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Abstract— An automated approach is proposed which can
analyze ground reaction force data from bipedal walking robots
and humans. The input of the automated analysis is the raw
data from force sensors mounted in the feet of a robot. The
output is detailed information, such as detected single support,
double support, and swing phases, their durations, timings of
events like heel strikes, properties of the phase transitions
and of the robot itself. The proposed approach is generic,
parameter-free, model-free, robust, computationally efficient,
and applicable for real-time use during walking. It can detect
early indications of instability that could lead to a fall of
the robot. Three real-world experiments are presented: with
a compliant bipedal robot, with a stiff humanoid robot, and
with a human subject.

I. INTRODUCTION

Humanoid robots have been growing progressively more
and more complex both in hardware and software. Cur-
rently, they possess on the order of 50-100 degrees
of freedom, and have multiple sensor modalities: posi-
tion/velocity, force/torque, orientation/acceleration, tactile
perception, computer vision, etc. As a result, they require
increasingly more sophisticated methods at many levels for
planning, control, perception, sensor fusion, etc.

Despite the abundance of sensory feedback, the state-
of-the-art humanoid robots unfortunately do not yet make
full use of the available data. This is largely caused by the
difficulty of semantic parsing of the sensory data, which is
the process of making sense out of the noisy and inconsistent
raw data. The goal of semantic parsing is to transform the
input sensory data into meaningful information, in a form
readily useful for the robot controllers, planners, and other
modules. This is an extremely difficult cognitive task, and
solving it is almost as difficult as solving the whole artificial
intelligence problem.

In this paper, we have a more modest goal. Instead of
trying to come up with an extremely complicated system for
solving some contrived problem, here we try to propose a
simple and efficient system for solving the particular real-
world problem of semantic parsing of raw force sensor data
from bipedal walking robots and humans.

We embrace the philosophy that it is better to spend efforts
extracting as much as possible useful information from a
few simple sensory modalities, rather than greedily fusing
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(a) The robot falls forward, caused by mismatch of the reference and response phase
timings. It can be predicted by the earlier-than-expected heel strike events preceding

the fall, which indicate robot instability.

(b) The robot falls backward, caused by smaller response velocity of the pelvis than
the reference one. It can be predicted by the changed pressure distribution on the

foot sole and the later-than-expected heel strike events.

Fig. 1: Two examples of falling of a bipedal walking robot.
In both cases, the humans around the robot could anticipate
very early the imminent fall, and reacted quickly to catch
the robot before it hits the ground.

multiple expensive sensors together and ending up producing
relatively little useful information. There are many arguments
to support this philosophy. For example, imagine the follow-
ing experiment: a person walking inside a dark room on a
ship. The person’s main sensory modality (vision) is useless.
The vestibular system is strongly challenged, because of the
movement of the ship. The only reliable sensory modality
left is the sense of force1 from the feet. And, this little
source of information is still enough for a person to walk
robustly even in such situation. This demonstrates that our
brain can extract a large amount of useful information even
from a low-quantity and low-quality sensory source such as
the force perception.

Going back to bipedal robots, there is a more relevant
example. An expert roboticist, presented with the raw force
sensor data from the robot’s feet, is able to extract an
amazing amount of useful information, such as: stance and
swing phases, their durations, timings of events like heel
strikes, the mass of the robot, even the rigidity of the floor,
as well as any changes in these parameters, e.g. starting to
walk uphill, changes in the mass of the robot, etc.

In this paper, we propose an algorithm that can perform

1Throughout this paper, by ‘force’ we mean the ground reaction force.



such an analysis of raw force sensor data from bipedal
walking robots, and is able to produce most of the same
information which an expert roboticist can, given the same
data. Our focus is on producing a generic solution that can
work for any bipedal robot without requiring any a priori
information about the robot itself, and without any parameter
tuning.

II. ANALYSIS OF ROBOT FALL

A robot fall does not happen instantaneously. Instead, there
is a short period of time leading into the fall. It is exactly
this period of time immediately preceding a fall that we
investigate here.

For example, Fig. 1 shows two cases in which a bipedal
walking robot lost its balance. In both cases, the exper-
imenters around the robot were able to predict much in
advance the imminent fall, and reacted quickly to catch the
robot before it fell down completely. Also for both cases,
after careful post-hoc examination of the force sensor data,
it seemed possible to predict the instabilities well ahead in
time before the actual tipping over, just by looking at the
force data signal from the foot sensors. Although the falls
themselves happen very quickly, within half a second, the
indications of instability leading to the fall take a relatively
longer time, around 1-2 seconds. In this paper, we investigate
automated means for analyzing the force data in order to
detect these early indications prior to a fall.

The ultimate goal is to detect if something is going wrong
as early as possible, so that there is enough time to re-
plan and react. The planning and plan execution is outside
the scope of this paper. Instead, we focus entirely on the
preliminary phase of analysis of the live streaming sensor
data. We propose a method able to analyze in real-time
the force sensor input and detect early anomalies that could
potentially lead to a fall.

III. RELATED WORK

The systematic study of animal locomotion, especially of
human motion, is called ‘gait analysis’ [1]. Gait analysis on
human subjects is usually performed using motion capture
systems and force sensing platforms. It can give valuable
insights about the human balance and posture control during
standing and walking [2].

Early fall detection is usually investigated for soccer play-
ing robots, participating in RoboCup competitions. Renner
and Benke implemented a method in which attitude sensor
readings are modeled via sinusoids to detect velocity changes
[3]. As another example, Ruiz et al processed attitude sensor
information using Kalman filters to predict variations in robot
configuration [4]. Both methods are efficient for small scale
humanoids, but they may not be applicable to humanoids
with larger sizes. Usually, postural balance of a humanoid
can be recovered through contact force optimization [5], [6].
With this in mind, we designed an automated method which
can analyze the force sensory data, acquired from sensors in
the feet of a robot or a human.

IV. CHALLENGES FOR AUTOMATED ANALYSIS
OF RAW FORCE SENSOR DATA

Manually analyzing raw force sensor data is a challenging
task. It is even more challenging to create an automated
system that can perform such analysis without any human
intervention, and produce results as good as a robotics expert
would, given the same data. This is exactly the problem we
are trying to solve in this paper. Our goal is to design an
algorithm for automated analysis, which takes as an input
raw force signal, such as the one shown in Fig. 3a, and
produces from it as much useful information as possible.

Such a task can be done relatively easily if an expert manu-
ally (often empirically) hand-crafts a set of ‘magic numbers’
(e.g. threshold values and other parameters). There are many
such examples in existing published works, e.g. [7], [5], [8].
However, we set out to solve a more challenging problem.
The goal of our proposed automated analysis approach is to
meet the following challenges:

• to be generic, applicable to any bipedal robot and force
acquisition sensor;

• to be parameter-free, not needing any parameter tuning;
• to be model-free, not requiring any prior knowledge

about the robot itself;
• to be plug-and-play, directly applicable without any

algorithm changes;
• to be computationally efficient, and thus applicable for

real-time use;
• to be robust, and work even with high level of noise

and missing data;
• not to require perfect sensor calibration, and work even

if the sensor data are drifting over time.

V. PROPOSED APPROACH FOR AUTOMATED
ANALYSIS OF FORCE SENSOR DATA

For illustration purpose and for consistency, throughout
this section we use the same example for ground reaction
force raw signal, shown in Fig. 3a.

A. Justification of the proposed approach

Performing a single all-in-one analysis of the raw signal in
an automated way is rather difficult and error-prone. Instead,
we employ the ‘waterfall methodology’ in which the analysis
is performed at distinct sequential stages. Aiming for high
efficiency, this methodology removes the possibility of going
back to a previous analysis stage to correct potential errors.
Therefore, the order of the stages is very important. In order
to minimize the probability of error, the analysis stages are
sorted by their level of complexity, i.e. the easiest things to
detect are done first, and the most difficult ones are left for
the final stages. Another justification for this methodology
is that completing the analysis of the early stages results
in more information available for the analysis in the more
difficult later stages.

Our second design principle, aiming to reduce the overall
complexity, is the so-called ‘explaining away’ principle. The
main idea is that if there is a simple explanation for some
observed data, then this reduces the probability that another,



more complex explanation of the same observation at a later
analysis stage is true. This principle shares similarity with
Occam’s razor. In combination with the waterfall method-
ology, it allows us to gradually narrow down the possible
range of explanations as the analysis advances. This helps
especially in the later stages of the analysis.

Guided by these two principles, we segment our proposed
automated analysis in the following consecutive stages:

• Analysis of swing phases
• Analysis of single support phases
• Analysis of double support phases
• Analysis of phase transitions
• Analysis of robot properties
• Analysis of anomalies

B. Analysis of swing phases

This analysis stage, as well as most of the following stages,
is divided in two parts: detection of the phases, and extraction
of the phase properties.

1) Detection of swing phases: The detection of swing
phases is trivial for a human expert, which is the reason
we selected this as the first analysis stage. Still, it is rather
challenging for the automated analysis because at this first
stage the analyzer has zero knowledge about the signal.

Normally, a human expert would simply look for ‘rela-
tively flat’ horizontal segments within the signal and mark
them as swing phases. For the automated analysis, however,
it is not so simple. Since we assume that the force sensors are
not perfectly calibrated, and we have no information about
the mass of the foot sole, nor about the ambient force signal
noise level, it is inappropriate to use a fixed pre-determined
threshold value.

Instead, we base the analysis on the observation that, in
relative terms, the signal variance and noise level in swing
phases is much lower than in the other phases. This stems
from the fact that during swing phases the force sensor has
to carry only the weight of the foot sole (which is small),
and that the vibrations tend to have low amplitude and high
frequency.

Based on this observation, the analyzer can narrow down
the range in which to look for ‘relatively flat’ segments.
We propose to achieve this range reduction using histogram
analysis, as shown in Fig. 2. The intuitive idea is that the
parts of the signal which have relatively low noise level
and are relatively flat would tend to cluster together in
one or few bins of the histogram. Thus, the problem gets
transformed into the trivial problem of finding the mode2 of
the histogram, and its corresponding bin interval.

Histograms have many advantages which are appropriate
for our goal. They are simple and efficient to implement,
with computational complexity O(n), which is good for
real-time use. Furthermore, histograms can be implemented
in an incremental way, e.g. using a sliding window to

2By ‘mode’ (or ‘first mode’) we mean the highest value of the distribution
defined by the histogram. By ‘second mode’ we mean the second highest
value of the histogram.
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Fig. 2: Histogram analysis of the raw force sensor data

incrementally add and remove particles from the bins, thus
reducing the computational effort to O(1) per update.

However, histograms have an open parameter – the number
of bins – which is against our goal for completely parameter-
free analysis. To solve this problem, we propose a simple
strategy for choosing an optimal number of bins. We intro-
duce an indicator showing how informative a histogram is,
defined as:

Histogram ratio =
Value of first mode

Value of second mode
· (1)

This indicator is used to choose an optimal number of bins,
by selecting the number that maximizes the indicator value,
as illustrated in Fig. 2. The same value is then used also as
a ‘confidence level’ of this analysis stage, to represent how
confident the analyzer is in the correctness of the analysis
results. The pseudo-code for the proposed histogram-based
algorithm is given in Algorithm 1.

2) Extraction of swing phase properties: By swing phase
properties we mean the baselines (the ground truth value or
best estimate of it) for each leg individually, as well as the

Algorithm 1 Optimal Histogram Analyzer

1: Input: raw signal S ∈ R
N

2: Output: optimal ratio Ropt ∈ R
+, optimal number of

bins Kopt ∈ Z
+, optimal histogram Hopt ∈ R

Kopt ,
optimal bin’s range Bopt〈bmin, bmax〉

3: Ropt = 0
4: for K = 2 to N do

5: {calculate histogram of S using K number of bins}
6: H = calcHistogram(S,K)
7: Mfirst = maxi {H(i)} {the first mode}
8: Ifirst = argmaxi {H(i)}
9: H(Ifirst) = 0

10: Msecond = maxi {H(i)} {the second mode}
11: R = Mfirst/Msecond

12: if R > Ropt then

13: Ropt = R, Kopt = K, Hopt = H
14: Bopt〈bmin, bmax〉 = getBin(Hopt, Ifirst)
15: end if

16: end for



timings (beginning and ending time of each instance of the
phase).

Although histogram analysis narrows down the range of
force values, it does not produce a single best estimate
for the swing phase baseline. A conventional approach for
doing this would be to use least squares regression to fit
a horizontal line model to the signal. However, such an
approach would require a considerable computational effort,
either for matrix inversion (which could be numerically
unstable), or for gradient descent (which could be too slow
and dependent on a learning rate open parameter). In either
case, it conflicts with our goals for efficient real-time and
parameter-free analysis. To solve this problem, we borrow
ideas from another scientific field - computer vision.

In computer vision, there is an algorithm for detecting
objects, such as lines and planes, called RANSAC (Random
Sampling Consensus Algorithm [9]). It is essentially a Monte
Carlo type approximation algorithm. RANSAC-based object
detectors are very simple, very efficient, and very robust. For
example, it is not unusual for RANSAC to detect an object
even if as much as 50% of it is occluded. Such robustness is
well appreciated for our problem, where we have unknown
level of noise and strict computational complexity restric-
tions.

Applying RANSAC for estimation of the swing phase
baseline is fairly straightforward. For completeness, we
include pseudo-code of the proposed RANSAC baseline
estimator in Algorithm 2. Please note that the RANSAC
algorithm works well for a very wide range of values for
the parameters σ and P , so they do not need tuning. Both
the histogram analysis and the RANSAC detector are applied
individually to each leg’s signal, because the baseline is not
necessary to coincide since the sensors are not perfectly
calibrated. The results from applying RANSAC to a sample
force signal is shown in Fig. 3b.

The next step is extraction of swing phase timings, i.e.
beginning and ending time of each instance of the phase.
A conventional approach for doing this would be to use
a fixed pre-determined threshold value defining a distance
from the phase baseline. The parts of the signal within this
distance of the baseline would be marked as belonging to a
swing phase, as shown in Fig. 3c. The problem with such
an approach, apart from relying on a hand-crafted ‘magic
number’, is that it is affected badly by noise. The example
in Fig. 3c shows that there is bad undesired fragmentation
of the detected swing phase segments.

To solve this problem, we propose a probabilistic ap-
proach. We introduce a probability of belonging to a swing
phase, defined for each point of the signal as follows:

PE
swing

(
SE(i)

)
=

(
1− |SE(i)−BE

swing|
max(SE)−min(SE)

)ρ

, (2)

where E is the leg (‘right’ or ‘left’), SE is the raw signal for
leg E, and BE

swing is the baseline value for this leg computed
by the RANSAC estimator. The power ρ allows us to increase
the distinction between swing- and non-swing-phase points,

which helps to avoid undesired fragmentation successfully,
as illustrated in Fig. 3d and 3e. Although we use a fixed
probability threshold of 90% to segment the swing phase,
this probabilistic approach is not as sensitive to the threshold
value as the conventional approach, and works well for a
wide range of threshold values. For example, any value for
ρ ∈ (2, 10) seems to work well in practice.

C. Analysis of single support phases

As before, we divide the analysis in two parts.
1) Detection of single support phases: Here we apply the

‘explaining away’ principle, which implies that for the signal
parts where we have high probability of swing phase for one
leg, the probability of single support phase for the other is
automatically increased. Formally:

PE
s.s.

(
SE(i)

)
= 1− P¬E

swing

(
S¬E(i)

)
, (3)

where ¬E is the opposite leg.
2) Extraction of single support phase properties: His-

togram analysis is not useful in this case, because of the high
variance in the single support phases. Instead, we exploit the
robustness of the RANSAC detector and apply it directly on
the ‘explained away’ signal (not the whole signal) to detect
the baselines, one for each leg. The results are shown in
Fig. 3f.

D. Analysis of double support phases

1) Detection of double support phases: Detection of the
double support phases is, in general, extremely difficult,
because of the huge variance of the signal in these phases.
To bypass this difficulty, the proposed automated analysis
utilizes fully the two adopted methodologies. Following the

Algorithm 2 RANSAC baseline estimator

1: Input: raw signal S ∈ R
N

2: Output: baseline B ∈ R, confidence level L ∈ R
+

3: σ = 0.05 {5% inlier selectivity of RANSAC}
4: ε = σ ∗ (max (S)−min (S))
5: Kmax = −∞ {max. number of inliers so far}
6: P = �(0.2 ∗N)� {20% number of points to sample}
7: for i = 1 to P do

8: Draw u ∼ U(0, 1)
9: j = 1 + 
(u ∗ (N − 1))�

10: K = 0
11: for l = 1 to N do

12: if |S(l)− S(j)| < ε then

13: K = K + 1
14: end if

15: end for

16: if K > Kmax then

17: Kmax = K
18: B = S(j)
19: end if

20: end for

21: L = Kmax/N
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Fig. 3: Automated analysis of raw force sensor data from
experiment (A) - bipedal walking robot COMAN (described
in Section VI-A). All subfigures are derived from the same
source signal, and have the same x-axis (Time [s]), omitted
to save space.
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Fig. 4: (Continued from Fig. 3)

scope. More formally, the detection of double support phases
is performed using the following probability:

Pd.s. (S(i)) = 1−max

{
PE
swing

(
SE(i)

)
P¬E
swing

(
S¬E(i)

)
}
· (4)

At this point in the analysis, all phases have been detected,
and it is possible to calculate their exact timings, as shown
in Fig. 4a.

2) Extraction of double support phase properties:
RANSAC analysis is not useful in this case, because of
the extremely high variance in the double support phases.
Instead, we use simple averaging of the ‘explained away’
signal to detect the (just one) baseline for double support
phase. Using all the five extracted baselines so far, it is
possible to reconstruct a synthetic ‘idealized’ signal, as
shown in Fig. 4b.

E. Analysis of phase transitions

1) Detection of heel strikes: Heel strikes mark the transi-
tions from single support to double support phases and are



very important events. They are easily detected at the endings
of the swing phases, as shown in Fig. 4c.

2) Extraction of phase transition properties: The phase
transitions are mostly characterized by the slope (rate of
change) of the force. The slope reveals the foot weight
loading and unloading patterns. In order to detect this slope,
we use a modified version of the RANSAC algorithm,
which is able to detect arbitrarily oriented lines in 2D. The
difference with Algorithm 2 is that this time two points
are sampled at each iteration, and a candidate line is fitted
through them. The results from this phase transition analysis
is shown in Fig. 4d.

F. Analysis of robot properties

From the collected information it is possible to calculate
some global properties of the robot. For example, using the
extracted baselines it is straightforward to estimate the entire
robot’s mass, which for the given example equals 19.673 kg.

G. Analysis of anomalies

The ability to distinguish between what looks normal
and what seems abnormal requires a certain high level of
cognition and accumulated experience. At this final stage
of the automated analysis, there is plenty of the latter, i.e.
accumulated knowledge about the sensory signal.

An in-depth anomaly detection analysis is beyond the
scope of this paper. However, using the collected information
about timings, baselines, and slopes by the analyzer, it is
trivial to detect the following anomalies:

• too early/late heel strike events;
• too fast/slow foot loading/unloading;
• too high/low single support phase level (e.g. if extra

weight is added to the robot);
• too small/big ground reaction force (e.g. if the robot is

being lifted up in the air).
In fact, the analysis of the currently ongoing phase is already
shown in the rightmost ends of Fig. 4a, 4b, 4c, and 4d. It can
easily be used to detect deviations from the expected values.
Fig. 5 illustrates some examples of unexpected events that
can be detected this way.

Fig. 5: Examples of unexpected events that can be detected
in a fully automated way by the proposed method. From left
to right, showing as follows: unexpected early heel strike,
unexpected late heel strike, unexpected mass change of the
robot.

Fig. 6: Lower-body design of the compliant humanoid robot
COMAN. This robot was used in experiment (A).

VI. EXPERIMENTAL EVALUATION

We used three different sources of real-world raw force
sensor data, in order to evaluate experimentally the proposed
automated analysis approach. These sources are:

• (A) - Compliant humanoid robot COMAN, equipped
with 6-axis force/torque sensor in each foot sole;

• (B) - Stiff humanoid robot Fujitsu HOAP-2, equipped
with 4 FSR pressure sensors in each foot sole;

• (C) - Human subject, wearing sensorized shoes with 4
pressure sensors in each shoe sole.

The proposed approach was able to successfully analyze,
detect and extract correctly all the information about the
single- and double-support phases, their durations, the tim-
ings of heel strike events, phase transition slopes, as well as
the mass of the robot/human. Here we describe briefly the
three systems we used as a source of force data to analyze.

A. Compliant humanoid robot COMAN

In experiment (A), we used the passively-compliant
bipedal robot COMAN [10][11], shown in Fig. 6. We used
only the lower body of the robot, which has a total of 15
active DoF (degrees of freedom): 6 DoF in each leg, and
3 DoF at the waist. The robot has passive compliance (via
springs) in the two pitch joints (knee and ankle) of each leg,
and has a force/torque sensor mounted in the sole of each
foot, as shown in Fig. 7. For the compliant actuation system
of COMAN, the series elastic actuator module described in
[12] is used.

Making COMAN walk in a stable way is a challenging
problem, because its springs can store and release energy,
which violates the usual energy dissipation requirement for
guaranteeing stability. The reason to use passive compliance
is that it offers numerous benefits, such as increased safety,
better shock absorption, adaptability to rough terrain, and
improved energy efficiency [13]. However, the price paid is
having a more difficult to control system. Fig. 1 shows two
recent examples of falling of the COMAN robot, which were
caused by two algorithmically generated reference trajecto-
ries for the center-of-mass which theoretically were within
the ZMP limits. However, the interaction of the system with



Fig. 7: A 3D model of COMAN robot’s foot, indicating the
location of the force sensor (in red), between the foot sole
and the ankle joint. This sensor was used in experiment (A).

the springs and the floor accumulated enough undissipated
energy to cause instability and make the robot fall down.

Fig. 2, 3, and 4 show results from the automated anal-
ysis of force data signal recorded from the COMAN robot
walking on a hard linoleum-covered floor.

B. Stiff humanoid robot Fujitsu HOAP-2

In experiment (B), we analyzed data recorded from the 4
pressure sensors in each foot sole of the stiff3 humanoid robot
Fujitsu HOAP-2. The individual pressure sensor signals are
grouped together and averaged, to produce a single z-axis
force signal for each leg. Fig. 8 shows the results from the
automated analysis of these data. The estimated mass of the
robot is 5.59 kg.

An interesting observation for this particular signal is that
more weight is put on the right leg during single support
than on the left. This could be caused by inaccuracy in the
robot mass distribution model or the center-of-mass position.

C. Human subject wearing sensorized shoes

In experiment (C), we used a human subject wearing
sensorized shoes with 4 pressure sensors in each shoe sole,
shown in Fig. 9. The results from the automated analysis
of the recorded data is shown in Fig. 10. The estimated
combined mass of the human subject and the sensorized
shoes is 70.78 kg.

VII. DISCUSSION

It is important to highlight that the exact same algorithm
was used to analyze the data from each of the three different
sources, without any modification of the source code, or
any parameter tuning whatsoever. This asserts the robustness
of the proposed approach, and its ability to work on very
different robots (in terms of hardware), or even on humans,
in a completely automated way.

During the analysis, the left and right leg data signal are
sometimes analyzed together (e.g. timings are shared and
used for ‘explaining away’), and sometimes separately (e.g.
probabilities and baselines are measured separately for each
leg).

The computational complexity of the proposed analysis is
on the order of O(n2) with a very small hidden constant.
It can further be reduced using incremental implementation

3By ‘stiff’ we mean not passively-compliant.
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(d) Synthesizing an ‘idealized’ signal based on the extracted baselines

Fig. 8: Automated analysis of raw force sensor data from
experiment (B) - stiff humanoid robot Fujitsu HOAP-2

with a sliding window along the signal. This makes the
approach viable for embedded real-time applications.

Throughout the entire analysis, we assumed minimal
knowledge of the robot properties, in order to make the ap-
proach as generalizable as possible. Due to this, the proposed
method can be immediately used as a ‘plug-and-play’ module
for any bipedal robot, regardless of the hardware differences.
However, it is possible to add some a priori knowledge to
the analyzer, which can additionally improve the robustness
and fault-detection capabilities of the analysis.

One future direction, in which we are already working, is
to make use of the confidence levels derived at the different
analysis stages. These are a few potential uses:

• to detect if the robot is still in the air, e.g. to start
walking only after the robot has been lowered down
on the ground;

• to do sanity check of the input, e.g. detect if the input
signal is not a proper force signal from bipedal walking;

• to detect hardware faults, e.g. detect malfunction of the



Fig. 9: The sensorized shoes used in experiment (C).

force sensor, such as too high noise level or rapid drift;
• to detect data corruption, e.g. sudden huge jumps in the

signal might point to data acquisition faults.
A more challenging analysis that might be possible using

supervised machine learning methods, could include:
• analysis of the impedance of the walking surface, e.g.

detect floor/ground types (wood, carpet, sand, etc.);
• analysis of the terrain shape, e.g. detect up/down slopes,

uneven terrain, obstacles, etc.

VIII. CONCLUSION
We proposed a simple and efficient approach for per-

forming automated analysis of raw force sensor data from
bipedal walkers. We proposed two different algorithms for
performing the analysis: a histogram-based algorithm, and
a RANSAC-based algorithm, borrowed from the computer
vision domain. To improve the robustness of the analysis,
we applied probabilistic methods for the detection of the
phases. We evaluated the proposed approach experimentally
on three different sources of real-world force sensor data.
The proposed approach was able to successfully detect and
extract all the desired information from these data.

ACKNOWLEDGMENTS
The authors would like to thank Prof. Yoshikazu Kanamiya and Takumi

Aikawa, from Department of Mechanical Systems Engineering at Tokyo
City University, for conducting the walking experiments with Fujitsu
HOAP-2 robot.

This work is partially supported by the AMARSi European project under
contract FP7-ICT-248311.

REFERENCES

[1] M. W. Whittle, Gait Analysis: An Introduction. Butterworth-
Heinemann Ltd, Oxford, 1991.

[2] D. Winter, “Human balance and posture control during standing and
walking,” Gait & Posture, vol. 3, no. 4, pp. 193–214, 1995.

[3] R. Renner and S. Behnke, “Instability detection and fall avoidance for
a humanoid using attitude sensors and reflexes,” in Proc. IEEE/RSJ
Intl Conf. on Intelligent Robots and Systems (IROS), Beijing, China,
October 2006, pp. 2967–2973.

[4] J. Ruiz-del Solar, J. Moya, and I. Parra-Tsunekawa, “Fall detection and
management in biped humanoid robots,” in Proc. IEEE/RAS Intl Conf.
on Robotics and Automation (ICRA), Anchorage, US, May 2010, pp.
3323–3328.

[5] T. Buschmann, S. Lohmeier, and H. Ulbrich, “Biped walking control
based on hybrid position/force control,” in Proc. IEEE/RSJ Intl Conf.
on Intelligent Robots and Systems (IROS), St. Louis, US, October
2009, pp. 3019–3024.

[6] C. Ott, M. A. Roa, and G. Hirzinger, “Posture and balance control
for biped robots based on contact force optimization,” in Proc. IEEE
Intl Conf. on Humanoid Robots (Humanoids), Bled, Slovenia, October
2011, pp. 26–32.

[7] K. Van Heerden and A. Kawamura, “Maintaining floor-foot contact
of a biped robot by force constraint position control,” in Proc. IEEE
Intl Conf. on Mechatronics (ICM), Istanbul, Turkey, April 2011, pp.
857–862.

Z
-a
x
is
fo
rc
e
F
z
[N

]

 

 

1 1 1 1 .5 1 2 1 2.5 1 3 1 3.5 1 4 1 4.5 1 5 1 5.5

0

200

400

600

800

1 000 Raw signal from right leg From left leg

(a) Raw data signal from sensorized shoe sensors of human subject

1 1 1 1 .5 1 2 1 2.5 1 3 1 3.5 1 4 1 4.5 1 5 1 5.5

L
eg

0.23

0.57

0.95

0.64

0.94

0.60

0.92

0.57

0.88

0.68

1.03

0.53

0.94

0.20

Detected single support phases of right leg

Detected single support phases of left leg

Detected double support phases

(b) Detection of all single- and double-support phases, and their
timings

Z
-a
x
is
fo
rc
e
F
z
[N

]
 

 

1 1 1 1 .5 1 2 1 2.5 1 3 1 3.5 1 4 1 4.5 1 5 1 5.5

0

200

400

600

800

1 000 Idealized signal for right leg For left leg

(c) Synthesizing an ‘idealized’ signal based on the extracted baselines

Z
-a
x
is
fo
rc
e
F
z
[N

]

82.5◦

−81.0◦

80.1◦

−77.5◦

79.0◦

−78.4◦

83.5◦

−75.9◦

76.5◦

−82.1◦

67.9◦
 

 

1 1 1 1 .5 1 2 1 2.5 1 3 1 3.5 1 4 1 4.5 1 5 1 5.5
− 200

0

200

400

600

800

1 000 Detected foot loading Foot unloading Heel strike

(d) Analysis of phase transitions, foot loading and unloading patterns

Fig. 10: Automated analysis of raw force data from experi-
ment (C) - human subject walking with sensorized shoes

[8] Y. Fujimoto, S. Obata, and A. Kawamura, “Robust biped walking with
active interaction control between foot and ground,” in Robotics and
Automation, 1998. Proceedings. 1998 IEEE International Conference
on, vol. 3. Ieee, 1998, pp. 2030–2035.

[9] M. Fischler and R. Bolles, “Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated
cartography,” Communications of the ACM, vol. 24, no. 6, pp. 381–
395, 1981.

[10] N. G. Tsagarakis, Z. Li, J. A. Saglia, and D. G. Caldwell, “The design
of the lower body of the compliant humanoid robot cCub,” in Proc.
IEEE Intl Conf. on Robotics and Automation (ICRA), Shangai, China,
May 2011, pp. 2035–2040.

[11] B. Ugurlu, N. G. Tsagarakis, E. Spyrakos-Papastravridis, and D. G.
Caldwell, “Compiant joint modification and real-time dynamic walk-
ing implementation on bipedal robot cCub,” in IEEE Intl. Conf. on
Mechatronics, 2011.

[12] N. G. Tsagarakis, M. Laffranchi, B. Vanderborght, and D. G. Caldwell,
“A compact soft actuator unit for small scale human friendly robots,”
in Proc. IEEE Intl Conf. on Robotics and Automation (ICRA), Kobe,
Japan, May 2003, pp. 4356–4362.

[13] P. Kormushev, B. Ugurlu, S. Calinon, N. G. Tsagarakis, and D. G.
Caldwell, “Bipedal walking energy minimization by reinforcement
learning with evolving policy parameterization,” in Proc. IEEE/RSJ
Intl Conf. on Intelligent Robots and Systems (IROS), San Francisco,
USA, September 2011, pp. 318–324.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


