
Simultaneous Discovery of Multiple Alternative
Optimal Policies by Reinforcement Learning

Petar Kormushev and Darwin G. Caldwell
Department of Advanced Robotics

Istituto Italiano di Tecnologia
Via Morego 30, 16163 Genova, Italy

Email: {petar.kormushev, darwin.caldwell}@iit.it

Abstract—Conventional reinforcement learning algorithms for
direct policy search are limited to finding only a single optimal
policy. This is caused by their local-search nature, which allows
them to converge only to a single local optimum in policy space,
and makes them heavily dependent on the policy initialization.

In this paper, we propose a novel reinforcement learning
algorithm for direct policy search, which is capable of si-
multaneously finding multiple alternative optimal policies. The
algorithm is based on particle filtering and performs global
search in policy space, therefore eliminating the dependency
on the policy initialization, and having the ability to find the
globally optimal policy. We validate the approach on one- and
two-dimensional problems with multiple optima, and compare its
performance to a global random sampling method, and a state-of-
the-art Expectation-Maximization based reinforcement learning
algorithm.

Keywords—reinforcement learning; particle filters; global
search

I. INTRODUCTION

Reinforcement learning (RL) is a machine learning ap-
proach, in which the goal is to find a policy π that maximizes
the expected future return, calculated based on a scalar reward
function R(·) ∈ R. The argument of R(·) can be defined in
different ways, e.g. it could be a state s, or a state transition,
or a state-action pair, or a whole trial as in the case of
episodic RL, etc. The policy π determines what actions will
be performed by the RL agent, and is usually state dependent.
[1]

Originally, the RL problem was formulated in terms of a
Markov Decision Process (MDP) or Partially Observable MDP
(POMDP). In this formulation, the policy π is viewed as a
direct mapping function (π : s 7−→ a) from state s ∈ S to
action a ∈ A.

Alternatively, instead of trying to learn the explicit mapping
from states to actions, it is possible to perform direct policy
search, as shown in [2]. In this case, the policy π is considered
to depend on some parameters θ ∈ RN , and is written as a
parameterized function π(θ). The episodic reward function be-
comes R(τ(π(θ))), where τ is a trial performed by following
the policy. The reward can be abbreviated as R(τ(θ)) or even
as R(θ), which reflects the idea that the behaviour of the RL
agent can be influenced by only changing the values of the
policy parameters θ. Therefore, the outcome of the behaviour,
which is represented by the reward R(θ), can be optimized
by only optimizing the values θ. This way, the RL problem is

transformed into a black-box optimization problem with cost
function R(θ), as shown in [3] under the name parameter-
based exploration.

However, it is infeasible to use conventional numeric opti-
mization methods to maximize R(θ) if we want to apply RL
to real-world problems, because the cost function is usually
expensive to evaluate. For example, each cost function evalu-
ation requires conducting at least one trial which could involve
costly real-world experiments or computationally expensive
simulations. Therefore, alternative optimization methods are
desired, which are tuned to the specific need of RL to reduce
as much as possible the number of reward function evaluations
(trials).

This paper aims to bring new ideas into the domain of RL,
borrowed from statistics. We propose a novel direct policy
search RL algorithm which provides an alternative solution to
the RL problem, and new possibilities for RL algorithms in
general. Before we can introduce our proposed approach, we
need to place it in the proper context, which is done in the
following Sections II and III.

II. STATE-OF-THE-ART RL ALGORITHMS
FOR DIRECT POLICY SEARCH

This section contains a non-exhaustive list of direct policy
search RL approaches. We focus on policy search methods
that attempt to minimize the number of trials. Examples for
such RL methods include:
• Policy Gradient based RL - in which the RL algorithm

is trying to estimate the gradient of the policy with
respect to the policy parameters, and to perform gradient
descent in policy space. The Episodic Natural Actor-
Critic (eNAC), in [4], and Episodic REINFORCE in [5]
are two of the well-established approaches of this type.

• Expectation-Maximization based RL - in which the EM
algorithm is used to derive an update rule for the policy
parameters at each step, trying to maximize the lower
bound on the expected return of the policy. A state-of-the-
art RL algorithm of this type is PoWER (Policy learning
by Weighting Exploration with the Returns), in [6], as
well as its generalization MCEM, in [7].

• Path Integral based RL - in which the learning of the
policy parameters is based on the framework of stochastic
optimal control with path integrals. A state-of-the-art RL



algorithm of this type is PIˆ2 (Policy Improvement with
Path Integrals), in [8].

• Regression based RL - in which regression is used to
calculate updates to the RL policy parameters using
the rewards as weights. One of the approaches that are
used extensively is LWPR (Locally Weighted Projection
Regression), in [9].

• Model-based policy search RL - in which a model of
the transition dynamics is learned and used for long-
term planning. Policy gradients are computed analytically
for policy improvement using approximate inference.
A state-of-the-art RL algorithm of this type is PILCO
(Probabilistic Inference for Learning COntrol), in [10].

A major problem with all these existing approaches is that
they only perform local search, therefore they do not guarantee
convergence to the global optimum. Instead, all of them tend
to converge to some local sub-optimal solution.

Another major problem is that the result from each method
is largely influenced by the initial value of θ. The reason for
this is that all of these methods have the inherent notion of
‘current policy’. They work by changing this current policy
iteratively with a small amount every time using an update
rule in the following generic form:

θn+1 = θn + ∆θ, (1)

where θn is the current policy and θn+1 is the new policy. The
term ∆θ is calculated in different ways, either by some form of
gradient estimation (as in gradient-based RL algorithms and
PILCO), or using other calculation method (e.g. EM based,
path integral based or regression-based). Regardless of the
exact way, these approaches are, by definition, local search
methods, and they can only guarantee convergence to a local
optima.

In contrast, what we propose in this paper is a global search
method for direct policy search reinforcement learning which
is guaranteed not to get stuck at local optima. The principle
for realizing this comes from another research domain: particle
filtering.

III. PARTICLE FILTERS

Particle filters, also known as Sequential Monte Carlo
methods [11], [12], originally come from statistics and are
similar to importance sampling methods. Particle filters are
able to approximate any probability density function, and can
be viewed as a ‘sequential analogue’ of Markov chain Monte
Carlo (MCMC) batch methods.

Although particle filters are mainly used in statistics, there
are a few other research areas in which particle filters have
found application. For example, in the domain of probabilistic
robotics [13], particle filters are extensively and successfully
used, e.g. for performing Monte Carlo localization of mobile
robots with respect to a global map of the terrain [14], [15],
and also for Simultaneous Localization and Mapping (SLAM)
tasks [16], [17], [18].

The potential of applying particle filters in the RL domain
appears to be largely unexplored so far. To the best of our

knowledge, there are only two partial attempts to apply particle
filters in RL in the existing published work, done by Notsu
et al and Samejima et al, respectively, as follows.

In [19], they studied traditional RL with discrete state
and action spaces. They used the Actor-Critic method for
performing value iteration, with state value updates using the
TD-error. In this conventional framework, they proposed a
particle filter for segmentation of the action space. Their goal
was to do domain reduction, i.e. to minimize the number of
discrete actions available at each state, by dividing the action
space in segments. Then, in [20], they extended the same idea
to traditional continuous RL and used Q-learning with function
approximation. They used a similar particle filter approach for
segmenting the continuous state and action spaces into discrete
sets by particles, and applied it to inverted pendulum tasks.

In [21], they studied neurophysiology and created a re-
inforcement learning model of an animal behaviour. Their
goal was to predict the behaviour of a monkey during an
experimental task. They used traditional Q-learning, and built
a Bayesian network representation of the Q-learning agent. In
this framework, particle filtering was used to estimate action
probability in order to predict the animal behaviour.

In both of these existing approaches, particle filters were
used in a limited way, as a technique to solve some partial
problem within a traditional RL framework.

In this paper, we propose a rather different approach. First,
we propose a completely new view of the link between
particle filters and RL. Then, we propose an entirely novel
RL algorithm for direct global policy search, based on particle
filters as the core for the RL algorithm itself. In our framework,
the search is performed in the policy space defined by the
selected policy parameterization, and the process is viewed as
a black-box optimization. The particle filter itself is the core
of the proposed RL algorithm, and is responsible for guiding
the exploration and exploitation, by creating particles, each of
which represents a whole policy. Details of the proposed novel
view and algorithm follow.

IV. NOVEL VIEW OF RL AND ITS LINK TO
PARTICLE FILTERS

The key to linking particle filters and RL is to make the
following observation. The landscape, defined by the reward
function R(θ) ∈ R over the whole continuous domain of
the parameter space θ ∈ Θ, can be viewed as defining an
improper probability density function (IPDF)1. This is possible
even if the reward function R(θ) has negative values in its
range, because we can simply add a constant positive number
L = | infθ∈ΘR(θ)| to it, and obtain a new reward function
R′(θ) which is non-negative and has exactly the same set of
optimizers θ∗ ∈ Θ as the original one. Therefore, optimizing
R′(θ) will also optimize R(θ).

Once we make the assumption that R(θ) is just an IPDF,
then the RL problem can be reformulated from a new point

1IPDF is similar to PDF except that the integral of it does not have to be
equal to one.



of view. Each trial τ(π(θ)) can be viewed as an independent
sample from this unknown IPDF. The RL algorithm can be
viewed as a method for choosing a finite number of sampling
points for which to obtain the value of the IPDF. Finally,
the RL problem can be viewed as the problem of finding the
mode (or all modes, in the multi-modal case) of the unknown
IPDF, given only a finite number of sampling points with
their corresponding values of the IPDF, obtained by the RL
algorithm.

This view of RL immediately opens the path for applying
particle filters, because they are a method for approximate
estimation of an unknown PDF based on a finite number of
samples. To complete the link between RL and particle filters,
the only thing left to state is that it is trivial to convert an
IPDF into a PDF simply by normalizing it (i.e. dividing by
the integral of it).

V. RL BASED ON PARTICLE FILTERS

Using the reformulation of RL from the previous section,
here we propose a novel RL algorithm based on Particle Filters
(RLPF). The main idea of RLPF is to use particle filtering as
a method for choosing the sampling points, i.e. for calculating
a parameter vector θ for each trial.

We define a policy particle pi to be the tuple pi =
〈θi, τi, Ri, wi〉, where the particle pi represents the outcome of
a single trial τi performed by executing an RL policy π(θi),
where θi is a vector of policy parameter values modulating
the behaviour of the RL policy π. The policy particle also
stores the value of the reward function evaluated for this trial
Ri = R(τi(π(θi))). The variable τi contains task-specific
information recorded during the trial depending on the nature
of the task. The information in τi is used by the reward
function to perform its evaluation. The variable wi is the
importance weight of this policy particle, and the way of its
calculation is explained below.

Following closely the ideas from particle filters, we make
the assumption that the set of particles {pi} is an approxi-
mate implicit representation of the underlying unknown IPDF
defined by R(θ). Therefore, in order to select a new particle
which obeys the real IPDF distribution, what we can do is
to sample from the approximate distribution while correcting
for the discrepancy between it and the real distribution. The
mechanism for this correction is provided by the importance
weights {wi}.

Firstly, each policy particle pi is assigned a scalar impor-
tance weight wi derived from its corresponding reward Ri
using a transformation function g, such that: wi ∝ g(Ri). In
the simplest case, g(·) could be the identity, but in the general
case, it could be an arbitrary non-negative function. We apply
the function g in such a way, that the importance weights are
normalized, in the sense that: ∀wi 0 < wi < 1, and also:∑
wi = 1.
Secondly, we construct an auxiliary function h(u) =∫ u
−∞ wudu, which in our discrete case takes the form h(k) =∑k
j=1 wj . This function can be thought of as the (approximate)

cumulative density function (CDF) of the unknown PDF.

Fig. 1. An illustration of a typical run of RLPF on a 1-dimensional problem.
The generated policy particles by RLPF are shown with vertical grey stripes.
The corresponding reward values are shown with black circles on top of the
reward function line, shown in green. The following synthetic reward function
was used, because it has many local optima: R(θ) = 1.55 + 0.3 sin(2.7θ) +

0.4 sin(4.5θ) + 0.2 sin(8.7θ) + 0.14 sin(20θ) + 0.08 sin(30θ) + 0.08 sin(50θ).

Indeed, due to the way we create the importance weights,
it follows directly that

∫ +∞
−∞ wudu = 1, and thus h(u) is a

proper CDF. This is important because, given that wi > 0, it
guarantees that h(u) is strictly monotonically increasing and
therefore the inverse function h−1 exists.

Thirdly, we introduce a random variable z which is uni-
formly distributed in the interval (0, 1). Now, it can be shown
that the random variable y defined as y = h−1(z) is distributed
(approximately) according to the desired unknown PDF, see
e.g. [22].

At this point, there are two variants of particle filters, which
accordingly result in two variants for RLPF, and they are:
• Sequential Importance Resampling (SIR) - this is the

original particle filtering algorithm [23]. It approximates
the filtering distribution by a weighted set of particles,
very similar to what we described so far. However,
unlike RLPF, where our goal is to find the mode (or all
modes) of the unknown IPDF, the goal of SIR is to find
the expectation of a function by approximating it as a
weighted average.

• Sequential Importance Sampling (SIS) - This variant is
very similar to SIR, except that it does not use the
resampling stage.

In SIR, resampling is used in order to avoid the problem of
degeneracy of the algorithm, that is, avoiding the situation that
all but one of the importance weights are close to zero. The
performance of the algorithm can be also affected by proper
choice of resampling method.

However, the goal of RLPF is not to approximate the
expectation of a function, but rather, to find the mode (or
modes) of the unknown function R(θ). Thus, we describe
the proposed RLPF algorithm as a special case of SIS, while
keeping in mind that it can easily be extended into SIR by
adding a resampling step. The pseudo-code for RLPF is given
in Algorithm 1.



VI. ANALYSIS OF RLPF

RLPF inherits many advantages from particle filters, among
which:
• It is very simple to implement and can be realized easily

in embedded systems for online learning;
• It is not computationally expensive and has very low

memory footprint;
• It can use adaptive computation depending on the avail-

able resources (both time- and CPU-wise) by changing
the value of the σ parameter;

• It can concentrate the effort of the RL exploration on
the most important parts of the policy space, by using
function g(R) which increases the relative difference
between the rewards, e.g. the function g(R) = (1 +R)2;

• It can exhibit adaptive convergence rate depending on
the requirements for precision and time, by changing the
initial noise level ε0 and the decay factor λ.

Algorithm 1 Reinforcement Learning based on Particle Filters
(RLPF)

Input: parameterized policy π, policy parameter space Θ,
reward function R(θ) where θ ∈ Θ, reward transformation
function g, total number of trials N , initialization number
of trials L < N , initial noise ε0, noise decay factor λ,
maximum number of particles σ.

Let S = { } {A set of policy particles}
for l = 1 to L do

Draw θl ∼ U(Θ) {Sample L initial particles}
Perform trial τl(π(θl))
Create new policy particle pl = 〈θl, τl, Rl, wl〉
S = S ∪ {pl}

end for
for n = L+ 1 to N do

Let h(0) = 0
for i = 1 to |S| do
wi = g(Ri)∑|S|

j=1 g(Rj)
{Calc. importance weights}

h(i) = h(i− 1) + wi {Calc. aux. function}
end for
Draw z ∼ U(0, 1)
Let y = h−1(z)
Let k = dye {d·e is the ceiling function}
Select policy particle pk = 〈θk, τk, Rk, wk〉
Let εn = ε0λ

(n−L−1) {noise with exp. decay λ}
Let θn = θk + εn
Perform trial τn(π(θn))
Create new policy particle pn = 〈θn, τn, Rn, wn〉
S = S ∪ {pn}
if |S| > σ then

{Remove policy particle with smallest reward}
j = argminpj∈S g(Rj)
S = S \ {pj}

end if
end for

Fig. 2. A comparison of the convergence of two global policy search RL
algorithms: Global Random Sampling (GRS) policy search RL algorithm, and
RLPF. The results are averaged over 50 runs of each algorithm. Every run has
100 trials. RLPF easily outperforms GRS both in terms of achieved reward
and low level of variance.

To be fair, we should also mention some disadvantages of
RLPF. For example, as a member of global search meth-
ods, it generally requires more trials in order to converge,
because the scope of the search is the largest possible -
the whole policy space. However, using appropriate reward
transformation functions, it is possible to bias the exploration
towards the highest-reward particles, sacrificing thoroughness
for convergence speed.

VII. EXPERIMENTAL EVALUATION OF RLPF

First, we evaluate RLPF standalone on a one-dimensional
problem, because it is the easiest to visualize and analyze.
Figure 1 shows an example run of RLPF on a class of synthetic
1D reward functions with many local optima. It is clearly
visible that the generated policy particles by RLPF tend to
cluster around the highest ‘peaks’ in the reward function.

Second, we compare the performance of RLPF with other
global policy search RL methods. It is difficult to select
baseline against which to compare RLPF to, because there
are no any truly global search policy-based RL algorithms. It
would not be fair to compare a local search RL, such as policy
gradient based RL, to RLPF, because the local search methods
will easily get stuck at the local optima. So, instead, for a
baseline we use a stochastic global policy search RL algorithm,
which is based on Global Random Sampling (GRS) in policy
space. The comparison with RLPF is shown in Figure 2,
averaged over many runs.

Third, we evaluate RLPF on a two-dimensional problem.
Figure 3 shows an example run of RLPF on a 2D reward
function, which has multiple alternative optima all having the
same value. RLPF is able to efficiently explore the whole
policy space, by covering it uniformly with policy particles
during the initialization phase. Then, for the rest of the trials,
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Fig. 3. Evaluation of the proposed RLPF algorithm on a 2D problem with
the following reward function: R(θ) = 1000 − min(|θ1 + 25|, |θ1 − 25|)2. The
optimal policies lie on two vertical lines (θ1 = ±25), and are illustrated
with red lines. The total number of trials is 2000 (the first 400 of them are
random), and RLPF manages to find almost 1500 alternatives in total, with
around 900 of them above the threshold (95% of the maximum reward).
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Fig. 4. Comparative evaluation of PoWER algorithm on the same 2D problem
as in Fig. 3. PoWER is run 25 times in batch mode for 80 trials for a total of
2000 trials (same as RLPF). Each run is started with a random initial policy.
Due to the less efficient policy space exploration compared to RLPF, PoWER
manages to find only less than 1000 alternatives in total, with around 700 of
them above the threshold.



RLPF focuses the exploration on the policy space regions with
highest rewards.

Fourth, we compare RLPF to a state-of-the-art policy-search
RL algorithm. We chose the PoWER algorithm, because of its
fast convergence, and small number of open parameters that
need to be tuned. Since PoWER is a local-search RL method,
in order to be fair in the comparison, we run it multiple times
starting from a random initial policy every time. Figure 4
shows an example run of PoWER on the same 2D reward
function as in the previous experiment with RLPF. Comparing
the two figures shows the significant advantage of RLPF over
PoWER both in terms of exploration and speed of discovery
of alternative optimal policies.

VIII. CONCLUSION

This paper introduced ideas from particle filtering and im-
portance sampling into the domain of reinforcement learning.
We revealed a link between particle filters and RL, and refor-
mulated the RL problem from this perspective. We proposed a
new RL algorithm which is based on particle filters at its core.
Due to the ability of particle filters to perform global search,
the resulting RL algorithm is also capable of direct global
search in policy space, which is significant improvement over
traditional local search based policy RL. Since this work opens
up a novel research direction in RL, there are many ways in
which it can be extended in the future.
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