
International Journal "Information Theories & Applications" Vol.13

169

INFRAWEBS AXIOM EDITOR – A GRAPHICAL ONTOLOGY-DRIVEN TOOL
FOR CREATING COMPLEX LOGICAL EXPRESSIONS

Gennady Agre, Petar Kormushev, Ivan Dilov

Abstract: The current INFRAWEBS European research project aims at developing ICT framework enabling
software and service providers to generate and establish open and extensible development platforms for Web
Service applications. One of the concrete project objectives is developing a full-life-cycle software toolset for
creating and maintaining Semantic Web Services (SWSs) supporting specific applications based on Web Service
Modelling Ontology (WSMO) framework. According to WSMO, functional and behavioural descriptions of a SWS
may be represented by means of complex logical expressions (axioms). The paper describes a specialized user-
friendly tool for constructing and editing such axioms – INFRAWEBS Axiom Editor. After discussing the main
design principles of the Editor, its functional architecture is briefly presented. The tool is implemented in Eclipse
Graphical Environment Framework and Eclipse Rich Client Platform.

Keywords: Web services, Semantic Web Services, Web Service Modelling Ontology framework.

ACM Classification Keywords: H.5.2 User Interfaces: Graphical user interfaces (GUI)

Introduction
Current Web service technologies describe the syntactical aspects of a Web ser vice providing only a set of rigi d
services th at can not b e a dapted to a c hanging en vironment with out h uman i ntervention. Real ization o f the ful l
potential of th e Web s ervices req uires furt her te chnological adv ances i n the are as of service interoperation,
service di scovery, servic e co mposition a nd orchestration. A poss ible so lution to thes e pro blems is lik ely to b e
provided by application of Semantic Web technologies.
Semantic Web Services (SWSs) are self-contained, self-describing, semantically marked-up software resources
that can be published, discovered, composed and executed across the Web in a task driven semi-automatic way.
There ar e tw o maj or i nitiatives a iming at developing world-wide sta ndard for th e s emantic d escription of We b
services – the American OWL-S [OWL-S 2004] and the European WSMO [Roman et al. 2005]. The INFRAWEBS
European research project is based on th e WSMO framework for s ervice modelling and proposes a next, more
technology-oriented st ep in the process of semantic W eb servi ce development [Ner n et al. 2004]. One of th e
concrete pr oject obj ectives i s dev eloping a full -life-cycle softwar e to olset for cre ating a nd m aintaining SWS s
supporting specific applications based on Web Service Modelling Ontology (WSMO) framework.
A main part of WSMO-based SWS is service capability – a declarative description of Web service functionality. A
formal syntax an d semantics for such a de scription is pr ovided by Web Servi ce Mo delling Language (WSML),
which is bas ed on differ ent logical formalisms, na mely, Description Lo gics, First-Order L ogic an d Lo gic
Programming [de Bruijn et a l. 2005]. The conceptual syntax for WSML has a fr ame-like styl e. The information
about a class and its attributes, a relat ion and its parameters and an instance and its attribute values is specif ied
in one large syntactic construct, instead of being divided into a number of atomic chunks. It is possible to spread
the information about a particular class, relation, instance or axiom over several construct. WSML allows using of
variables t hat may oc cur i n place of co ncepts, attrib utes, insta nces, rel ation ar guments or attrib ute values. A
variable may not, however, r eplace a WSML keyword. Furthermore, var iables may only be used i nside logical
expressions. A WSML de scription of a Web ser vice ca pability is repr esented as a set of compl ex lo gical
expressions called axioms. Machines can easily handle these axioms. However, it is v ery difficult for humans to
create and comp rehend comp lex lo gical expressions. Therefore, the constr uction of axi oms needs t o b e
supported by some easy-to-use graphical tools. It shou ld allow a non-specialist to create highly complex axioms
in WSML language through simple graphical interaction.
This p aper de scribes a sp ecialized too l cal led INFR AWEBS Axio m Edit or, whic h is ai med at co nstructing a nd
editing WSMO-based SWS capabilities. The structure of the paper is as follows – the next section discusses the

International Journal "Information Theories & Applications" Vol.13

170

basic design principle of the Editor. Then the models for representing and constructing the axioms are presented.
Next two s ections are devoted for descr ibing the ma in functionality of the Editor a nd its graphical user interface.
In conclusion some implementation details and future trends are discussed.

Basic Design Principle of INFRAWEBS Capability Editor
INFRAWEBS Axiom Editor is a specialized user-friendly tool for constructing and editing complex WSML logical
expressions based on available set of WSML ontologies. It is a core part of a more complex tool – INFRAWENS
Semantic Service Designer, which is aimed at converting existing Web services to WSMO-based semantic Web
Services [Agre et al. 2005].
The main design principles of the Axiom Editor are:
1. Specialization: the too l is i ntended to b e use d ma inly for co nstructing lo gical expressions re presenting

capabilities of WSMO-bas ed sema ntic We b servic es ra ther th an ax ioms in ont ologies. Our an alysis ha s
shown that the logical structure of such expressions is rather simple and in most cases does not require using
of such complex WSML logical operators (connectives) as Implies, ImpliedBy or Equivalent.

2. User-friendliness: it is a ssumed that the users of our tool will be semantic Web s ervice providers as well as
customers of such services. In both cases the users will not be specialists in first-order logic, so using of some
(even rather advanced) text editor for constructing logical expressions seems for us an inappropriate solution.
That is why we propose a graphical way for constricting and editing the axioms abstracting away as much as
possible from a concrete syntax of logical language used for implementing them.

3. Intensive use of ontologies: it is well known that the core concept of the Semantic Web is ontologies – “formal,
explicit specification of a shared conceptualization” [Gruber 1993]. In our opinion, creating such formal and
consensual s pecifications for differe nt a pplication domains req uires ver y inte nsive co operation of h ighly
qualified domain knowledge engineers and logicians. Both categories of the users do not belong to the range
of pote ntial cu stomers of our tool; for suc h users ar e mo re ap propriate such g eneral ont ology e ditors like
Protégé2000 [Protégé 2005] or Ontology Management Suit which is currently under development in the frame
of WSMO project. So we assume that our customer will be mainly a user of already created ontologies rather
then creator of new ontologies. However, we foresee that in some cases the service providers need to be able
to creat e so me specialized versions of (gen eral) ex isting ont ologies co ntaining specif ic in stances or
subconcepts of g eneral on tology concepts. Means fo r crea ting such (restricted) on tologies a re go ing to be
included in our Editor.

4. Semantic consistency: our analysis has shown that the main difficulties of the process of constructing complex
logical expressions are associated with use of correct names of concepts, attributes, relations and parameters
as well as th eir types rath er than with expressing logic itself. That is why the process of constructing logical
expression in INFRAWEBS Axiom Editor is ontology-driven, which means that in each step of this process the
user may select only such elements of existing ontologies that are consistent with already constructed part of
the axiom. From this po int of view th e created axiom is always semantically consistent with o ntologies used
for it construction.

Representation of Axioms
According t o the for mulated above re quirements t he Ax iom Ed itor s hould al low a utomatic g enerating c orrect
WSML l ogical expr essions f rom s ome gr aphical re presentation (model) of suc h expressions. As a gra phical
model of WSM L axiom we have selected a direct acyclic graph (DAG). Such a graph can contain four kinds of
nodes:
• A single node called Root, which may have only outgoing arcs. This node corresponds to WSML statement

defineBy. Graphically the root node is represented as a circle named “Start”.
• Intermediate n odes c alled variables. Suc h nodes h ave one or mor e i ncoming arcs and c an have s everal

outgoing arcs. Each variable has a unique name and a frame-like structure consisting of slots represented by
pairs attri bute – attri bute va lue (WSM L v ariable). Suc h a var iable corr esponds t o a notion of co mpound
molecule in WSML [de Bruijn 2005] consisting of an a-molecule of type Vari memberOf Γ and conjunction of

International Journal "Information Theories & Applications" Vol.13

171

b-molecules of type Vari [p1 hasValue Varj1] and Vari [pk hasValue Varkl] respectively, where Vari,Varj1, Varkl
are WSM L va riables an d Γ is a conc ept from a give n WSML ont ology. Gra phically eac h var iable is
represented as a rectangle with a header containing variable name and type (i.e. the n ame of concept, which
has been used for crating the variable), and a row of named slots.

• Intermediate nodes called relations. Such a node corresponds to a WSML statment r(Par1, …, Parn), where r
is a relation from a given ontology, and Par1, …, Parn are WSML variables – relation parameters. Graphically
each relation node is represented as a rectangle with a header containing relation name and a row of relation
parameters.

• Intermediate nodes ca lled operators t hat c orrespond to W SML logical o perators AND, OR an d NOT. Eac h
node can have only one incoming arcs an d can have one (for NOT) or several (two or more – for AND and
OR) o utgoing arcs. Gra phically e ach operator is r epresented a s a n ov al, c ontaining th e n ame of th e
corresponding operation.

• Terminal no des (leav es) th at can not h ave any out going arcs. Such te rminal n odes are ca lled instances.
Each instance corresponds to the WSML statem ent Var hasValue Instance, where Var is a WSML vari able
and Instance is an in stance of a co ncept from a g iven ontology. Graphically an instance is re presented by a
rectangle with header containing the name of concept, an instance of which the Instance is, and the concrete
name of the instance.

Directed arcs of a gr aph are call ed connections. A con nection outgoing from a var iable or r elation has th e
meaning of refining the variable (or relation parameter) value and corresponds to WSML l ogical operator AND. A
connection outgoing from an operator has the meaning of a pointer to the operator operand.
The proposed model a llows to cons ider the process of axiom creation as a formal pr ocess of DAG exp anding
(and ed iting) and to formu late formal rules for check ing syntacti c and semantic (in relation to giv en ontologies)
correctness of constructed axioms.
An advantage of the proposed model is ability to separate logical AND (represented as the model AND operator)
used by th e a xiom c reator f or d escribing l ogical co njunction at a high lev el of a bstraction fr om a “hidden”,
“technical” AND (re presented by t he mo del c onnection) use d fo r sp ecifying m ore c oncrete values of var iable
attributes. As a result, the e xplicit logic conjunction may be used in th e model only as a part of a p ath starting
from the axiom root and ending in an intermediate variable node or in a te rminal node. This has a very important
consequence for th e se mantic serv ice d iscovery pr ocess. First, if a r epresented in suc h a way axiom i s
interpreted as a user goal (i.e. a request for desired service functionality), the proposed mechanism gives a very
simple method for splitti ng the goal to sub-goals. And second, if suc h an axiom is i nterpreted for example as a
service post-condition, t he proposed m echanism a llows eas ily determining if th e servi ce offers a si ngle
functionality of a set of different functionalities.

An Informal Model of the Axiom Construction Process
A process of a xiom creation may be considered as a re petitive process consisting of co mbination of three ma in
logical steps – def inition, refinement (or specialization) and logical development (or elaboration). The definition
step is used for defining some general concepts needed for describing the meaning of axioms. The refinement
step is used for more concrete specification of desired properties of such concepts. Su ch a step may be seen as
specialization of too g eneral conc epts introduced ea rlier. The logical development ste p co nsists of el aborating
logical structure of th e axioms, which may be achieved by combination of g eneral concepts by means of lo gical
operators AND, OR and NOT.
Syntactic a nd semantic c hecks ap plied d uring the all phases of ax iom creati on process ar e b ased on th e
following properties:
• Subsumption r elation between d ifferent e lements of o ntologies: suc h a rel ation determines c ompatibility

between axiom variables;
• Acyclic property of the selected model (DAG) for representing an axiom;
• Uniqueness of the names of variables used for constructing an axiom (if contrary is not explicitly specified);
• Arity of logical operators used for constructing an axiom.

International Journal "Information Theories & Applications" Vol.13

172

Definition Step
During the definition step the nature of a m ain variable defining the axiom is specif ied. Such a st ep is equivalent
to creating a WSML state ment ?Concept memberOf Concept, which means that the WSML var iable ?Concept
copying the structure of the Concept from a given WSML ontology is created. Attributes of the concept, which are
“inherited” by the axiom model variable, are named variable attributes. By default the values of such attributes are
set to free WSML variables with type defined by the definition of such attributes in the corresponding ontology.
It sho uld b e m entioned th at i n th e definition ste p every c oncept, inst ance or re lation f rom an arbitrary WS ML
ontology may be used as a template for creating the corresponding axiom variable.

Refinement Step
The refinement step is a recursive procedure of refining values of some attributes (relation parameters) defined in
previous step(s). In terms of our model each cycle in such a step means an expansion of an existing non-terminal
node – var iable (or rel ation). More prec isely that mea ns a sel ection of an attrib ute from a list of ava ilable
attributes of an existing axiom variable, and binding its value (which in this moment is a free WSML variable) to
another (new or existing) node of the axiom model. The main problem is to e nsure semantic correctness of t he
resulted (ext ended) l ogical expression. S uch c orrectness is ac hieved by a pplying expl icit ru les determ ining
permitted expansion of a given node.
An attribute value1 of an axiom variable may be refined by binding it to:
A. A new variable produced from the ontology concept specified by ofType or impliesType WSML statement for

the corresponding attribute (default binding);
B. A n ew variable pr oduced fro m a s ubconcept of t he ontology co ncept s pecified by ofType or impliesType

WSML statement for the corresponding attribute;
C. A n ew term inal node – i nstance produced fro m a n instance of th e corr esponding c oncept or of it s

subconcepts;
D. A relation which parameters are compatible with the type of the selected attribute;
E. An ex isting axiom var iable, which are compatible with the type of th e selected attribute and which does not

lead to creation of cycles in the model.
F. A shared variable with compatible type.
G. A complex logical expression composed from all mentioned above items by logical operators OR and NOT.

Logical Development Step
This st ep of t he a xiom c onstruction process co nsists in a dding logical o perations (AND, OR an d NOT) to the
current l ogical expr ession. Suc h o perators may b e a dded to c onnect two i ndependently co nstructed l ogical
expressions or be ins erted directly into already constructed expressions. In both ca ses it leads to cre ating more
complex logical expressions.
A logical operator can be inserted only into a c onnection that h as been already created as a part of the axiom
model. S uch an insertion “splits” the co nnection o n tw o p arts, w hich are linked by ne wly inserted logical
operation. Since operators AND and OR should have at least to operands, the addition of such logical operators
requires creating the second operand, which can be either a new or an e xisting axiom element. The operation is
controlled by c ontext-dependent sema ntics and syntactic checks so diff erent logic al operators c an be ins erted
only in some allowed places in the ax iom. Such checks analyze the whole context of the ax iom, which in s ome
cases leads for necessity to verify the pat h from the ed ited element till the starti ng axiom element – the ax iom
Root.
It should be underlined t hat during th is step the user is constructing t he axiom by l ogical combination of m ain
axiom ob jects defi ned in th e prev ious ste ps. In other wo rds, the lo gical oper ators ar e used n ot for refin ing or
clarifying t he meaning of some p arameters of already defined objects, but f or c omplicating th e axi om by
specifying the logical connections between some axiom parts which are independent in their meaning.

1 The same rules are applicable to every unbound relation parameter.

International Journal "Information Theories & Applications" Vol.13

173

Functional Architecture
The fu nctional archit ecture o f the Axiom E ditor provides a com plete se t of functio ns (op erations) n eeded fo r
graphical constructing WSML logical expressions. The top-level functional components of the Editor are:
• Ontology Store – a set of operations for maintaining ontologies used for creating and editing axioms.
• Axiom Model Generator – a set of operations for graphical constructing and editing an axiom.
• Axiom Text Generator – th e module prov iding automatic generation of the WSM L text corresponding to the

current graphical model of an axiom.
• Axiom Persistence – the module providing saving and retrieving axioms as well as all information needed for

axiom creation.

Ontology Store
The Ontology Store is an in-memory set of ontologies providing the semantic elements for co nstructing axioms.
These elements are concepts, attributes, instances, relations and parameters1. The Ontology Store is global to all
axioms opened in the Editor.
In order to be used in the Axiom Editor ontologies should be defined in the WSML language. To start c reating a
new axiom at l east one ontology is needed. The Axiom Editor reads ontologies from *.wsml files. The pasring of
these files is done by a standard WSML parser which is a part of the WSMO4J API [WSMO4J 2005].
A tree structure is us ed for graphical re presentation of ont ologies. Si nce *.wsm l fil es are flat (th ey hav e no
hierarchical structure), additional information is obtained from the WSMO4J API to c onstruct a tree from the l ists
of con cepts, rel ations etc. T he API pr ovides inf ormation abo ut co ncept and r elation in heritance by a spec ial
SuperConcepts property that every ontology element possesses. It sh ould be noted that this property is a set,
which means that one element can have more than one parent in the hierarchy. In tree-structured v isualization
every child element appears as man y times in the tree as ther e are co ncepts in its SuperConcepts property. A
visualized ontology may be b rowsed and all properties associated w ith each ontology element are shown in a
special window.
Ontologies m ay be loaded manually by t he user fr om the file system or loaded aut omatically on- demand.
Ontologies describe inheritance between concepts. A c oncept usually has one or more super-concepts. Super-
concepts m ay be defined i n ot her ontologies. For example th e c oncept “Person”, defi ned in t he o ntology
“Sociology”, may ha ve th e conc ept “H uman”, defi ned in t he o ntology “B iology” as its sup er-concept. In suc h a
case, the “S ociology” ont ology dec lares “Biology” as a n imported ontology. The “load imported ontology”
operation ca n be a pplied t o such c oncepts dis played i n the Onto logy Vie w wh ich are defined i n imp orted
ontologies. Since an im ported ontology is de clared with its id entifier, the U RI is used to l ocate that ont ology and
load it to th e Ontology Stor e. The co ncept is a utomatically lo cated in the new tre e, the c oncept’s attrib utes
become available so variables of that type can be now created.
A concept inherits all its super-concepts’ attributes. If a super-concept is defined in an imported ontology, which is
not currently loaded to the Ontology Store, then the super-concept’s attributes are unavailable. The mechanism
for o n-demand lo ading of i mported ontologies pr ovides a utomatic updating co ncepts’ attributes inherited fr om
super-concepts belonging to such ontologies.

Axiom Model Generator
As it has been already mentioned, the main concern of the Axiom Editor is to guarantee the semantic consistence
of the constructed logical expressions since the users of this tool are assumed to be non-specialists in the f irst-
order logic. Such a consistence is achieved by a semantically-aware construction process, in each step of which
the user is al lowed to perf orm only s uch operations that are co nsistent with th e already constructed part of th e
axiom.

1 Functions are not supported in the current implementation of the Capability Editor. Such elements of a WSML
ontology as non-functional properties and ontology axioms are shown in the Editor but currently are not used in
the process of axiom constructing.

International Journal "Information Theories & Applications" Vol.13

174

Two modes for axiom construction are available:
• Standard mode involves only extending an existing part of the a xiom by selecting semantically compatible

elements from context-sensitive menus. This method is construction-driven and is suitable for novice users.
• Advanced mode allows a dding is olated el ements to the mode lling are a, whi ch ca n be l ater co mbined in

various semantically correct ways. This allows advanced users to be more efficient.
The a xiom co nstruction pr ocess b egins by sele cting a c oncept from Ontol ogy Stor e. This co ncept i s use d t o
create the first variable in the axiom model. The variable’s type is equal to the selected concept. Automatically,
just after adding the first variable to the model, it is connected to the Axiom root element “Start”.
From th is m oment on, th e construction pr ocess c ontinues by performing semantically-correct op erations on
different el ements in th e ax iom mo del wh ich ca n be: v ariables, var iable attrib utes, instan ces, co nnections,
operators, relations and relation parameters. A summary of the most important semantically-correct operations in
Axiom Model Generator are shown in Table 1.

Operations for creating elements of Axiom Model
Create a variable Creates a n ew variable in th e graphical axiom modelling area (window). The type of th e

variable is s elected by th e user fro m Ont ology St ore. The n ame of the vari able is
automatically generated fro m the n ame of the se lected c oncept guaranteeing the
uniqueness of variable names across the axiom.

Create an operator Creates a new logi cal operator of a sp ecified type in th e modelling area. The op erator’s
type is selected from the menu – it can be OR, AND or NOT.

Create an instance Adds an instance to th e gr aphical mo delling ar ea. Th e u ser is g iven th e op portunity to
select the instance from Ontology Store.

Create a connection
(advanced mode)

Creates a ne w connection between two elements placed on the modelling area. The user
selects a s ource and a target element for the new connection. The s election is restr icted
only to semantically-compatible source and target elements.

Create a relation Adds a rel ation to the mo delling ar ea. Th e use r is giv en the o pportunity to se lect an
arbitrary relation from Ontology Store.

Operations on Variables
Rename a variable The u ser c an cha nge th e automatically generated v ariable n ame as lo ng as th e

uniqueness of nam es i s n ot viol ated. Th e Axi om E ditor takes c are of ch anging t he
variable’s name from the old one to the new at all its occurrences in the model.

Involve a variable in
a relation
(Advanced mode)

A vari able t hat has b een already p laced a t the ax iom m odelling area may b e furt her
involved in a relation also presented at th is area. More exactly, such an operation creates
a c onnection l inking the var iable with a p arameter of th e rel ation. O peration is p ossible
only when the variable and the selected relation parameter have compatible types.

Delete variable Deletion of a vari able l eads to de letion of all i ncoming and o utgoing con nections of the
selected variable in the model, thus keeping the axiom consistent.

Operations on attributes of a variable
Refine an attribute
by a variable

Creates a new vari able at th e mo delling area and l inks t he s elected attribute v alue t o it
with a connection. The meaning of the operation is that the value of the attribute is equal to
this new variable. The name of the ne w variable is automatically set equal to the nam e of
the selected attribute value being refined.

Refine an attribute
by an instance

Adds to th e c urrent ax iom a ne w i nstance sel ected from an ontology and l inks it to t he
attribute value to be refined by a c onnection. The user i s g iven the opportunity to s elect
such an i nstance from a sp ecial dialog window containing a subs et of in stances from t he
Ontology Store. More exactly, in order to preserve the semantic consistence of the ax iom,
the se lection is limited only to those instances, whose concepts are equal to or ar e sub-
concepts of the concept specified as the type of the chosen attribute.

International Journal "Information Theories & Applications" Vol.13

175

Refine an attribute
by involving into a
relation

A val ue of an attrib ute of a varia ble from the curr ent axiom m ay b e furth er refi ned by
specifying t hat it is i nvolved i n a r elation defined e ither i n the Ontology Store or a lready
placed at the modelling area. Selecting the attribute to be refined restricts a set of relations
that may be applied to the value of such an attribute – that are all re lations, which have
parameters with types compatible with the type of that attribute.

Operations on relations and relation parameters
Refine a relation
parameter

A set of available operations on r elation parameters is practi cally th e sam e as th e
operations w orking o n val ues of attrib ute variables (s ee “Op erations on attri bute of a
variable”).

Delete relation Deletion of a relation leads to deletion of all its i ncoming and outgoing connections in the
model, thus keeping the axiom consistent.

Operations on operators
Change operator
type

Is used for changing the type of an operator selected from the modelling area.

Delete operator Potentially leads to cre ating some orphaned axiom model elements. In ord er to pr eserve
the semantic consistence of t he axiom, such “orphaned elements” are not included in the
axiom text generation.

Add operand Adds a new operand to a selected operator placed at the modelling area and links them by
a con nection. The ne w o perand c an b e eithe r an e xisting mod el element from t he
modelling area (variable, relation, instance, etc.) or a ne w element that can b e created by
means of alr eady described op erations, w hich th e us er may s elect fro m rig ht-click s ub-
menu.

Operations on instances
Edit an instance of
WSML built-in data
types

Can be performed on such instances of the axiom model which have a WSML built-in data
type or a subtype of s uch type. The value of these instances is entered by t he user and
can be edited later.

Delete an instance Leads to deletion of the instance along with all connections incoming to it from the model,
thus keeping the axiom consistent.

Operations on Connections
Insert an alternative The ma in mean ing of a connection in the axiom model is that the ta rget e lement o f the

connection is used as a r efinement of its so urce element. It is nat ural to a llow the user to
define an alternative (or several alternatives) for such a ref inement. In order to insure that
such an operation will be meaningful, it is necessary to restrict its application domain.

Insert an AND
operator

Aims at allowing th e us er t o sp ecify explicitly l ogical co njunction of two a xiom mo del
elements a nd is als o used d uring th e “Logical development” phase of t he axiom m odel
construction process operator as its second operand.

Insert a NOT
operator

Inserts a NOT operator in the middle of any connection.

Reconnect a
source/target
element (Advanced
mode)

Moves the star ting/ending point of the con nection to another element in the Axiom Model.
In ord er to p reserve th e se mantic co nsistence of th e axiom, the operation ca n b e
performed only if the new source/target element is semantically-compatible with the type of
the edited connection.

Table 1. The most important semantically-correct operations in the Axiom Model Generator

International Journal "Information Theories & Applications" Vol.13

176

Axiom Text Generator
The Axiom Text Generator dynamically generates text representation of the graphical axiom model in the human-
readable WS ML-Core synt ax. That a llows to ob serve and c ontrol (f or exp erience users) th e r esult of e ach
operation accomplished on the ax iom model. It shoul d be mentioned that onl y el ements of the m odelling area
having c onnections w ith t he root elements of th e a xiom model (Start element) are co nsidered a s p arts of t he
current axiom and, hence, are mapped to its WSML text representation.

Axiom Persistence
Creating a semantic Web service is a rather complex process, which may need a lot of time, so it is necessary to
have a module for stori ng al l intermediate results and supplemented data structures facilitating such a process.
The Ax iom Pe rsistence is s uch a m odule t hat is used f or storin g and r etrieving axioms cre ated by the Ax iom
Editor. Since an axiom has no meaning w ithout the ontologies used for its creati on, loading an ax iom leads to
automatic loading of all ontologies associated with it.
Axioms are persisted in binary files which can only be opened by the Axiom Editor. Besides the semantic content,
all elements store th eir g raphical co ordinates so th at the grap hical mo del of an axiom can b e ful ly restore d.
During the loading process different validations are made. If any of them fails, an error message is displayed and
the axiom file is not loaded. For implementation of these operations Java serialization is extensively used.
Currently the Axiom Editor uses a pr edefined directory c alled the Ontology File Store in the file system to store
*.wsml files containing ontologies. Every ontology has a unique identifier, which is a URI written in the *.wsml file
defining the ontology. When an ontology, whose identifier is kno wn, must be lo aded, the Axi om Editor searches
the Ontology File Store for that identifier and loads the respective ontology to the Ontology Store.

Graphical User Interface

Figure 1. An overview of the Axiom Editor workspace

International Journal "Information Theories & Applications" Vol.13

177

The Axi om Ed itor run s as an Eclips e pl ug-in. Eclip se [De s Rivie res a nd Wiega nd 2004] is a free, i ntegrated
development environment (IDE) which can host different third-party applications, providing a unified visual outlook
and better integration between them.
The Axiom Editor is bundled as a stan dalone application on top of the Ri ch Client Platform (RCP). The RCP is a
compact Ec lipse cor e w hich can a lso host plu g-ins. It provi des a start up e xecutable whic h ru ns a lig htweight
version of the IDE and automatically loads the appropriate plug-in (in this case – the Axiom Editor).
An overview of the Ax iom Editor workspace is shown on Figure 1. The screen is divided in several major areas:
Ontology View, Modelling Area, Properties View, Outline View, Thumbnail + zoom controls and Text View.
You can find a more detailed description of the workspace areas in Table 2.

Workspace
area

Description

Ontology
View

Contains a ll loaded WSMO o ntologies (Ontology Store). At the top of the vi ew there is a list of
tabs used to switch between different ontologies.

Ontology Tree The centre part of th e ontology view containing all ontology elements, structured in a hierarchy.
The no des represent: concepts, attributes, instances; relations, parameters,
relation-instances; non-functional properties, namespaces; imported ontologies,
used mediators; defined ontology axioms.

Ontology
Properties

The bottom part of the Ontol ogy View section. It c ontains details in plain text abo ut the selected
element in the Ontology Tree such as the non-functional properties of a concept, the definition of
an ontology axiom etc.

Modelling
Area

Contains the graphical representation of the axiom model. The mo del is d isplayed as a dir ected
acyclic graph, reflecting t he tree struct ure of th e logic al expression. This is wher e the us er
creates axiom elements out of ontology elements and adds dependencies between them through
the use of semantically consistent operations.
Axiom el ements are: Variables, Instances, Relations, Logical Operators, The
start el ement. De pendencies bet ween th ese elements are introduced t hrough t he us e of
connections displayed as directed arrows.

Properties
View

Displays the properties of the selected element in the Modelling Area. Different kinds of elements
have different sets of properties – some of them read-only, others - editable.

Outline View

Displays a classical tree representation of the logical expression. The branches of the tree can be
expanded or collapsed t o help t he vi ewer b etter perceive th e high-level str ucture of th e
expression. It als o allows for easier navigation among the elements. If an el ement is s elected in
the Outline View, it becomes also selected in the Modelling Area and its properties are displayed
in the Properties View.

Thumbnail A mini-map of the whole modelling area. On large models it helps the user to not lose the whole
picture, makes navigation easier and always highlights the part of the model being displayed in
the Modelling Area.

Zoom
Controls

Provide a way of gettin g a la rger part of th e model into view by s electing zoom-factor less tha n
100%. If the user se lects a zoom-factor above 100% details can be clearly seen and elements
can be more precisely aligned in the Modelling Area.

Text View

Contains t he WSML r epresentation of th e a xiom. It i s a utomatically refre shed whenever
something changes in the graphical axiom model to reflect the current state of the expression. It
is useful for a dvanced users who want to always know the exact impact of the ir act ions on th e
capabilities of the web-service they are designing.

Table 2. Description of Axiom Editor Workspace areas

International Journal "Information Theories & Applications" Vol.13

178

Conclusion
The Ax iom Ed itor is i mplemented in J 2SDK 1.4.2 r untime env ironment and us es basic pl atform c omponents,
plug-in i nfrastructure, gr aphical u ser i nterface co mponents (men us, b uttons, tre e vi ews, eve nt h andling) fro m
Eclipse RC P (Ric h Cl ient Platfor m). For dev elopment of visu al designers the E clipse GEF (Graphical
Environment Frame work) is used. Acc ess to WSMO-b ased ontologies i s acco mplished via WSMO4J (WSMO
API).
Main directions or future development of the Editor are as follows:
• Transformation of the Axiom Editor to an i ntegrated Se rvice C apability Edit or by exte nding it with s ome

customized m odules of WSMO Stud io [[WSMO Stu dio 20 05] and i ntegrating with t he A xiom C ase-base
Memory.

• Extending a pplication domain of the Axi om Editor by expanding th e ra nge o f log ical ope rations u sed (e.g.
including implies, impliedBy, :- and ! operators). As a result the Editor could be used not only for creating the
SWS capabilities but for constructing axioms in WSML ontologies as well.

Acknowledgement
This work is carried out under EU Project INFRAWEBS - IST FP62003/IST/2.3.2.3 Research Project No. 511723.

Bibliography
[Agre et al. 2005] G. Agre, T. Atanasova, J. Nern. Migrati ng from Web Services to Semantic W eb Services: IN FRAWEBS

Approach. In: Proceeding of Eleventh Annual Scientific Conference on Web Technology, New Media, Communications
and Telematics Theory, Methods, Tools and Applications, EUROMEDIS’2005, April 11-13, 2005, Toulouse, France,
221-225.

[de Bruijn et al. 2005] J. de Bruijn, H. Lausen, R. Krummenacher, A. Polleres, L. Predoiu, M. Kifer and D. Fensel. D16.1v0.2
The Web Service Modeling Language WSML, WSML Final Draft 20 March 2005, available at:
http://www.wsmo.org/TR/d16/d16.1/v0.2/20050320/.

[Des Rivieres and Wiegand 2004] J. Des Rivieres and J. Wiegand. Eclipse: A platform for inte grating development tools.
IBM Systems Journal, 43(2), 2004.

[Enderton, 2002] H. B. Enderton. A Mathematical Introduction to Logic (2nd edition). Academic Press, 2002.
[Gruber 1993] T. Gruber: A tra nslation approac h to portable ontology specif ications, Knowledge Acquisition, 5:199-220,

1993.
[Kifer et al. 1995] M. Kifer, G. Lausen, and J. Wu: Logical foundations of object-oriented and frame-based languages. Journal

of the ACM, 42:741-843, July 1995.
[Nern et al. 20 04] H.-Joachim Nern, G. Ag re, T. Atanansov a, J. Saarela. System Fr amework for Gene rating Open

Development Platforms for Web-Service Applica tions Using Semantic Web Technologies, Distrib uted Decision Support
Units and Multi-Agent-Systems - INFRAWEB S II. WSEAS TRANSACTIONS on INFORMATION SCIENCE and
APPLICATIONS, ISSN 1790-0832, Issue 1, Volume 1, July 2004, 286-291.

[OWL-S 2004] The OWL Services Coalition: OWL-S: Semantic Markup for Web Services, version 1.0; available at
http://www.daml.org/services/owl-s/1.0/owl-s.pdf

[Protégé 2005] http://protege.stanford.edu/index.html
[Roman et al. 2005] D. Roman, H. Lausen, U. Keller, J. de Bru ijn, Ch. Bussler, J. Domingue, D. Fensel, M. Kifer, J. Kopecky,

R. Lara, E.l Oren, A.l Po lleres, M. Stollberg. D2v1.1. Web Service Modeling Ontology (WSMO) - WSMO Final Draft 10
February 2005, http://www.wsmo.org/TR/d2/v1.1/

[WSMO4J 2005] http://wsmo4j.sourceforge.net/.
[WSMO Studio 2005] http://www. wsmostudio.org.

Authors’ Information

Gennady Agre – Institute of Information Technologies – Bulgarian Academy of Sciences, Acad. G. Bonchev St.,
block 29A, Sofia 1113, Bulgaria;
Petar Kormushev – Sofia University St. Kliment Ohridski;
Ivan Dilov – Sofia University St. Kliment Ohridski;

