Eligibility Propagation to Speed up Time Hopping for Reinforcement Learning

Petar S. Kormushev*, Kohei Nomoto**, Fangyan Dong*, and Kaoru Hirota*

*Department of Computational Intelligence and Systems Science, Tokyo Institute of Technology, Yokohama, 226-8502, Japan
E-mail: {petar, tou, hirota}@hrt.dis.titech.ac.jp

**Graduate School of Science and Engineering, Yamagata University, Yamagata, Japan
E-mail: nomoto@yz.yamagata-u.ac.jp

A mechanism called Eligibility Propagation is proposed to speed up the Time Hopping technique used for faster Reinforcement Learning in simulations. Eligibility Propagation provides for Time Hopping similar abilities to what eligibility traces provide for conventional Reinforcement Learning. It propagates values from one state to all of its temporal predecessors using a state transitions graph. Experiments on a simulated biped crawling robot confirm that Eligibility Propagation accelerates the learning process more than 3 times.

Keywords: discrete time systems, optimization methods, reinforcement learning, simulation

1. Introduction

Reinforcement learning (RL) algorithms [1] address the problem of learning to select optimal actions when limited feedback (usually in the form of a scalar reinforcement function) from the environment is available. Many different action selection methods exist [2] for RL and a variety of successful practical applications have been reported [3].

General RL algorithms like Q-learning [4], SARSA and TD (λ) [5] have been proved to converge to the globally optimal solution (under certain assumptions) [4, 6]. They are very flexible, because they do not require a model of the environment, and have been shown to be effective in solving a variety of RL tasks. This flexibility, however, comes at a certain cost: these RL algorithms require extremely long training to cope with large state space problems.

Many different approaches have been proposed for speeding up the RL process. One possible technique is to use function approximation [7], in order to reduce the effect of the “curse of dimensionality.” Unfortunately, using function approximation creates instability problems when used with off-policy learning.

Significant speed-up can be achieved when a demonstration of the goal task is available [8], as in Apprenticeship Learning [9]. Although there is a risk of running dangerous exploration policies in the real world [10], there are successful implementations of apprenticeship learning for aerobatic helicopter flight [11]. Accelerating RL can also be achieved through Implicit Imitation [12].

Another possible technique for speeding up RL is to use some form of hierarchical decomposition of the problem [13]. A prominent example is the “MAXQ Value Function Decomposition” [14]. Hybrid methods using both apprenticeship learning and hierarchical decomposition have been successfully applied to quadruped locomotion [15, 16]. Unfortunately, decomposition of the target task is not always possible, and sometimes it may impose additional burden on the users of the RL algorithm.

A state-of-the-art RL algorithm for efficient state space exploration is E3 [17]. It uses active exploration policy to visit states whose transition dynamics are still inaccurately modeled. Because of this, running E3 directly in the real world might lead to a dangerous exploration behavior.

Instead of executing RL algorithms in the real world, simulations are commonly used. This approach has two main advantages: speed and safety. Depending on its complexity, a simulation can run many times faster than a real-world experiment. Also, the time needed to set up and maintain a simulation experiment is far less compared to a real-world experiment. The second advantage, safety, is also very important, especially if the RL agent is a very expensive equipment (e.g. a fragile robot), or a dangerous one (e.g. a chemical plant). Whether the full potential of computer simulations has been utilized for RL, however, is an open question.

A new trend in RL suggests that this might not be the case. For example, two techniques have been proposed recently to better utilize the potential of computer simulations for RL: Time Manipulation [18] and Time Hopping [19]. They share the concept of using the simulation time as a tool for speeding up the learning process. The first technique, called Time Manipulation, suggests that doing backward time manipulations inside a simulation can significantly speed up the learning process and improve the state space exploration. Applied to failure-avoidance RL problems, such as the cart-pole balancing problem, Time Manipulation has been shown to increase the speed of convergence by 260% [18].
This paper focuses on the second technique, called Time Hopping, which can be applied successfully to continuous optimization problems. Unlike the Time Manipulation technique, which can only perform backward time manipulations, the Time Hopping technique can make arbitrary “hops” between states and traverse rapidly throughout the entire state space. It has been shown to accelerate the learning process more than 7 times on some problems [19]. Time Hopping possesses mechanisms to trigger time manipulation events, to make prediction about possible future rewards, and to select promising time hopping targets.

This paper proposes an additional mechanism called Eligibility Propagation to be added to the Time Hopping technique, in order to provide similar abilities to what eligibility traces provide for conventional RL. Eligibility traces are easy to implement for conventional RL methods with sequential time transitions, but in the case of Time Hopping, due to its non-sequential nature, a number of obstacles have to be overcome.

Eligibility Propagation makes use of a computer simulation as a generative model to which we can give any state-action pair \((s,a)\) and receive in return a randomly sampled next state and a reward from the distributions associated with \((s,a)\). Conceptually, the proposed mechanism bears some resemblance to the sparse sampling algorithm [20] and Prioritized Sweeping [21]. However, the main differences are: a disconnected oriented graph is constructed, instead of a sparse look-ahead tree as in [20] or a priority queue as in [21]; the Time Hopping technique is used, which makes hops between very distant states, whereas in [20] only the immediate neighborhood of the current state is sampled and in [21] no sampling is used at all.

The following Section II makes a brief overview of the Time Hopping technique and its components. Section III explains why it is important (and not trivial) to implement some form of eligibility traces for Time Hopping and proposes the Eligibility Propagation mechanism to do this. Section IV presents the results from experimental evaluation of Eligibility Propagation on a benchmark continuous-optimization problem: a biped crawling robot.

2. Overview of Time Hopping

2.1. Basics of Time Hopping

Time Hopping is an algorithmic technique which allows maintaining higher learning rate in a simulation environment by hopping to appropriately selected states [19]. For example, let us consider a formal definition of a RL problem, given by the Markov Decision Process (MDP) on Fig. 1. Each state transition has a probability associated with it. State 1 represents situations of the environment that are very common and learned quickly. The frequency with which state 1 is being visited is the highest of all. As the state number increases, the probability of being in the corresponding state becomes lower. State 4 represents the rarest situations and therefore the most unlikely to be well explored and learned.

When applied to such a MDP, Time Hopping creates “shortcuts in time” by making hops (direct state transitions) between very distant states inside the MDP. Hopping to low-probability states makes them easier to be learned, while at the same time it helps to avoid unnecessary repetition of already well-explored states [19]. The process is completely transparent for the underlying RL algorithm.

2.2. Components of Time Hopping

When applied to a conventional RL algorithm, Time Hopping consists of 3 components:

1) Hopping trigger – decides when the hopping starts;
2) Target selection – decides where to hop to;
3) Hopping – performs the actual hopping.

The flowchart on Fig. 3 shows how these 3 components of Time Hopping are connected and how they interact with the RL algorithm.

When the Time Hopping trigger is activated, a target state and time have to be selected, considering many relevant properties of the states, such as probability, visit frequency, level of exploration, connectivity to other states (number of state transitions), etc. In this paper, the “lasso target selection” is used, as described in [19]. After a target state and time have been selected, hopping can be performed. It includes setting the RL agent and the simulation environment to the proper state, while at the same time preserving all the acquired knowledge by the agent.

3. Eligibility Propagation

3.1. Assumptions

In this paper, the environment is assumed to be a MDP, but the agent is not provided with an explicit model of this MDP. Instead, the learning algorithm is given access to a generative model, or simulator, of the MDP. The simulator acts as a “black box” to which we can give any state-action pair \((s,a)\) and receive in return a next state and a reward. Such generative models are considered to blur the distinction between what is typically called “planning” and “learning” in MDPs [20]. Since our algorithm
is not given an explicit MDP model, and it learns pieces of
the MDP on-the-fly during the exploration, we consider
it to be a “learning” algorithm. The proposed algorithm
does not make use of any internal information of the gen-
erative model, treating it as a true “black box.” This com-
plies with the standard condition of reinforcement learn-
ing, that the learning agent does not know its environment.
As the exploration progresses, the agent learns pieces of
the MDP and organizes them as explained in Section 3.4.

3.2. The Role of Eligibility Traces

Eligibility traces are one of the basic mechanisms for
temporal credit assignment in reinforcement learning [1].
An eligibility trace is a temporary record of the occur-
rence of an event, such as the visiting of a state or the
taking of an action. When a learning update occurs,
the eligibility trace is used to assign credit or blame for
the received reward to the most appropriate states or ac-
tions. For example, in the popular TD (\(\lambda\)) algorithm,
the \(\lambda\) refers to the use of an eligibility trace. Almost any
temporal-difference (TD) methods, e.g., Q-learning and
SARSA, can be combined with eligibility traces to obtain
a more general method that may learn more efficiently.
This is why it is important to implement some form of el-
igibility traces for Time Hopping as well, in order to speed
up its convergence.

Eligibility traces are usually easy to implement for con-
tventional RL methods. In the case of Time Hopping, how-
ever, due to its non-sequential nature, it is not trivial to do
so. Since arbitrary hops between states are allowed, it
is impossible to directly apply linear eligibility traces. In-
stead, we propose a different mechanism called Eligibility
Propagation to do this.

3.3. Eligibility Propagation Mechanism

Time Hopping is guaranteed to converge when an off-
policy RL algorithm is used [19], because the learned pol-
icy is independent of the policy followed during learning.
This means that the exploration policy does not converge
to the optimal policy. In fact, Time Hopping deliberately
tries to avoid convergence of the policy in order to main-
tain high learning rate and minimize exploration redund-
dancy. This poses a major requirement for any poten-
tial eligibility-trace-mechanism: it has to be able to learn
from independent non-sequential state transitions spread
sparsely throughout the state space.

The proposed solution is to construct an oriented graph
which represents the state transitions with their associated
actions and rewards and use this data structure to propa-
gate the learning updates. Because of the way Time Hop-
ping works, the graph might be disconnected, consisting
of many separate connected components.

Regardless of the actual order in which Time Hopping
visits the states, this oriented graph contains a record of
the correct chronological sequence of state transitions.
For example, each state transition can be considered to
be from state \(S_t\) to state \(S_{t+1}\), and the information about
this state transition is independent from what happened
before it and what will happen after it. This allows to effi-
ciently collect the separate pieces of information obtained
during the randomized hopping, and to process them uni-
formly using the graph structure. The way to construct
such a state transitions graph on-the-fly is described in
Section 3.4.

The proposed mechanism uses the current oriented
to propagate state value updates in the opposite di-
rection of the state transition edges. This way, the prop-
agation logically flows backwards in time, from state \(S_t\)
to all of its temporal predecessor states \(S_{t-1}\), \(S_{t-2}\) and so
on. The propagation stops when the value updates be-
come sufficiently small. The mechanism is illustrated on
Fig. 2.

It should be noted that the proposed mechanism does
not explicitly assign eligibility values in the way that con-
tventional eligibility traces work, e.g. as in TD (\(\lambda\)). In-
stead of such explicit values, the oriented graph itself is
used to point to the states or actions which are most el-
igible to receive credit or blame for the received reward.
This justifies the use of the word “eligibility” in the name
of the proposed mechanism.

In summary, an explicit definition for the proposed
mechanism is as follows:

Eligibility Propagation is an algorithmic mechanism
for Time Hopping to efficiently collect, represent and
propagate information about states and transitions. It
uses a state transitions graph constructed on-the-fly and a
wave-like propagation algorithm to propagate state values
from one state to all of its temporal predecessor states.

A concrete implementation of this mechanism within
the Time Hopping technique is given in Section 3.5.

3.4. Construction of the State Transitions Graph

As explained in Section 3.1, the proposed Eligibility
Propagation does not require a model of the environment,
i.e. that the state transitions graph is unknown. To cope
with this, the proposed algorithm constructs an approxi-
mation of the state transitions graph on-the-fly while the
RL algorithm is exploring. This is done using only the
information available from the “black box” generative
model: the current state (a state number), the action per-
formed (an action number), the next state (a state number)
and the reward received (a scalar value). This information determines uniquely one edge of the graph, together with its source and destination vertices, which are added to the graph if not already present. The so-constructed approximation of the state transitions graph grows bigger as the exploration advances and more nodes (states) and edges (transitions) are added to the graph. At any point in time, the current state transitions graph represents the acquired knowledge of the agent about the underlying MDP and the proposed Eligibility Propagation mechanism is trying to make best use of this accumulated knowledge to speed up the learning process.

3.5. Implementation of Eligibility Propagation

The proposed implementation of Eligibility Propagation can be called “reverse graph propagation,” because values are propagated inside the graph in reverse (opposite) direction of the state transitions’ directions. The process is similar to the wave-like propagation of a BFS (breadth-first search) algorithm.

In order to give a more specific implementation description, Q-learning is used as the underlying RL algorithm. The following is the pseudo-code for the proposed Eligibility Propagation mechanism:

1. Construct an ordered set (queue) of state transitions called PropagationQueue and initialize it with the current state transition \(\langle S_t, S_{t+1} \rangle \) in this way:

 \[
 \text{PropagationQueue} = \{ \langle S_1, S_2 \rangle \}. \quad \text{(1)}
 \]

2. Take the first state transition \(\langle S_t, S_{t+1} \rangle \) ∈ PropagationQueue and remove it from the queue.

3. Let \(Q_{\text{max}} \) be the current maximum Q-value of state \(S_t \):

 \[
 Q_{\text{max}} = \max_A \{ Q_{S_t,A} \} \quad \text{.... (2)}
 \]

 where the transition from state \(S_t \) to state \(S_{t+1} \) is done by executing action \(A \), and the reward \(R_{S_t,A} \) is received.

4. Update the Q-value for making the state transition \(\langle S_t, S_{t+1} \rangle \) using the update rule:

 \[
 Q_{S_t,A} = R_{S_t,A} + \gamma \max_{A'} \{ Q_{S_{t+1},A'} \}. \quad \text{.... (3)}
 \]

5. Let \(Q'_{\text{max}} \) be the new maximum Q-value of state \(S_t \), calculated using formula Eq. (2).

6. If \(|Q'_{\text{max}} - Q_{\text{max}}| > \epsilon \) \text{.... (4)}

 then construct the set of all immediate predecessor state transitions of state \(S_t \):

 \[
 \{ \langle S_{t-1}, S_t \rangle \mid \langle S_{t-1}, S_t \rangle \in \text{transitions graph} \} \quad \text{(5)}
 \]

 and append it to the end of the PropagationQueue.

7. If PropagationQueue \(\neq \emptyset \) then go to step 2.

8. Stop.

The decision whether further propagation is necessary is made in step 6. The propagation continues one more step backwards in time only if there is a significant difference between the old maximum Q-value and the new one, according to formula Eq. (4). This formula is based on the fact that \(Q'_{\text{max}} \) might be different than \(Q_{\text{max}} \) in exactly 3 out of 4 possible cases, which are:

- The transition \(\langle S_1, S_{t+1} \rangle \) was the one with the highest value for state \(S_t \) and its new (bigger) value needs to be propagated backwards to its predecessor states.

- The transition \(\langle S_{t+1}, S_{t+2} \rangle \) was the one with the highest value but it is not any more, because its value is reduced. Propagation of the new maximum value (which belongs to a different transition) is necessary.

- The transition \(\langle S_t, S_{t+1} \rangle \) was not the one with the highest value but now it became one, so its value needs propagation.

The only case when propagation is not necessary is when the transition \(\langle S_t, S_{t+2} \rangle \) was not the one with the highest value and it is still not the one after the update. In this case, \(Q_{\text{max}} \) is equal to \(Q'_{\text{max}} \) and formula Eq. (4) correctly detects it and skips propagation.

In the previous 3 cases the propagation is performed, provided that there is a significant change of the value, determined by the \(\epsilon \) parameter. When \(\epsilon \) is smaller, the algorithm tends to propagate further the value changes. When \(\epsilon \) is bigger, it tends to propagate only the biggest changes just a few steps backwards, skipping any minor updates.

The depth of propagation also depends on the discount factor \(\gamma \). The bigger \(\gamma \) is, the deeper the propagation is, because longer-term reward accumulation is stimulated. Still, due to the exponential attenuation of future rewards, the \(\gamma \) discount factor prevents the propagation from going too far and reduces the overall computational cost.

The described Eligibility Propagation mechanism can be encapsulated as a single component and integrated into the Time Hopping technique as shown on Fig. 3. It is called immediately after a state transition takes place, in order to propagate any potential Q-value changes, and before a time hopping step occurs.

![Fig. 3. Eligibility Propagation integrated as a 4th component in the Time-Hopping technique. The lower group (marked with a dashed line) contains the conventional RL algorithm main loop, into which the Time Hopping components (the upper group) are integrated.](image-url)
4. Application of Eligibility Propagation to Biped Crawling Robot

In order to evaluate the efficiency of the proposed Eligibility Propagation mechanism, experiments on a simulated biped crawling robot are conducted. The goal of the learning process is to find a crawling motion with the maximum speed. The reward function for this task is defined as the horizontal displacement of the robot after every action.

4.1. THEN Experimental Environment

A dedicated experimental software system called THEN (Time Hopping ENvironment) was developed for the purpose of this evaluation. THEN has a built-in physics simulation engine, implementation of the Time Hopping technique, useful visualization modules (for the simulation, the learning data and the state transitions graph) and most importantly – a prototype implementation of the Eligibility Propagation mechanism. To facilitate the analysis of the algorithm behavior, THEN displays detailed information about the current state, the previous state transitions, a visual view of the simulation, and allows runtime modification of all important parameters of the algorithms and the simulation. The evaluation of Eligibility Propagation is based on the accumulated data from THEN and various visualizations of it in the form of charts.

4.2. Description of the Crawling Robot

The experiments are conducted on a physical simulation of a biped crawling robot. The robot has 2 limbs, each with 2 segments, for a total of 4 degrees of freedom (DOF). Every DOF is independent from the rest and has 3 possible actions at each time step: to move clockwise, to move anti-clockwise, or to stand still. The robot and its 2D simulation are the same as the ones described in [19]. More importantly, there is no difference between the crawling robot’s behavior learned with Eligibility Propagation and without Eligibility Propagation. The only difference is the speed of learning.

When all possible actions of each DOF of the robot are combined, assuming that they can all move at the same time independently, it produces an action space with size $3^4 - 1 = 80$ (we exclude the possibility that all DOF are standing still). Using appropriate discretization for the joint’s angles (9 for the upper limbs and 13 for the lower limbs), the state space becomes divided into $(9 \times 13)^2 = 13689$ states.

4.3. Description of the Experimental Method

The conducted experiments are divided in 3 groups: experiments using conventional Q-learning, experiments using only the Time Hopping technique applied to Q-learning (as described in [19]), and experiments using Time Hopping with Eligibility Propagation. The implementations used for the Time Hopping components are shown in Table 1.

The experiments from all three groups are conducted in exactly the same way, using the same RL parameters (incl. discount factor γ, learning rate α, and the action selection method parameters). The initial state of the robot and the simulation environment parameters are also equal. The robot training continues up to a fixed number of steps (45000), and the achieved crawling speed is recorded at fixed checkpoints during the training. This process is repeated 10 times and the results are averaged, in order to ensure statistical significance.

4.4. Evaluation of Eligibility Propagation

The evaluation of Eligibility Propagation is done using three main experiments.

In the first experiment, the learning speed of conventional Q-learning, Time Hopping, and Time Hopping with Eligibility Propagation is compared based on the best solution found (i.e. the fastest achieved crawling speed) for the same number of training steps. The comparison results are shown in Fig. 4. It shows the duration of training needed by each of the 3 algorithms to achieve a certain crawling speed. The achieved speed is displayed as percentage from the globally optimal solution.

The results show that Time Hopping with Eligibility Propagation is much faster than Time Hopping alone, which in turn is much faster than conventional Q-learning.

Compared to Time Hopping alone, Eligibility Propagation achieves significant speed-up of the learning process. For example, an 80%-optimal crawl is learned in only 5000 steps when Eligibility Propagation is used, while Time Hopping alone needs around 20000 steps to learn

<table>
<thead>
<tr>
<th>Component name</th>
<th>Implementation used</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hopping trigger</td>
</tr>
<tr>
<td>2</td>
<td>Target selection</td>
</tr>
<tr>
<td>3</td>
<td>Hopping</td>
</tr>
<tr>
<td>4</td>
<td>Eligibility propagation</td>
</tr>
</tbody>
</table>

Table 1. Implementation used for each time hopping component.
the same, i.e. in this case Eligibility Propagation needs 4 times fewer training steps to achieve the same result. The speed-up becomes even higher as the number of training steps increases. For example, Time Hopping with Eligibility Propagation reaches 90%-optimal solution with 12000 steps, while Time Hopping alone needs more than 50000 steps to do the same.

Compared to conventional Q-learning, Eligibility Propagation achieves even higher speed-up. For example, it needs only 4000 steps to achieve a 70%-optimal solution, while conventional Q-learning needs 36000 steps to learn the same, i.e. in this case Eligibility Propagation is 9 times faster. Time Hopping alone also outperforms conventional Q-learning by a factor of 3 in this case (12000 steps vs. 36000 steps).

In the second experiment, the real computational time of conventional Q-learning, Time Hopping, and Time Hopping with Eligibility Propagation is compared. The actual execution time necessary for each of the three algorithms to reach a certain crawling speed is measured. The comparison results are shown in Fig. 5.

The results show that Time Hopping with Eligibility Propagation achieves 99% of the maximum possible speed almost 3 times faster than Time Hopping alone, and more than 4 times faster than conventional Q-learning. This significant speed-up of the learning process is achieved despite the additional computational overhead of maintaining the transitions graph. The reason for this is that Eligibility Propagation manages to propagate well the state value updates among all explored states, therefore raising their maximum Q-values.

The more purposeful exploration and better propagation of the acquired state information help Eligibility Propagation to make the best of every single exploration step. This is a very important advantage of the proposed mechanism, especially if the simulation involved is computationally expensive. In this case, Eligibility Propagation can save real computational time by reducing the number of normal transition (simulation) steps in favor of Time Hopping steps.
5. Conclusion

The Eligibility Propagation mechanism is proposed to provide for Time Hopping similar abilities to what eligibility traces provide for conventional RL.

During operation, Time Hopping completely changes the normal sequential state transitions into a rather randomized hopping behavior throughout the state space. This poses a challenge how to efficiently collect, represent and propagate knowledge about actions, rewards, states and transitions. Since using sequential eligibility traces is impossible, Eligibility Propagation uses the transitions graph to obtain all predecessor states of the updated state. This way, the propagation logically flows backwards in time, from one state to all of its temporal predecessor states.

The proposed mechanism is implemented as a fourth component of the Time Hopping technique. This maintains the clear separation between the 4 Time Hopping components and makes it straightforward to experiment with alternative component implementations.

The biggest advantage of Eligibility Propagation is that it can speed up the learning process of Time Hopping more than 3 times. This is due to the improved Gamma-pruning ability based on more precise future reward predictions. This, in turn, increases the exploration efficiency by better avoiding unpromising branches and selecting more appropriate hopping targets.

The conducted experiments on a biped crawling robot also show that the speed-up is achieved using significantly fewer training steps. As a result, the speed-up becomes even higher when the simulation is computationally more expensive, due to the more purposeful exploration. This property makes Eligibility Propagation very suitable for speeding up complex learning tasks which require costly simulation.

Another advantage of the proposed implementation of Eligibility Propagation is that no parameter tuning is necessary during the learning, which makes the mechanism easy to use.

Finally, an important drawback of the proposed technique is that it needs additional memory to store the transitions graph data. In other words, the speed-up is achieved by using more memory.

References:

Kormushev, P. S., Nomoto, K., Dong, F., and Hirota, K.

Name: Kohei Nomoto
Affiliation: Department of Informatics, Graduate School of Science and Engineering, Yamagata University
Address: 4-3-16, Jonan, Yonezawa, Yamagata 992-8510, Japan
Brief Biographical History: 1983-2009 Chief Researcher, Mitsubishi Electric Corporation 2007-2009 Visiting Professor, Tokyo Institute of Technology 2009- Professor, Yamagata University
Main Works:
Membership in Academic Societies:
- Japan Society for Fuzzy Theory and Systems (SOFT)
- The Institute of Electrical and Electronics Engineers (IEEE)
- The Institute of Electronics, Information and Communication Engineers (IEICE)

Name: Fangyan Dong
Affiliation: Department of Computational Intelligence and Systems Science, Tokyo Institute of Technology
Address: G3-49, 4259, Nagatsuta, Midori-ku, Yokohama 226-8502, Japan
Brief Biographical History: 2006.5- Assistant Professor (Dr. Eng.), Tokyo Institute of Technology
Main Works:
Membership in Academic Societies:
- International Fuzzy Systems Association (IFSA)
- The Institute of Electrical and Electronics Engineers (IEEE)
- Japan Society for Fuzzy Theory and Systems (SOFT)

Name: Kaoru Hirota
Affiliation: Department of Computational Intelligence and Systems Science, Tokyo Institute of Technology
Address: G3-49, 4259, Nagatsuta, Midori-ku, Yokohama 226-8502, Japan
Brief Biographical History: 1982-1995 Professor, College of Engineering, Hosei University, Tokyo 1995- Professor, Tokyo Institute of Technology
Main Works:
Membership in Academic Societies:
- International Fuzzy Systems Association (IFSA)
- The Institute of Electrical and Electronics Engineers (IEEE)
- Japan Society for Fuzzy Theory and Systems (SOFT)