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Abstract

Discrete-action algorithms have been central to numerous
recent successes of deep reinforcement learning. However,
applying these algorithms to high-dimensional action tasks
requires tackling the combinatorial increase of the number
of possible actions with the number of action dimensions.
This problem is further exacerbated for continuous-action
tasks that require fine control of actions via discretization.
In this paper, we propose a novel neural architecture fea-
turing a shared decision module followed by several net-
work branches, one for each action dimension. This approach
achieves a linear increase of the number of network outputs
with the number of degrees of freedom by allowing a level of
independence for each individual action dimension. To illus-
trate the approach, we present a novel agent, called Branch-
ing Dueling Q-Network (BDQ), as a branching variant of
the Dueling Double Deep Q-Network (Dueling DDQN). We
evaluate the performance of our agent on a set of challeng-
ing continuous control tasks. The empirical results show that
the proposed agent scales gracefully to environments with in-
creasing action dimensionality and indicate the significance
of the shared decision module in coordination of the dis-
tributed action branches. Furthermore, we show that the pro-
posed agent performs competitively against a state-of-the-
art continuous control algorithm, Deep Deterministic Policy
Gradient (DDPG).

Introduction
Combining the recent advances in deep learning techniques
(LeCun, Bengio, and Hinton 2015; Schmidhuber 2015;
Goodfellow, Bengio, and Courville 2016) with reinforce-
ment learning algorithms (Bertsekas and Tsitsiklis 1996;
Sutton and Barto 1998; Szepesvari 2010) has proven to be
effective in many domains. Notable examples include the
Deep Q-Network (DQN) (Mnih et al. 2013; 2015) and Al-
phaGo (Silver et al. 2016; 2017). The main advantage of
using artificial neural networks as function approximators
in reinforcement learning is their ability to deal with high-
dimensional input data by modeling complex hierarchical or
compositional data abstractions and features.

Despite these successes, which have enabled the use of
reinforcement learning algorithms in domains with unpro-
cessed, high-dimensional sensory input, the application of
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Figure 1: A conceptual illustration of the proposed action
branching network architecture. The shared network module
computes a latent representation of the input state that is then
passed forward to the several action branches. Each action
branch is responsible for controlling an individual degree of
freedom and the concatenation of the selected sub-actions
results in a joint-action tuple.

these methods to high-dimensional, discrete action spaces
remains to suffer from the same issues as in tabular re-
inforcement learning—that is, the number of actions that
need to be explicitly represented grows exponentially with
increasing action dimensionality. Formally, for an envi-
ronment with an N -dimensional action space and nd dis-
crete sub-actions for each dimension d, using the existing
discrete-action algorithms, a total of

∏N
d=1 nd possible ac-

tions need to be considered. This can rapidly render the
application of discrete-action reinforcement learning algo-
rithms intractable to domains with multidimensional action
spaces, as such large action spaces are difficult to explore
efficiently (Lillicrap et al. 2016). This limitation is a sig-
nificant one as there are numerous efficient discrete-action
algorithms whose applications are currently restricted to do-
mains with relatively small discrete action spaces. For in-
stance, Q-learning (Watkins and Dayan 1992) is a powerful
discrete-action algorithm, with many extensions (Hessel et
al. 2017), which due to its off-policy nature can, in prin-
ciple, achieve better sample efficiency than policy gradient
methods by reusing transitions from a replay memory of past
experience transitions or demonstrations (Gu et al. 2016;
2017).

Given the potential of discrete-action reinforcement learn-
ing algorithms and their current limited application, in this
paper we introduce a novel neural architecture that enables
the use of discrete-action algorithms in deep reinforcement



learning for domains with high-dimensional discrete or con-
tinuous action spaces. The core notion of the proposed ar-
chitecture is to distribute the representation of the action
controllers across individual network branches, meanwhile,
maintaining a shared decision module among them to en-
code a latent representation of the input and help with the
coordination of the branches (see Figure 1). The proposed
decomposition of the actions enables the linear growth of
the total number of network outputs with increasing action
dimensionality as opposed to the combinatorial growth in
current discrete-action algorithms. This simple idea can po-
tentially enable a spectrum of fundamental discrete-action
reinforcement learning algorithms to be effectively applied
to domains with high-dimensional discrete or continuous ac-
tion spaces using neural network function approximators.

To showcase this capability, we introduce a novel agent,
called Branching Dueling Q-Network (BDQ), which is a
branching variant of the Dueling Double DQN (Dueling
DDQN) (Wang et al. 2016). We evaluate BDQ on a variety
of complex control problems via fine-grained discretization
of the continuous action space. Our empirical study shows
that BDQ can scale robustly to environments with high-
dimensional action spaces to solve the benchmark domains
and even outperform the Deep Deterministic Policy Gradient
(DDPG) algorithm (Lillicrap et al. 2016) in the most chal-
lenging task with a corresponding discretized combinatorial
action space of approximately 6.5 × 1025 action tuples. To
solve problems in environments with discrete action spaces
of this magnitude is a feat that was previously thought in-
tractable for discrete-action algorithms (Lillicrap et al. 2016;
Schulman et al. 2017). In order to demonstrate the vital role
of the shared decision module in our architecture, we com-
pare BDQ against a completely independent variant which
we refer to as Independent Dueling Q-Network (IDQ)—
an agent consisting of multiple independent networks, one
for each action dimension, and without any shared param-
eters among the networks. The results show that the per-
formance of IDQ quickly deteriorates with increasing ac-
tion dimensionality. This implies the inability of the agent
to coordinate the independent action decisions across its
several networks. This could be due to any of the several
well-known issues for independent fully-cooperative learn-
ing agents: Pareto-selection, non-stationarity, stochasticity,
alter-exploration, and shadowed equilibria (Matignon, Lau-
rent, and Le Fort-Piat 2012).

Partial distribution of control, or action branching as we
call it, is also found in nature. Octopuses, for instance, have
complex neural systems where each arm is able to function
with a degree of autonomy and even respond to stimuli af-
ter being detached from the central control. In fact, more
than half of the neurons in an octopus are spread throughout
its body, especially within the arms (Godfrey-Smith 2016).
Since the octopuses’ arms have virtually unlimited degrees
of freedom, they are highly difficult to control in compari-
son to jointed limbs. This calls for the partial delegation of
control to the arms in order to work out the details of their
motions themselves. Interestingly, not only do the arms have
a degree of autonomy, they have also been observed to en-
gage in independent exploration (Godfrey-Smith 2016).

Related Work
To enable the application of reinforcement learning al-
gorithms to large-scale, discrete-action problems, Dulac-
Arnold et al. (2015) propose the Wolpertinger policy ar-
chitecture based on a combination of DDPG and an ap-
proximate nearest-neighbor method. This approach lever-
ages prior information about the discrete actions in order
to embed them in a continuous space upon which it can
generalize, meanwhile, achieving logarithmic-time lookup
complexity relative to the number of actions. Due to the
underlying algorithm being essentially a continuous-action
algorithm, this approach may be unsuitable for domains
with naturally discrete action spaces where no assumption
should be imposed on having associated continuous space
correlations. Also, this approach does not enable the appli-
cation of discrete-action algorithms to domains with high-
dimensional action spaces as it relies on a continuous-action
algorithm.

Concurrent to our work, Metz et al. (2017) have devel-
oped an approach that can deal with problem domains with
high-dimensional discrete action spaces using Q-learning.
They use an autoregressive network architecture to sequen-
tially predict the action value for each action dimension.
This requires manual ordering of the action dimensions
which imposes a priori assumptions on the structure of the
task. Additionally, due to the sequential structure of the
network, as the number of action dimensions increases, so
does the noise in the Q-value estimations. Therefore, with
increasing number of action dimensions, the Q-value esti-
mates on the latter layers may become too noisy to be use-
ful. Due to the parallel representation of the action values
or policies, our proposed approach is not prone to cumula-
tive estimation noise with increasing number of action di-
mensions and does not impose manual action factorization.
Furthermore, our proposed approach is much simpler to im-
plement as it does not require advanced neural network ar-
chitectures, such as recurrent neural networks.

A potential approach towards achieving scalability with
increasing number of action dimensions is to extend deep re-
inforcement learning algorithms to fully-cooperative multi-
agent settings in which each agent—responsible for control-
ling an individual degree of freedom—observes the global
state, selects an individual action, and receives a team re-
ward common to all agents. Tampuu et al. (2017) combine
DQN with independent Q-learning, in which each agent in-
dependently and simultaneously learns its own action-value
function. Even though this approach has been successfully
applied in practice to domains with two agents, in princi-
ple, it can lead to convergence problems (Matignon, Laurent,
and Le Fort-Piat 2012). In this paper, we empirically inves-
tigate this scenario and show that by maintaining a shared
set of parameters among the action branches, our proposed
approach is able to scale to high-dimensional action spaces.

Action Branching Architecture
The key insight behind the proposed action branching ar-
chitecture is that for solving problems in multidimensional
action spaces, it is possible to optimize for each action di-
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Figure 2: A visualization of the specific action branching network implemented for the proposed BDQ agent. When a state is
provided at the input, the shared decision module computes a latent representation that is then used for evaluation of the state
value and the factorized (state-dependent) action advantages on the subsequent independent branches. The state value and the
factorized advantages are then combined, via a special aggregation layer, to output the Q-values for each action dimension.
These factorized Q-values are then queried for the generation of a joint-action tuple. The weights of the fully connected neural
layers are denoted by the gray trapezoids and the size of each layer (i.e. number of units) is indicated.

mension with a degree of independence. If executed appro-
priately, this altered perspective has the potential to trigger
a dramatic reduction in the number of required network out-
puts. However, it is well-known that the naı̈ve distribution
of the value function or the policy representation across sev-
eral independent function approximators is subject to nu-
merous challenges which can lead to convergence prob-
lems (Matignon, Laurent, and Le Fort-Piat 2012). To address
this, the proposed neural architecture distributes the repre-
sentation of the value function or the policy across several
network branches while keeping a shared decision module
among them to encode a latent representation of the com-
mon input state (see Figure 1). We hypothesize that this
shared network module, paired with an appropriate train-
ing procedure, can play a significant role in coordinating the
sub-actions that are based on the semi-independent branches
and, therefore, achieve training stability and convergence to
good policies. We believe this is due to the rich features in
the shared network module that is trained via the backprop-
agation of the gradients originating from all the branches.

To verify this capability, we present a novel agent that is
based on the incorporation of the proposed action branch-
ing architecture into a popular discrete-action reinforcement
learning agent, the Dueling Double Deep Q-Network (Duel-
ing DDQN). The proposed agent, which we call Branching
Dueling Q-Network (BDQ), is only an example of how we
envision our action branching architecture can be combined
with a discrete-action algorithm in order to enable its direct
application to problem domains with high-dimensional, dis-
crete or continuous action spaces. We select deep Q-learning
(also known as DQN) as the algorithmic basis for our proof-
of-concept agent as it is a simple, yet powerful, off-policy
algorithm with an excellent track record and numerous ex-
tensions (Hessel et al. 2017).

While our experiments focus on a specific algorithm (i.e.
deep Q-learning), we believe that the empirical verification
of the aforementioned hypothesis, suggests the potential of
the proposed approach in enabling the direct application of
a spectrum of existing discrete-action algorithms to environ-
ments with high-dimensional action spaces.

Branching Dueling Q-Network
In this section, we begin by providing a brief overview of
a select set of available extensions for DQN that we incor-
porate into the proposed BDQ agent. We then describe the
details of the proposed agent, including the specific methods
that were used to adapt the DQN algorithm and its selected
extensions into our proposed action branching architecture.
Figure 2 demonstrates a pictorial view of the BDQ network.

Background
The following is an outline of three existing key innovations,
designed to improve upon the sample efficiency and policy
evaluation quality of the DQN algorithm.

Double Q-learning. Both tabular Q-learning and DQN
have been shown to suffer from the overestimation of the
action values (van Hasselt 2010; van Hasselt, Guez, and Sil-
ver 2016). This overoptimism stems from the fact that the
same values are accessed in order to both select and evaluate
actions. In the standard DQN algorithm (Mnih et al. 2013;
2015), a previous version of the current Q-network, called
the target network, is used to select the next greedy action
involved in the Q-learning updates. To address the overop-
timism in the Q-value estimations, van Hasselt, Guez, and
Silver (2016) propose the Double DQN (DDQN) algorithm
that uses the current Q-network to select the next greedy ac-
tion, but evaluates it using the target network.

Prioritized Experience Replay. The experience replay
enables online, off-policy reinforcement learning agents to
reuse past experiences or demonstrations. In the standard
DQN algorithm, the experience transitions were sampled
uniformly from a replay buffer. To enable more efficient
learning from the experience transitions, Schaul et al. (2016)
propose a framework for prioritizing experience in order to
replay important experience transitions, which have a high
expected learning progress, more frequently.



Dueling Network Architecture. The dueling network ar-
chitecture (Wang et al. 2016) explicitly separates the rep-
resentation of the state value and the (state-dependent) ac-
tion advantages into two separate branches while sharing
a common feature-learning module among them. The two
branches are combined, via a special aggregating layer, to
produce an estimate of the action-value function. By train-
ing this network with no additional considerations than those
used for the DQN algorithm, the dueling network automati-
cally produces separate estimates of the state value and ad-
vantage functions. Wang et al. (2016) introduce multiple ag-
gregation methods for combining the state value and advan-
tages. They demonstrate that subtracting the mean of the ad-
vantages from each individual advantage and then summing
them with the state value results in improved learning sta-
bility when compared to the naı̈ve summation of the state
value and advantages. The dueling network architecture has
been shown to lead to better policy evaluation in the pres-
ence of many similar-valued (or redundant) actions, and thus
achieves faster generalization over large action spaces.

Methods
Here we introduce various methods for adapting the DQN
algorithm, as well as its notable extensions that were ex-
plained earlier, into the action branching architecture. For
brevity, we mainly focus on the methods that result in our
best performing DQN-based agent, BDQ.

Common State-Value Estimator. As demonstrated in the
action branching network of Figure 2, BDQ uses a com-
mon state-value estimator for all action branches. This ap-
proach, which can be thought of as an adaptation of the duel-
ing network into the action branching architecture, generally
yields a better performance. The use of the dueling architec-
ture with action branching is particularly an interesting aug-
mentation for learning in large action spaces. This is due to
the fact that the dueling architecture can more rapidly iden-
tify action redundancies and generalize more efficiently by
learning a general value that is shared across many similar
actions. In order to adapt the dueling architecture into our ac-
tion branching network, we distribute the representation of
the (state-dependent) action advantages on the several action
branches, meanwhile, adding a single additional branch for
estimating the state-value function. Similar to the dueling ar-
chitecture, the advantages and the state value are combined,
via a special aggregating layer, to produce estimates of the
distributed action values. We experimented with several ag-
gregation methods and our best performing method is to lo-
cally subtract each branch’s mean advantage from its sub-
action advantages, prior to their summation with the state
value. Formally, for an action dimension d ∈ {1, ..., N}with
|Ad| = n discrete sub-actions, the individual branch’s Q-
value at state s ∈ S and sub-action ad ∈ Ad is expressed in
terms of the common state value V (s) and the correspond-
ing (state-dependent) sub-action advantage Ad(s, ad) by:

Qd(s, ad) = V (s)+
(
Ad(s, ad)−

1

n

∑
a′
d∈Ad

Ad(s, a
′
d)
)
. (1)

We realize that this aggregation method does not resolve
the lack of identifiability for which the maximum and the
average reduction methods were originally proposed (Wang
et al. 2016). However, based on our experimentation, this
aggregation method yields a better performance than both
the naı̈ve alternative,

Qd(s, ad) = V (s) +Ad(s, ad), (2)

and the local maximum reduction method, which replaces
the averaging operator in Equation 1 with a maximum oper-
ator:

Qd(s, ad) = V (s) +
(
Ad(s, ad)− max

a′
d∈Ad

Ad(s, a
′
d)
)
. (3)

Temporal-Difference Target. We tried several different
methods for generating the temporal-difference (TD) targets
for the DQN updates. A simple approach is to calculate a
TD target, similar to that in DDQN, for each individual ac-
tion dimension separately:

yd = r + γQ−d (s
′, argmax

a′
d∈Ad

Qd(s
′, a′d)), (4)

with Q−d denoting the branch d of the target network Q−.
Alternatively, the maximum DDQN-based TD target over

the action branches may be set as a single global learning
target for all action dimensions:

y = r + γmax
d

Q−d (s
′, argmax

a′
d∈Ad

Qd(s
′, a′d)). (5)

The best performing method, also used for BDQ, replaces
the maximum operator in Equation 5 with a mean operator:

y = r + γ
1

N

∑
d

Q−d (s
′, argmax

a′
d∈Ad

Qd(s
′, a′d)). (6)

Loss Function. There exist numerous ways by which the
distributed TD errors across the branches can be aggregated
to specify a loss. A simple approach is to define the loss
to be the expected value of a function of the averaged TD
errors across the branches. However, due to the signs of such
errors, their summation is subject to canceling out which,
in effect, generally reduces the magnitude of the loss. To
overcome this, the loss can be specified as the expected value
of a function of the averaged absolute TD errors across the
branches. In practice, we found that defining the loss to be
the expected value of the mean squared TD error across the
branches mildly enhances the performance:

L = E(s,a,r,s′)∼D

[
1

N

∑
d

(
yd −Qd(s, ad)

)2]
, (7)

whereD denotes a (prioritized) experience replay buffer and
a denotes the joint-action tuple (a1, a2, ..., aN ).

Gradient Rescaling. During the backward pass, since all
branches backpropagate gradients through the shared net-
work module, we rescale the combined gradient prior to en-
tering the deepest layer in the shared network module by
1/(N + 1).
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Figure 3: Performance in sum of rewards during evaluation on the y-axis and training episodes on the x-axis. The solid lines
represent smoothed (window size of 20 episodes) averages over 3 runs with random initialization seeds, while shaded areas
show the standard deviations. Evaluations were conducted every 50 episodes of training for 30 episodes with a greedy policy.

Error for Experience Prioritization. Adapting the prior-
itized replay into the action branching architecture requires
an appropriate method for aggregating the distributed TD er-
rors (of a single transition) into a unified one. This error is
then used by the replay memory to calculate the transition’s
priority. In order to preserve the magnitudes of the errors,
for BDQ, we specify the unified prioritization error to be the
sum across a transition’s absolute, distributed TD errors:

eD(s, a, r, s′) =
∑
d

|yd −Qd(s, ad)| , (8)

where eD(s, a, r, s′) denotes the error used for prioritization
of the experience transition tuple (s, a, r, s′).

Experiments
We evaluate the performance of the proposed BDQ agent
on several challenging continuous control environments of
varying action dimensionality and complexity. These envi-
ronments are simulated using the MuJoCo physics engine
(Todorov, Erez, and Tassa 2012). We first study the perfor-
mance of BDQ against its standard non-branching variant,
Dueling DDQN, on a set of custom reaching tasks with in-
creasing degrees of freedom and under two different gran-
ularity discretizations. We then compare the performance
of BDQ against a state-of-the-art continuous control algo-
rithm, Deep Deterministic Policy Gradient (DDPG), on a set
of standard continuous control manipulation and locomotion
benchmark domains from the OpenAI’s MuJoCo Gym col-
lection (Brockman et al. 2016; Duan et al. 2016). We also
compare BDQ against a fully independent alternative, Inde-
pendent Dueling Q-Network (IDQ), in order to verify our
hypothesis regarding the significance of the shared network
module in coordinating the distributed policies. To make
the continuous-action domains compatible with the discrete-
action algorithms in our study (i.e. BDQ, Dueling DDQN,
and IDQ), in both sets of experiments, we discretize each
action dimension d ∈ {1, ..., N}, in the underlying contin-
uous action space, into n equally spaced values, yielding a
discrete combinatorial action space of nN possible actions.

Custom N -Dimensional Action-Space Problems
We begin by comparing the performance of BDQ against its
standard non-branching variant, the Dueling DDQN agent,

Figure 4: Illustrations of the custom physical reaching tasks.
From left: Reacher3DOF, Reacher4DOF, and Reacher5DOF
domains with 3, 4, and 5 degrees of freedom, respectively.

on a set of physical manipulation tasks with increasing ac-
tion dimensionality (see Figure 4). These tasks are custom
variants of the standard Reacher-v1 task (from the OpenAI’s
MuJoCo Gym collection) that feature more actuated joints
(i.e. N = {3, 4, 5}) with constraints on their ranges of mo-
tion to prevent collision between segments. Unlike the orig-
inal Reacher-v1 domain, reaching the target position imme-
diately terminates an episode without the need to decelerate
and maintain position at the target. This was done to simplify
these complex control tasks (as a result of more frequently
experienced episodic successes) in order to allow faster ex-
perimentation. We consider two discretization resolutions
resulting in n = 5 and n = 9 sub-actions per joint. This
is done in order to examine the impact of finer granularity,
or equivalently more discrete sub-actions per action dimen-
sion, with increasing degrees of freedom. The general idea is
to empirically study the effectiveness of action branching in
the face of increasing action-space dimensionality as com-
pared to the standard non-branching variant. Therefore, the
tasks are designed to have sufficiently small action spaces
for a standard non-branching algorithm to still be tractable
for the purpose of our evaluations.

The performances are summarized in Figure 3. The re-
sults show that in the low-dimensional reaching task with
N = 3, all agents learn at about the same rate, with slightly
steeper learning curves towards the end for Dueling DDQN.
In the task with N = 4, we see that the Dueling DDQN
agent with n = 5 starts off less efficiently (i.e. slower learn-
ing curve) than its corresponding BDQ agent, but eventually
converges and outperforms both BDQ agents in their final
performance. However, in the same task, the Dueling DDQN
agent with n = 9 shows a significantly less efficient learn-
ing performance against its BDQ counterpart. In the high-
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Figure 5: Learning curves for the OpenAI’s MuJoCo Gym manipulation and locomotion benchmark domains. The solid lines
represent smoothed (window size of 20 episodes) averages over 6 runs with random initialization seeds, while shaded areas
show the standard deviations. Evaluations were conducted every 50 episodes of training for 30 episodes with a greedy policy.

dimensional reaching task with N = 5, we see that the Du-
eling DDQN agent with n = 5 performs rather poorly in
terms of its sample efficiency. For this task, we were unable
to run the Dueling DDQN agent with n = 9 since running
it was computationally expensive—due to the large number
of actions that need to be explicitly represented by its net-
work (i.e. 95 ≈ 6 × 104) and consequently the extremely
large number of network parameters that need to be trained
at every iteration. In contrast, in the same task, we see that
BDQ performs well and converges to good policies with ro-
bustness against the discretization granularity.

Standard Continuous Control Benchmarks
Here we evaluate the performance of BDQ on a set of stan-
dard continuous control benchmark domains from the Ope-
nAI’s MuJoCo Gym collection. Figure 6 demonstrates sam-
ple illustrations of the environments used in our experi-
ments. Table 1 states the dimensionality information of these
tasks, provided for the specific case of n = 33 being the
finest granularity we experimented with.

We compare the performance of BDQ against a state-of-
the-art continuous-action reinforcement learning algorithm,
DDPG, as well as against a completely independent agent,
IDQ. For all environments, we evaluate the performance of
BDQ with two different discretization resolutions resulting
in n = 17 and n = 33 sub-actions per degree of freedom.
We do this to compare the relative performance of BDQ
for the same environments with substantially larger discrete
action spaces. Where feasible (i.e. Reacher-v1 and Hopper-
v1), we also run the Dueling DDQN agent with n = 17.

The results demonstrated in Figure 5 show that IDQ’s per-
formance quickly deteriorates with increasing action dimen-
sionality, while BDQ continues to perform competitively
against DDPG. Interestingly, BDQ significantly outperforms
DDPG in the most challenging domain, the Humanoid-v1
task which involves 17 action dimensions, leading to a com-

Figure 6: Illustrations of the domains from the OpenAI’s
MuJoCo Gym that were used in our experiments. From
left: Reacher-v1, Hopper-v1, Walker2d-v1, and Humanoid-
v1 featuring 2, 3, 6, and 17 degrees of freedom, respectively.

binatorial action space of approximately 6.5×1025 possible
actions for n = 33. Our ablation study on BDQ (with a
shared network module) and IDQ (no shared network mod-
ule) verifies the significance of the shared decision module
in coordinating the distributed policies, and thus enabling
the BDQ agent to progress in learning and to converge to
good policies in a stable manner. Furthermore, remarkably,
to perform competitively against a state-of-the-art continu-
ous control algorithm in such high-dimensional domains is
a feat previously considered intractable for discrete-action
algorithms (Lillicrap et al. 2016; Schulman et al. 2017).

However, in the simpler tasks DDPG performs better or
on par with BDQ. We think a potential explanation for this
could be the use of a specialized exploration noise process
by DDPG which, due to its temporally correlated nature, en-
ables effective exploration in domains with momentum.

By comparing the performance of BDQ for n = 17 and
n = 33, we see that, despite the significant difference in the
total number of possible actions, the proposed agent con-
tinues to learn rather efficiently and converges to similar fi-
nal performance levels. An interesting point to note is the
exceptional performance of Dueling DDQN for n = 17
in Reacher-v1. Yet, increasing the action dimensionality by
only one degree of freedom (from N = 2 in Reacher-v1 to



Domain dim(o) N nN n×N
Reacher-v1 11 2 1.1× 103 66
Hopper-v1 11 3 3.6× 104 99
Walker2d-v1 17 6 1.3× 109 198
Humanoid-v1 376 17 6.5× 1025 561

Table 1: Dimensionality of the OpenAI’s MuJoCo Gym
benchmark domains: dim(o) denotes the observation dimen-
sions, N is the number of action dimensions, and nN indi-
cates the number of possible actions in the combinatorial
action space, with n denoting the fixed number of discrete
sub-actions per action dimension. The rightmost column in-
dicates the total number of network outputs required for the
proposed action branching architecture. The values provided
are for the most fine-grained discretization case of n = 33.

N = 3 in Hopper-v1) renders the Dueling DDQN agent in-
effective. Finally, it is noteworthy that BDQ is highly robust
against the specifications of the TD target and loss function,
while it highly deteriorates with the ablation of the priori-
tized replay. Characterizing the role of the prioritized expe-
rience replay, in stabilizing the learning process for action
branching networks, remains the subject of future research.

Experiment Details
Here we provide information about the technical details and
hyperparameters used for training the agents in our experi-
ments. Common to all agents, training always started after
the first 103 steps and, thereafter, we ran one step of training
at every time step. We did not perform tuning of the reward
scaling parameter for either of the algorithms and, instead,
used each domain’s raw rewards. We used the OpenAI Base-
lines (Hesse et al. 2017) implementation of DQN as the basis
for the development of all the DQN-based agents.

BDQ. We used the Adam optimizer (Kingma and Ba
2015) with a learning rate of 10−4, β1 = 0.9, and β2 =
0.999. We trained with a minibatch size of 64 and a discount
factor γ = 0.99. The target network was updated every 103

time steps. We used the rectified non-linearity (or ReLU)
(Glorot, Bordes, and Bengio 2011) for all hidden layers and
linear activation on the output layers. The network had two
hidden layers with 512 and 256 units in the shared network
module and one hidden layer per branch with 128 units. The
weights were initialized using the Xavier initialization (Glo-
rot and Bengio 2010) and the biases were initialized to zero.
A gradient clipping of size 10 was applied. We used the pri-
oritized replay with a buffer size of 106 and hyperparameters
α = 0.6, β0 = 0.4, η = 3× 10−7, and ε = 10−8.

While an ε-greedy policy is often used with Q-learning,
random exploration (with an exploration probability) in
physical, continuous-action domains can be inefficient. To
explore well in physical environments with momentum,
such as those in our experiments, DDPG uses an Ornstein-
Uhlenbeck process (Uhlenbeck and Ornstein 1930) which
creates a temporally correlated exploration noise centered

around the output of its deterministic policy. The applica-
tion of such a noise process to discrete-action algorithms is,
nevertheless, somewhat non-trivial. For BDQ, we decided to
sample actions from a Gaussian distribution with its mean at
the greedy actions and with a small fixed standard deviation
throughout the training to encourage life-long exploration.
We used a fixed standard deviation of 0.2 during training and
zero during evaluation. This exploration strategy yielded a
mildly better performance as compared to using an ε-greedy
policy with a fixed or linearly annealed exploration probabil-
ity. For the custom reaching domains, however, we used an
ε-greedy policy with a linearly annealed exploration proba-
bility, similar to that commonly used for Dueling DDQN.

Dueling DDQN. We generally used the same hyperparam-
eters as for BDQ. The gradients from the dueling streams
were rescaled by 1/

√
2 prior to entering the shared feature

module as recommended by Wang et al. (2016). Same as the
reported best performing agent from (Wang et al. 2016), the
average aggregation method was used to combine the state
value and advantages. We experimented with both a Gaus-
sian and an ε-greedy exploration policy with a linearly an-
nealed exploration probability, and observed a moderately
better performance for the linearly annealed ε-greedy strat-
egy. Therefore, in our experiments we used the latter.

IDQ. Once more, we generally used the same hyperpa-
rameters as for BDQ. Similarly, the same number of hidden
layers and hidden units per layer were used for each inde-
pendent network, with the difference being that the first two
hidden layers were not shared among the several networks
(which was the case for BDQ). The dueling architecture was
applied to each network independently (i.e. each network
had its own state-value estimator). This agent serves as a
baseline for investigating the significance of the shared de-
cision module in the proposed action branching architecture.

DDPG. We used the DDPG implementation of the rllab
suite (Duan et al. 2016) and the hyperparameters reported by
Lillicrap et al. (2016), with the exception of not including a
L2 weight decay for Q as opposed to the originally proposed
penalty of 10−2 which deteriorated the performance.

Conclusion
We introduced a novel neural network architecture that dis-
tributes the representation of the policy or the value func-
tion over several network branches, meanwhile, maintaining
a shared network module for enabling a form of implicit cen-
tralized coordination. We adapted the DQN algorithm, along
with several of its most notable extensions, into the proposed
action branching architecture. We illustrated the effective-
ness of the proposed architecture in enabling the application
of a currently restricted discrete-action algorithm to domains
with high-dimensional discrete or continuous action spaces.
This is a feat which was previously thought intractable. We
believe that the highly promising performance of the action
branching architecture in scaling DQN and its potential gen-
erality evoke further theoretical and empirical investigations.
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