈Sk
J(θ) and Jk

min = J(θ k
min) = min

θ∈Sk
J(θ)

6: if Jk
max− Jk

min ≤ ε then
7: STOP
8: end if
9: choose at random n + 1 points θ k

i0 ,θ
k
i1 , . . . ,θ

k
in over Sk, where

J(θ k
i0)≥ J(θ k

i j
), j = 1, . . . ,n

10: determine the centroid ck = ∑
n
j=0 wk

jθ
k
i j

11: determine the trial point θ̄ k given by

θ̄
k = ck−α

k(θ k
i0 − ck)

where

wk
j =

ηk
j

∑
n
r=0 ηk

r
, ηk

j =
1

J(θ k
i j
)−Jk

min+φ k ,

αk = 1−
J(θ k

i0
)−∑

n
j=0 wk

jJ(θ
k
i j
)

Jk
max−Jk

min+φ k

and

φ
k = n

(Jk
max− Jk

min)
2

J0
max− J0

min
;

12: if θ̄ k /∈ D then
13: go to 9
14: else
15: compute J(θ̄ k)
16: end if
17: if J(θ̄ k)≥ Jk

max then
18: Sk+1 = Sk

19: k = k+1
20: go to 9
21: else
22: Sk+1 = Sk ∪ {θ̄ k} − {θ k

max}
23: k = k+1
24: go to 5
25: end if

along given lines, in this case the coordinate axes. While none of the
directions is as fast descending as the gradient, about half of them
will be improving directions. The expansion phase, in which the step
is increased by a factor δ , allows to proceed along a successful line
at an increasing pace, proving very effective in practice. Coordinate-
search algorithms poll the function on a finite number of points, and
are guaranteed to provide a locally optimum value at the required
precision ε . No point closer to the current best point than ε is polled.

5 EXPERIMENTAL RESULTS
We performed our experiments on the dynamic model of Girona500,
whose parameters have been identified. We limited the trials to the
horizontal plane, where we supposed the left-hand forward thruster
to be broken. Therefore, the AUV can navigate only with the right-
hand forward thruster and the lateral one. Any attempt to change the
allocation matrix of the thrusters would be impossible, since the ve-

Algorithm 3 Line Search Phase

1: Input: θ 0 ∈ Rn, α̃0
1 , . . . , α̃

0
2n > 0, σ ∈ (0,1), γ ∈ (0,1), δ > 1,

ε > 0
2: k = 0
3: if max

i=1,...,2n
{α̃k

i } ≤ ε then

4: STOP
5: end if
6: i = 1, yk

1 = θ k, xk = θ k

7: if J(yk
i + α̃k

i ei)≤ J(yk
i )− γ(α̃k

i )
2 and J(yk

i + α̃k
i ei)< J(xk) then

8: αk
i = α̃k

i
9: xk = yk

i +αk
i ei

10: while J(yk
i +δαk

i ei)≤ J(yk
i )− γ(δαk

i )
2 and J(yk

i +δαk
i ei)<

J(xk) do
11: αk

i = δαk
i

12: xk = yk
i +αk

i ei
13: end while
14: α̃

k+1
i = αk

i
15: else
16: αk

i = 0
17: α̃

k+1
i = σα̃k

i
18: end if
19: yk

i+1 = yk
i +αk

i ei
20: if i < 2n then
21: i = i+1
22: go to 7
23: end if
24: θ k+1 = xk, k = k+1, go to 3

hicle is underactuated. We used the following definition of the im-
mediate cost:

ct(〈pt ,vt〉) =
{
‖ pt −gp ‖ if t < T

w ‖ vt −gv ‖ if t = T
(4)

where the state st = 〈pt ,vt〉 is composed by position and velocity at
time t, gp is the goal location, gv is the goal velocity and w weighs
the velocity objective with respect to the positional one. For all our
experiments we use T = 60s, since all the target destinations are
reachable in 60 seconds. For the policy representation we start with
constant values and make it more complicated in each experiment.
Because we want to find out how much the policy representation can
be complicated to be used as an online process. For example, we use
an order 3 Fourier expansion, in the third experiment.

5.1 Constant Policy

In order to test the presented optimization algorithms, we define a
desired position in the vicinity of the robot, and a target velocity of
〈0,0〉. In the first experiment a constant policy vector is considered,
which means applying a constant voltage function on the undam-
aged thrusters to move the AUV towards the desired target position.
We repeated the optimizing process 50 times for each optimization
algorithm.
The trajectories resulting by the application of the optimum constant
policies computed by the two algorithms can be seen in Figure 3. The
figure shows that the solutions found by the two optimization algo-
rithms are very similar. The acquired velocity profiles can be seen in
the Fig. 4. The resulting velocity profiles are also very similar in both
cases. Since both algorithms are stochastic, the results may converge
to different solutions in different runs. In Table 1 we report the mean,



Figure 3. Acquired trajectories by the Simulated Annealing (SA) and
Modified Price (MP) algorithms for the first experiment with constant policy

representation (see Section 5.1 for more details).

Figure 4. Acquired velocities by the Simulated Annealing (SA) and
Modified Price (MP) algorithms for the first experiment with constant policy

representation (see Section 5.1 for more details).

median, standard deviation, and interquartile range for the distribu-
tions of the values of the optimal policies over the 50 experiments,
together with the number of iterations to compute them. In addition,

Table 1. Performance of the two optimization algorithms in the first
experiment with constant policy representation. FcnVal represents the best

value found for the objective function and the numIter shows the number of
Iterations.

Modified Price Simulated Annealing
numIter fcnVal numIter fcnVal

mean 139 772.25 399 798.32
median 132 766.97 373 776.04
std 41 24.23 135 55.19
iqr 45 1.78 139 25.63

the box plot of the statistical results is depicted in Figure 5. The cen-
tral mark is the median, the edges of the box are the 25th and 75th
percentiles, the whiskers extend to the most extreme data points not
considered outliers, and outliers are plotted individually. As it can
be seen from the results, it takes longer for Simulated Annealing to
achieve the same quality of the solutions as for modified Price. Gen-
erally, a constant policy can get the AUV close enough to the target

Figure 5. Comparing Simulated Annealing (SA) vs. Modified Price (MP)
algorithms with constant policy values over 50 experiments (see Section 5.1

for more detals).

but has little control on the velocity. In order to have the velocity
close to a target as a secondary objective we need a more flexible
control law.

5.2 Time-dependent Policy
In this experiment we employ an order 3 approximator using the
Fourier bases [10] to represent the policy. The policy is dependent on
time only, and has 8 parameters to optimize. On the one hand, the tar-
get velocity of 〈0,0〉 becomes more relevant here, as the control law
can be more flexible than the constant policy we previously used. On
the other hand, while the optimization was on only 2 parameters in
the previous experiments (a constant command per working thruster),
it depends on four times more variables here. We repeated the opti-
mizing process 50 times for each optimization algorithm. As can be
seen in Figure. 6 the acquired trajectories from both algorithms are
similar. The velocity profiles, however, are different. As it is shown
in Figure. 7, the final part of the velocity profiles acquired by the
modified Price algorithm converges to the target velocity more than
the Simulated Annealing algorithm. In Table 2 we report the mean,

Figure 6. Acquired trajectories by the Simulated Annealing (SA) and
Modified Price (MP) algorithms for the second experiment with

time-dependant policy representation (see Section 5.2 for more details).



Figure 7. Acquired velocities by the Simulated Annealing (SA) and
Modified Price (MP) algorithms for the second experiment with

time-dependant policy representation (see Section 5.2 for more details).

median, standard deviation, and interquartile range for the distribu-
tions of the values of the optimal policies over the 50 experiments for
the time-dependent policy experiment, together with the number of
iterations to compute them. In addition, the box plot of the statistical

Table 2. Performance of the two optimization algorithms in the second
experiment using time-dependant policy representation. FcnVal represents
the best value found for the objective function and the numIter shows the

number of Iterations.
Modified Price Simulated Annealing

numIter fcnVal numIter fcnVal
mean 1609 412.2 496 435.24
median 984 384.31 421 406.18
std 1822 56.1 248 86.75
iqr 841 115.48 351 70.65

results is depicted in Figure 8.

Figure 8. Comparing Simulated Annealing (SA) vs. Modified Price (MP)
algorithms with time-dependant policy representation over 50 experiments

(see Section 5.2 for more detals).

5.3 State-dependent Policy

In the last experiment on policy complexity, we increase the rep-
resentation to include position, orientation and velocities in the ob-
servations. An order-3 Fourier policy with 5 state variables (x and
y for position, velocity, and orientation), produces an optimization
problem with 18 variables, which is considered quite significant for
policy-search methods. The robustness provided by the reactivity to
more information is traded with computational complexity. We re-
peated the optimizing process 50 times for each optimization algo-
rithm.
As can be seen in Figure. 9 the acquired trajectories from both algo-
rithms are similar. The velocity profiles, however, are different again.
As it is shown in Figure. 10, the final part of the velocity profiles
acquired by the modified Price algorithm converges to the target ve-
locity more than the Simulated Annealing algorithm. In Table 3 we

Figure 9. Acquired trajectories by the Simulated Annealing (SA) and
Modified Price (MP) algorithms for the third experiment with

state-dependant policy representation (see Section 5.3 for more details).

Figure 10. Acquired velocities by the Simulated Annealing (SA) and
Modified Price (MP) algorithms for the third experiment with

state-dependant policy representation (see Section 5.3 for more details).

report the mean, median, standard deviation, and interquartile range
for the distributions of the values of the optimal policies over the 50
experiments for the state-dependent policy experiment, together with
the number of iterations to compute them. In addition, the box plot
of the statistical results is depicted in Figure 11.



Table 3. Performance of the two optimization algorithms in the third
experiment using state-dependant policy representation. FcnVal represents
the best value found for the objective function and the numIter shows the

number of Iterations.
Modified Price Simulated Annealing

numIter fcnVal numIter fcnVal
mean 5287 217.6 511 265.89
median 4214 219.5 456 254.01
std 2658 8.5 240 39.05
iqr 1947 14.7 222 16.67

Figure 11. Comparing Simulated Annealing (SA) vs. Modified Price (MP)
algorithms with state-dependant policy representation over 50 experiments

(see Section 5.3 for more detals).

5.4 Point-to-Point Navigation
In the previous experiments we focused on the complexity of the pol-
icy and the corresponding accuracy in reaching a target position and
velocities. In this experiment we show that the feasibility of the ap-
proach, with a time-dependent order-3 Fourier policy, which is also
valid for other target locations. We generate a grid of target points
with coordinates in [−10,10] at 1 meter distance with respect to each
other, and null target velocity. We show some of the generated tra-
jectories in Figure 12. The AUV was able to reach each point at a
distance of less then 0.2m and stop there, since the target velocity
was the null vector.

5.5 Navigating Through Waypoints
Point to point navigation is the most common when the objective of
the AUV is just to reach a safe location, and possibly float to the
surface. The presented method, however, can also be used to follow
a trajectory with waypoints. We generate two trajectories to reach a
point 50m far, one on a straight line and the other one on an arc of
circumference. Along each trajectory, we generate a waypoint every
5m. We iteratively pose the problem of reaching the next waypoint
from the current state (position and velocity), with a target velocity
pointing towards the subsequent waypoint and norm equal to 0.7, the
highest linear velocity for Girona500. The trajectories and the orien-
tation of the AUV are shown in Figure 13. The AUV learns to pro-
ceed laterally, using the forward thruster to control the orientation.
Sometimes the AUV happens to turn around, but it is always able to
recover towards the next waypoint.

Figure 12. The result trajectories for the point-to-point navigation
experiment (see Section.5.4 for more details).

Figure 13. The desired and result trajectories in the case that the AUV
navigates through waypoints. The blue trajectory is the desired and the red is

the acquired trajectory (see Section.5.5 for more details).

5.6 Computational Cost
For the feasibility of the presented method we need to assure that
the optimization of the policy can be performed on-board in a short
time. Figure 14 shows the quality of the solution (distance from the
target) computed over time for a waypoint 5m away. The plot is av-
eraged over 20 runs. We used an Intel core 2 Duo P8700 processor,
where the optimization ran on a single thread. It took 12 seconds to
find a solution able to take the AUV only 0.5m from the target. The
autonomous vehicle can stop the optimization process at any time
after this point, having guaranteed a solution good enough to reach
the target. In Figure 15 the green trajectory shows the behavior of
the control module of the AUV while one of surge thrusters is failed.
The controller cannot recover the AUV to reach the desired position.
The result from a fast solution from each of the optimization algo-
rithms are shown in blue and black trajectories. As you can see, the
solutions are not optimum but still can recover the AUV to reach the
desired position.

6 CONCLUSION
In this paper, an online learning method is proposed for the failure
thruster recovery task in AUVs. Even robust controllers are unable to
recover the robot in such situations. The proposed learning method,



Figure 14. Computational cost of the learning method to find the (global)
optimum solution (see Section.5.6 for more details).

Figure 15. Finding a fast solution to reach the desired position for the
AUV with a broken thruster (see Section.5.6 for more details).

which is a model-based direct policy search approach, tries to re-
cover the robot and survive the mission using the current undam-
aged thrusters of the system. We evaluated the applicability of our
method with different policy representations and learning algorithms.
We successfully implemented our approach on Girona500 AUV in
simulation.
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