
Eligibility Propagation to Speed up Time Hopping for RL

Eligibility Propagation to Speed up Time Hopping for
Reinforcement Learning

Petar S. Kormushev∗, Kohei Nomoto∗∗, Fangyan Dong∗, and Kaoru Hirota∗

∗Department of Computational Intelligence and Systems Science, Tokyo Institute of Technology, Yokohama, 226-8502, Japan

E-mail: {petar, tou, hirota}@hrt.dis.titech.ac.jp
∗∗Graduate School of Science and Engineering, Yamagata University, Yamagata, Japan

E-mail: nomoto@yz.yamagata-u.ac.jp

 

A mechanism called Eligibility Propagation is pro-
posed to speed up the Time Hopping technique used
for faster Reinforcement Learning in simulations. El-
igibility Propagation provides for Time Hopping sim-
ilar abilities to what eligibility traces provide for con-
ventional Reinforcement Learning. It propagates val-
ues from one state to all of its temporal predecessors
using a state transitions graph. Experiments on a
simulated biped crawling robot confirm that Eligibil-
ity Propagation accelerates the learning process more
than 3 times.
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1. Introduction

Reinforcement learning (RL) algorithms [1] address
the problem of learning to select optimal actions when
limited feedback (usually in the form of a scalar reinforce-
ment function) from the environment is available. Many
different action selection methods exist [2] for RL and a
variety of successful practical applications have been re-
ported [3].

General RL algorithms like Q-learning [4], SARSA
and TD (λ ) [5] have been proved to converge to the glob-
ally optimal solution (under certain assumptions) [4, 6].
They are very flexible, because they do not require a
model of the environment, and have been shown to be
effective in solving a variety of RL tasks. This flexibil-
ity, however, comes at a certain cost: these RL algorithms
require extremely long training to cope with large state
space problems.

Many different approaches have been proposed for
speeding up the RL process. One possible technique is to
use function approximation [7], in order to reduce the ef-
fect of the “curse of dimensionality.” Unfortunately, using
function approximation creates instability problems when
used with off-policy learning.

Significant speed-up can be achieved when a demon-
stration of the goal task is available [8], as in Apprentice-
ship Learning [9]. Although there is a risk of running dan-

gerous exploration policies in the real world [10], there
are successful implementations of apprenticeship learn-
ing for aerobatic helicopter flight [11]. Accelerating RL
can also be achieved through Implicit Imitation [12].

Another possible technique for speeding up RL is to
use some form of hierarchical decomposition of the prob-
lem [13]. A prominent example is the “MAXQ Value
Function Decomposition” [14]. Hybrid methods using
both apprenticeship learning and hierarchical decomposi-
tion have been successfully applied to quadruped locomo-
tion [15, 16]. Unfortunately, decomposition of the target
task is not always possible, and sometimes it may impose
additional burden on the users of the RL algorithm.

A state-of-the-art RL algorithm for efficient state space
exploration is E3 [17]. It uses active exploration policy
to visit states whose transition dynamics are still inaccu-
rately modeled. Because of this, running E3 directly in
the real world might lead to a dangerous exploration be-
havior.

Instead of executing RL algorithms in the real world,
simulations are commonly used. This approach has two
main advantages: speed and safety. Depending on its
complexity, a simulation can run many times faster than
a real-world experiment. Also, the time needed to set up
and maintain a simulation experiment is far less compared
to a real-world experiment. The second advantage, safety,
is also very important, especially if the RL agent is a very
expensive equipment (e.g. a fragile robot), or a dangerous
one (e.g. a chemical plant). Whether the full potential of
computer simulations has been utilized for RL, however,
is an open question.

A new trend in RL suggests that this might not be the
case. For example, two techniques have been proposed
recently to better utilize the potential of computer simu-
lations for RL: Time Manipulation [18] and Time Hop-
ping [19]. They share the concept of using the simula-
tion time as a tool for speeding up the learning process.
The first technique, called Time Manipulation, suggests
that doing backward time manipulations inside a simula-
tion can significantly speed up the learning process and
improve the state space exploration. Applied to failure-
avoidance RL problems, such as the cart-pole balancing
problem, Time Manipulation has been shown to increase
the speed of convergence by 260% [18].
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This paper focuses on the second technique, called
Time Hopping, which can be applied successfully to con-
tinuous optimization problems. Unlike the Time Ma-
nipulation technique, which can only perform backward
time manipulations, the Time Hopping technique can
make arbitrary “hops” between states and traverse rapidly
throughout the entire state space. It has been shown
to accelerate the learning process more than 7 times on
some problems [19]. Time Hopping possesses mecha-
nisms to trigger time manipulation events, to make predic-
tion about possible future rewards, and to select promising
time hopping targets.

This paper proposes an additional mechanism called
Eligibility Propagation to be added to the Time Hopping
technique, in order to provide similar abilities to what
eligibility traces provide for conventional RL. Eligibility
traces are easy to implement for conventional RL methods
with sequential time transitions, but in the case of Time
Hopping, due to its non-sequential nature, a number of
obstacles have to be overcome.

Eligibility Propagation makes use of a computer sim-
ulation as a generative model to which we can give any
state-action pair (s,a) and receive in return a randomly
sampled next state and a reward from the distributions as-
sociated with (s,a). Conceptually, the proposed mecha-
nism bears some resemblance to the sparse sampling al-
gorithm [20] and Prioritized Sweeping [21]. However,
the main differences are: a disconnected oriented graph is
constructed, instead of a sparse look-ahead tree as in [20]
or a priority queue as in [21]; the Time Hopping technique
is used, which makes hops between very distant states,
whereas in [20] only the immediate neighborhood of the
current state is sampled and in [21] no sampling is used at
all.

The following Section II makes a brief overview of the
Time Hopping technique and its components. Section III
explains why it is important (and not trivial) to imple-
ment some form of eligibility traces for Time Hopping
and proposes the Eligibility Propagation mechanism to
do this. Section IV presents the results from experimen-
tal evaluation of Eligibility Propagation on a benchmark
continuous-optimization problem: a biped crawling robot.

2. Overview of Time Hopping

2.1. Basics of Time Hopping

Time Hopping is an algorithmic technique which
allows maintaining higher learning rate in a simula-
tion environment by hopping to appropriately selected
states [19]. For example, let us consider a formal defini-
tion of a RL problem, given by the Markov Decision Pro-
cess (MDP) on Fig. 1. Each state transition has a probabil-
ity associated with it. State 1 represents situations of the
environment that are very common and learned quickly.
The frequency with which state 1 is being visited is the
highest of all. As the state number increases, the proba-
bility of being in the corresponding state becomes lower.
State 4 represents the rarest situations and therefore the
most unlikely to be well explored and learned.

1 2 3 4

0.9 0.9 0.9

0.10.1

Start

“Shortcuts in time” created by Time Hopping 

0.9
0.10.1

Fig. 1. An example of a MDP with uneven state probability
distribution. Time Hopping can create “shortcuts in time”
(shown with dashed lines) between otherwise distant states,
i.e. states connected by a very lowprobability path. This
allows even the lowestprobability state 4 to be learned easily.

When applied to such a MDP, Time Hopping creates
“shortcuts in time” by making hops (direct state transi-
tions) between very distant states inside the MDP. Hop-
ping to low-probability states makes them easier to be
learned, while at the same time it helps to avoid unneces-
sary repetition of already well-explored states [19]. The
process is completely transparent for the underlying RL
algorithm.

2.2. Components of Time Hopping
When applied to a conventional RL algorithm, Time

Hopping consists of 3 components:

1) Hopping trigger – decides when the hopping starts;

2) Target selection – decides where to hop to;

3) Hopping – performs the actual hopping.

The flowchart on Fig. 3 shows how these 3 components
of Time Hopping are connected and how they interact
with the RL algorithm.

When the Time Hopping trigger is activated, a target
state and time have to be selected, considering many rele-
vant properties of the states, such as probability, visit fre-
quency, level of exploration, connectivity to other states
(number of state transitions), etc. In this paper, the “lasso
target selection” is used, as described in [19]. After a tar-
get state and time have been selected, hopping can be per-
formed. It includes setting the RL agent and the simu-
lation environment to the proper state, while at the same
time preserving all the acquired knowledge by the agent.

3. Eligibility Propagation

3.1. Assumptions
In this paper, the environment is assumed to be a MDP,

but the agent is not provided with an explicit model of
this MDP. Instead, the learning algorithm is given access
to a generative model, or simulator, of the MDP. The sim-
ulator acts as a “black box” to which we can give any
state-action pair (s,a) and receive in return a next state
and a reward. Such generative models are considered to
blur the distinction between what is typically called “plan-
ning” and “learning” in MDPs [20]. Since our algorithm
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is not given an explicit MDP model, and it learns pieces of
the MDP on-the-fly during the exploration, we consider
it to be a “learning” algorithm. The proposed algorithm
does not make use of any internal information of the gen-
erative model, treating it as a true “black box.” This com-
plies with the standard condition of reinforcement learn-
ing, that the learning agent does not know its environment.
As the exploration progresses, the agent learns pieces of
the MDP and organizes them as explained in Section 3.4.

3.2. The Role of Eligibility Traces
Eligibility traces are one of the basic mechanisms for

temporal credit assignment in reinforcement learning [1].
An eligibility trace is a temporary record of the occur-
rence of an event, such as the visiting of a state or the
taking of an action. When a learning update occurs,
the eligibility trace is used to assign credit or blame for
the received reward to the most appropriate states or ac-
tions. For example, in the popular TD (λ ) algorithm, the
λ refers to the use of an eligibility trace. Almost any
temporal-difference (TD) methods, e.g., Q-learning and
SARSA, can be combined with eligibility traces to obtain
a more general method that may learn more efficiently.
This is why it is important to implement some form of el-
igibility traces for Time Hopping as well, in order to speed
up its convergence.

Eligibility traces are usually easy to implement for con-
ventional RL methods. In the case of Time Hopping, how-
ever, due to its non-sequential nature, it is not trivial to do
so. Since arbitrary hops between states are allowed, it
is impossible to directly apply linear eligibility traces. In-
stead, we propose a different mechanism called Eligibility
Propagation to do this.

3.3. Eligibility Propagation Mechanism
Time Hopping is guaranteed to converge when an off-

policy RL algorithm is used [19], because the learned pol-
icy is independent of the policy followed during learning.
This means that the exploration policy does not converge
to the optimal policy. In fact, Time Hopping deliberately
tries to avoid convergence of the policy in order to main-
tain high learning rate and minimize exploration redun-
dancy. This poses a major requirement for any poten-
tial eligibility-trace-mechanism: it has to be able to learn
from independent non-sequential state transitions spread
sparsely throughout the state space.

The proposed solution is to construct an oriented graph
which represents the state transitions with their associated
actions and rewards and use this data structure to propa-
gate the learning updates. Because of the way Time Hop-
ping works, the graph might be disconnected, consisting
of many separate connected components.

Regardless of the actual order in which Time Hopping
visits the states, this oriented graph contains a record of
the correct chronological sequence of state transitions.
For example, each state transition can be considered to
be from state St to state St+1, and the information about
this state transition is independent from what happened

St+1

Predecessor states

Next

 St

Reward

Action

St-1

Eligibility
Propagation

Current 

St-1

St-1

Fig. 2. Eligibility Propagation mechanism applied to the
oriented graph of state transitions.

before it and what will happen after it. This allows to effi-
ciently collect the separate pieces of information obtained
during the randomized hopping, and to process them uni-
formly using the graph structure. The way to construct
such a state transitions graph on-the-fly is described in
Section 3.4.

The proposed mechanism uses the current oriented
graph to propagate state value updates in the opposite di-
rection of the state transition edges. This way, the prop-
agation logically flows backwards in time, from state St
to all of its temporal predecessor states St−1, St−2 and so
on. The propagation stops when the value updates be-
come sufficiently small. The mechanism is illustrated on
Fig. 2.

It should be noted that the proposed mechanism does
not explicitly assign eligibility values in the way that con-
ventional eligibility traces work, e.g. as in TD (λ ). In-
stead of such explicit values, the oriented graph itself is
used to point to the states or actions which are most el-
igible to receive credit or blame for the received reward.
This justifies the use of the word “eligibility” in the name
of the proposed mechanism.

In summary, an explicit definition for the proposed
mechanism is as follows:

Eligibility Propagation is an algorithmic mechanism
for Time Hopping to efficiently collect, represent and
propagate information about states and transitions. It
uses a state transitions graph constructed on-the-fly and a
wave-like propagation algorithm to propagate state values
from one state to all of its temporal predecessor states.

A concrete implementation of this mechanism within
the Time Hopping technique is given in Section 3.5.

3.4. Construction of the State Transitions Graph
As explained in Section 3.1, the proposed Eligibility

Propagation does not require a model of the environment,
i.e. that the state transitions graph is unknown. To cope
with this, the proposed algorithm constructs an approxi-
mation of the state transitions graph on-the-fly while the
RL algorithm is exploring. This is done using only the
information available from the “black box” generative
model: the current state (a state number), the action per-
formed (an action number), the next state (a state number)
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and the reward received (a scalar value). This information
determines uniquely one edge of the graph, together with
its source and destination vertices, which are added to the
graph if not already present. The so-constructed approx-
imation of the state transitions graph grows bigger as the
exploration advances and more nodes (states) and edges
(transitions) are added to the graph. At any point in time,
the current state transitions graph represents the acquired
knowledge of the agent about the underlying MDP and
the proposed Eligibility Propagation mechanism is trying
to make best use of this accumulated knowledge to speed
up the learning process.

3.5. Implementation of Eligibility Propagation

The proposed implementation of Eligibility Propaga-
tion can be called “reverse graph propagation,” because
values are propagated inside the graph in reverse (op-
posite) direction of the state transitions’ directions. The
process is similar to the wave-like propagation of a BFS
(breadth-first search) algorithm.

In order to give a more specific implementation de-
scription, Q-learning is used as the underlying RL algo-
rithm. The following is the pseudo-code for the proposed
Eligibility Propagation mechanism:

1. Construct an ordered set (queue) of state transi-
tions called PropagationQueue and initialize it with
the current state transition 〈St ,St+1〉 in this way:

PropagationQueue = 〈〈St ,St+1〉〉 . . . (1)

2. Take the first state transition 〈St ,St+1〉 ∈
PropagationQueue and remove it from the queue.
3. Let Qmax be the current maximum Q-value of state
St :

Qmax = max
A

{QSt ,A} . . . . . . . . (2)

where the transition from state St to state St+1 is done
by executing action A, and the reward RSt ,A is re-
ceived.
4. Update the Q-value for making the state transition
〈St ,St+1〉 using the update rule:

QSt ,A = RSt ,A + γ max
A′

{
QSt+1,A′

}
. . . . (3)

5. Let Q′
max be the new maximum Q-value of state St ,

calculated using formula Eq. (2).
6. If

∣
∣Q′

max −Qmax
∣
∣ > ε . . . . . . . . . (4)

then construct the set of all immediate predecessor
state transitions of state St :

{〈St−1,St〉 | 〈St−1,St〉 ∈ transitions graph} (5)

and append it to the end of the PropagationQueue.
7. If PropagationQueue �= 〈〉 then go to step 2.
8. Stop.

The decision whether further propagation is necessary
is made in step 6. The propagation continues one more
step backwards in time only if there is a significant differ-

Select action 

Execute action

No

Yes

RL initialization 

Hopping
trigger

Target selection 

Hopping 

Eligibility
propagation

Get reward 

Change state 

TTiimmee--HHooppppiinngg

RRLL aallggoorriitthhmm
mmaaiinn lloooopp

1

2

3

4

Fig. 3. Eligibility Propagation integrated as a 4th component
in the Time-Hopping technique. The lower group (marked
with a dashed line) contains the conventional RL algorithm
main loop, into which the Time Hopping components (the
upper group) are integrated.

ence between the old maximum Q-value and the new one,
according to formula Eq. (). This formula is based on the
fact that Q′

max might be different than Qmax in exactly 3
out of 4 possible cases, which are:

- The transition 〈St ,St+1〉 was the one with the highest
value for state St and its new (bigger) value needs to
be propagated backwards to its predecessor states.

- The transition 〈St ,St+1〉 was the one with the high-
est value but it is not any more, because its value
is reduced. Propagation of the new maximum value
(which belongs to a different transition) is necessary.

- The transition 〈St ,St+1〉 was not the one with the
highest value but now it became one, so its value
needs propagation.

The only case when propagation is not necessary is
when the transition 〈St ,St+1〉 was not the one with the
highest value and it is still not the one after the update.
In this case, Q′

max is equal to Qmax and formula Eq. (4)
correctly detects it and skips propagation.

In the previous 3 cases the propagation is performed,
provided that there is a significant change of the value,
determined by the ε parameter. When ε is smaller, the
algorithm tends to propagate further the value changes.
When ε is bigger, it tends to propagate only the biggest
changes just a few steps backwards, skipping any minor
updates.

The depth of propagation also depends on the discount
factor γ . The bigger γ is, the deeper the propagation is,
because longer-term reward accumulation is stimulated.
Still, due to the exponential attenuation of future rewards,
the γ discount factor prevents the propagation from going
too far and reduces the overall computational cost.

The described Eligibility Propagation mechanism can
be encapsulated as a single component and integrated into
the Time Hopping technique as shown on Fig. 3. It is
called immediately after a state transition takes place, in
order to propagate any potential Q-value changes, and be-
fore a time hopping step occurs.
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Table 1. Implementation used for each time hopping com-
ponent.

Component name Implementation used
1 Hopping trigger Gamma pruning
2 Target selection Lasso target selection
3 Hopping Basic hopping
4 Eligibility propagation Reverse graph propagation

4. Application of Eligibility Propagation to
Biped Crawling Robot

In order to evaluate the efficiency of the proposed El-
igibility Propagation mechanism, experiments on a sim-
ulated biped crawling robot are conducted. The goal of
the learning process is to find a crawling motion with the
maximum speed. The reward function for this task is de-
fined as the horizontal displacement of the robot after ev-
ery action.

4.1. THEN Experimental Environment
A dedicated experimental software system called

THEN (Time Hopping ENvironment) was developed for
the purpose of this evaluation. THEN has a built-in
physics simulation engine, implementation of the Time
Hopping technique, useful visualization modules (for the
simulation, the learning data and the state transitions
graph) and most importantly – a prototype implementa-
tion of the Eligibility Propagation mechanism. To facil-
itate the analysis of the algorithm behavior, THEN dis-
plays detailed information about the current state, the pre-
vious state transitions, a visual view of the simulation, and
allows runtime modification of all important parameters
of the algorithms and the simulation. The evaluation of
Eligibility Propagation is based on the accumulated data
from THEN and various visualizations of it in the form of
charts.

4.2. Description of the Crawling Robot
The experiments are conducted on a physical simula-

tion of a biped crawling robot. The robot has 2 limbs,
each with 2 segments, for a total of 4 degrees of free-
dom (DOF). Every DOF is independent from the rest
and has 3 possible actions at each time step: to move
clockwise, to move anti-clockwise, or to stand still. The
robot and its 2D simulation are the same as the ones de-
scribed in [19]. More importantly, there is no difference
between the crawling robot’s behavior learned with Eli-
gibility Propagation and without Eligibility Propagation.
The only difference is the speed of learning.

When all possible actions of each DOF of the robot are
combined, assuming that they can all move at the same
time independently, it produces an action space with size
34 − 1 = 80 (we exclude the possibility that all DOF are
standing still). Using appropriate discretization for the
joint’s angles (9 for the upper limbs and 13 for the lower
limbs), the state space becomes divided into (9× 13)2 =
13689 states.

Fig. 4. Speed-of-learning comparison of conventional Q-
learning, Time Hopping, and Time Hopping with Eligibility
Propagation. It is based on the best solution achieved relative
to the duration of training. The achieved crawling speed is
measured as a percentage of the globally optimal solution,
i.e. the fastest possible crawling speed of the robot.

4.3. Description of the Experimental Method
The conducted experiments are divided in 3 groups:

experiments using conventional Q-learning, experiments
using only the Time Hopping technique applied to Q-
learning (as described in [19]), and experiments using
Time Hopping with Eligibility Propagation. The imple-
mentations used for the Time Hopping components are
shown in Table 1.

The experiments from all three groups are conducted
in exactly the same way, using the same RL parameters
(incl. discount factor γ , learning rate α , and the action se-
lection method parameters). The initial state of the robot
and the simulation environment parameters are also equal.
The robot training continues up to a fixed number of steps
(45000), and the achieved crawling speed is recorded at
fixed checkpoints during the training. This process is re-
peated 10 times and the results are averaged, in order to
ensure statistical significance.

4.4. Evaluation of Eligibility Propagation
The evaluation of Eligibility Propagation is done using

three main experiments.
In the first experiment, the learning speed of conven-

tional Q-learning, Time Hopping, and Time Hopping with
Eligibility Propagation is compared based on the best so-
lution found (i.e. the fastest achieved crawling speed) for
the same number of training steps. The comparison re-
sults are shown in Fig. 4. It shows the duration of training
needed by each of the 3 algorithms to achieve a certain
crawling speed. The achieved speed is displayed as per-
centage from the globally optimal solution.

The results show that Time Hopping with Eligibility
Propagation is much faster than Time Hopping alone,
which in turn is much faster than conventional Q-learning.

Compared to Time Hopping alone, Eligibility Propaga-
tion achieves significant speed-up of the learning process.
For example, an 80%-optimal crawl is learned in only
5000 steps when Eligibility Propagation is used, while
Time Hopping alone needs around 20000 steps to learn
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Fig. 5. Computational-time comparison of conventional Q-
learning, Time Hopping, and Time Hopping with Eligibility
Propagation. It is based on the real computational time of
each algorithm required to reach a certain quality of the so-
lution, i.e. certain crawling speed.

the same, i.e. in this case Eligibility Propagation needs 4
times fewer training steps to achieve the same result. The
speed-up becomes even higher as the number of training
steps increases. For example, Time Hopping with Eli-
gibility Propagation reaches 90%-optimal solution with
12000 steps, while Time Hopping alone needs more than
50000 steps to do the same.

Compared to conventional Q-learning, Eligibility Prop-
agation achieves even higher speed-up. For example, it
needs only 4000 steps to achieve a 70%-optimal solution,
while conventional Q-learning needs 36000 steps to learn
the same, i.e. in this case Eligibility Propagation is 9
times faster. Time Hopping alone also outperforms con-
ventional Q-learning by a factor of 3 in this case (12000
steps vs. 36000 steps).

In the second experiment, the real computational time
of conventional Q-learning, Time Hopping, and Time
Hopping with Eligibility Propagation is compared. The
actual execution time necessary for each of the three al-
gorithms to reach a certain crawling speed is measured.
The comparison results are shown in Fig. 5.

The results show that Time Hopping with Eligibil-
ity Propagation achieves 99% of the maximum pos-
sible speed almost 3 times faster than Time Hopping
alone, and more than 4 times faster than conventional Q-
learning. This significant speed-up of the learning process
is achieved despite the additional computational overhead
of maintaining the transitions graph. The reason for this
is the improved Gamma-pruning based on more precise
future reward predictions, as confirmed by the third ex-
periment.

The goal of this third experiment is to provide insights
about the state exploration and Q-value distribution, in
order to explain the results from the previous two ex-
periments. Conventional Q-learning, Time Hopping, and
Time Hopping with Eligibility Propagation are compared
based on the maximum Q-values achieved for all explored
states after 45000 training steps. The Q-values are sorted
in decreasing order and represent the distribution of Q-

Fig. 6. State-exploration comparison of conventional Q-
learning, Time Hopping, and Time Hopping with Eligibility
Propagation. It shows the sorted sequence of maximum Q-
values of all explored states after 45000 steps of training.
Time Hopping with Eligibility Propagation has managed to
find much higher maximum Q-values for the explored states.
The conventional Q-learning has explored more states, but
has found lower Q-values for them.

values within the explored state space. Fig. 6 shows the
comparison results.

Firstly, the results show that Time Hopping with El-
igibility Propagation has managed to find significantly
higher maximum Q-values for the explored states com-
pared to both conventional Q-learning and Time Hopping.
The reason for this is that Eligibility Propagation manages
to propagate well the state value updates among all ex-
plored states, therefore raising their maximum Q-values.

Secondly, the results show that both Time Hopping and
Time Hopping with Eligibility Propagation have explored
much fewer states than conventional Q-learning. The rea-
son for this is the Gamma-pruning component of Time
Hopping. It focuses the exploration of Time Hopping to
the most promising branches and avoids unnecessary ex-
ploration. Conventional Q-learning does not have such a
mechanism and therefore it explores more states, but finds
lower Q-values for them.

Also, Time Hopping with Eligibility Propagation has
explored slightly fewer states than Time Hopping alone.
The reason for this is that while both algorithms concen-
trate the exploration on the most promising parts of the
state space, only the Eligibility Propagation manages to
propagate well the Q-values among the explored states.
This improves the accuracy of the future reward esti-
mation performed by the Gamma-pruning component of
Time Hopping, which in its turn detects better unpromis-
ing branches of exploration and triggers a time hopping
step to avoid them.

The more purposeful exploration and better propaga-
tion of the acquired state information help Eligibility
Propagation to make the best of every single exploration
step. This is a very important advantage of the proposed
mechanism, especially if the simulation involved is com-
putationally expensive. In this case, Eligibility Propa-
gation can save real computational time by reducing the
number of normal transition (simulation) steps in favor of
Time Hopping steps.
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5. Conclusion

The Eligibility Propagation mechanism is proposed to
provide for Time Hopping similar abilities to what eligi-
bility traces provide for conventional RL.

During operation, Time Hopping completely changes
the normal sequential state transitions into a rather ran-
domized hopping behavior throughout the state space.
This poses a challenge how to efficiently collect, represent
and propagate knowledge about actions, rewards, states
and transitions. Since using sequential eligibility traces
is impossible, Eligibility Propagation uses the transitions
graph to obtain all predecessor states of the updated state.
This way, the propagation logically flows backwards in
time, from one state to all of its temporal predecessor
states.

The proposed mechanism is implemented as a fourth
component of the Time Hopping technique. This main-
tains the clear separation between the 4 Time Hopping
components and makes it straightforward to experiment
with alternative component implementations.

The biggest advantage of Eligibility Propagation is that
it can speed up the learning process of Time Hopping
more than 3 times. This is due to the improved Gamma-
pruning ability based on more precise future reward pre-
dictions. This, in turn, increases the exploration efficiency
by better avoiding unpromising branches and selecting
more appropriate hopping targets.

The conducted experiments on a biped crawling robot
also show that the speed-up is achieved using significantly
fewer training steps. As a result, the speed-up becomes
even higher when the simulation is computationally more
expensive, due to the more purposeful exploration. This
property makes Eligibility Propagation very suitable for
speeding up complex learning tasks which require costly
simulation.

Another advantage of the proposed implementation of
Eligibility Propagation is that no parameter tuning is nec-
essary during the learning, which makes the mechanism
easy to use.

Finally, an important drawback of the proposed tech-
nique is that it needs additional memory to store the
transitions graph data. In other words, the speed-up is
achieved by using more memory.
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