
Approaches for Learning Human-like Motor Skills
which Require Variable Stiffness During Execution

Petar Kormushev, Sylvain Calinon and Darwin G. Caldwell

Abstract— Humans employ varying stiffness in everyday
life for almost all human motor skills, using both passive
and active compliance. Robots have only recently acquired
variable passive stiffness actuators and they are not yet mature.
Active compliance controllers have existed for a longer time,
but the problem of automatic determination of the necessary
compliance to achieve a task has not been thoroughly studied.
Teaching humanoid robots to apply variable stiffness to the
skills they acquire is vital in order to achieve human-like
naturalness of the execution. Also, using adaptive compliance
can help to increase the energy efficiency. This paper compares
two different approaches that allow robots to learn human-like
skills which require varying stiffness during execution. The
advantages and disadvantages of each approach is discussed
and demonstrated with various experiments on an actively-
compliant Barrett WAM robot.

keywords: variable stiffness, motor skills, imitation learn-
ing, reinforcement learning, programming by demonstration,
kinesthetic teaching, pHRI

I. INTRODUCTION
Endowing robots with human-like abilities to perform

motor skills in a smooth and natural way will greatly promote
the use of robots in everyday life. One particularly intersting
aspect of implementing natural, human-like motor skills for
robots is using variable stiffness during the skill execution.

Humans employ varying stiffness in almost all human
motor skills, using both passive and active compliance.
Robots have only recently acquired variable passive stiffness
actuators and they are not yet mature. Active compliance
controllers have existed for a longer time, but the problem
of automatic determination of the necessary compliance to
achieve a task has not been thoroughly studied. Teaching
humanoid robots to apply variable stiffness to the skills they
acquire is vital in order to achieve human-like naturalness of
the execution. Also, using adaptive compliance can help to
increase the energy efficiency.

In this paper we study the question how a robot can learn
variable-stiffness skills without manually being programmed
or taught explicitly.

Many approaches exist for teaching robots motor skills,
but only few of them have been demonstrated to be able to
learn variable stiffness skills.

When direct physical contact is possible, kinesthetic teach-
ing offers a user-friendly and intuitive method to demonstrate
new skills to a robot by manually guiding the robot’s arms
through the motion [1]. Different than standard teleoperation

The authors are with the Advanced Robotics Depart-
ment, Italian Institute of Technology (IIT), 16163 Genova,
Italy. {petar.kormushev,sylvain.calinon,
darwin.caldwell}@iit.it.

techniques, it allows the user to feel firsthand the limitations
of the robot’s body (e.g. small number of DOF, joint limits,
short limbs, singularities, too big stiffness, too slow move-
ment, self-collision, etc.), which is especially important on
highly-dynamic tasks [2].

Lightweight robots offer new perspectives to augment
the personal capabilities of the robot through kinesthetic
teaching, where control at a torque level can be used to
let the user move the robot as if it had no weight, and
as if no motors were in its articulations. Through a gravity
compensation actuation, the user can concentrate on the task
to demonstrate by grasping (and re-grasping) the robot in
ways that are natural and efficient for him/her to execute the
task. Successful applications of this torque-based kinesthetic
teaching process have been recently developed for the Barrett
WAM and KUKA/DLR robotic arms [2], [3].

Variable Stiffness Actuators (VSA) have been created in
the last few years which pose new challenges for the learning
algorithms. Also, the control algorithms now have to deal
with both active and passive compliance.

In this paper we examine two approaches for learning
variable stiffness skills: the Extracted variability approach,
and the Self-learned variability approach.

The Extracted variability approach belongs to the
Programming-by-Demonstration [1] [4] (a.k.a. Imitation
Learning) domain. It is based on extracting the variance
among multiple task demonstrations and using this variance
to infer the required variability of the stiffness during task
reproduction.

The Self-learned variability approach belongs to the Re-
inforcement Learning [5] (a.k.a. self-learning) domain. In
this approach the robot explores by itself variations of the
stiffness during multiple trials and discovers what variability
is required for successful task reproduction.

First we describe each of the two approaches, then we
illustrate them with experiments, and finally we discuss their
advantages and disadvantages.

II. APPROACHES FOR LEARNING VARIABLE
STIFFNESS

In this section we overview two approaches for learning
variable stiffness skills: the Extracted variability approach,
and the Self-learned variability approach.

A. Extracted variability approach

In this approach, we refer to the kinematic redundancy
of the robot when the robot possesses an infinite number
of generalized inverse control strategies, see e.g. [6], [7].

We refer to task redundancy when the task can be achieved
through an infinite number of solutions, see e.g. [8]. We take
the perspective that both the robot and task redundancies can
be exploited to regulate the dynamics of the movement and
the stiffness of the robot during reproduction.

After having observed several demonstrations of a similar
task, the robot creates a compact model of the skill, by taking
into account the variations and correlations observed along
the movement. If a part of the movement was consistent
across the different trials, this part of the task should prob-
ably be reproduced in this specific manner. On the other
hand, if a large variability was observed among the different
demonstrations, reproducing a specific reference trajectory
may be irrelevant to fulfill the task requirements.

During reproduction, the robot is using this information to
set an adequate stiffness that will fulfill the task constraints,
which allows to simultaneously consider other constraints.
There are several situations where the interaction can benefit
from the variability and correlations of the task: (i) to let the
user physically move the robot while reproducing the task;
(ii) to let the robot modify the generalized trajectory to adopt
gestures that are safer for a user who is close to the robot.

The positional constraints of the demonstrated skill are
represented as a mixture of dynamical systems encoding
robustly position trajectories. The Dynamic Movement Prim-
itives (DMP) framework originally proposed by Ijspeert et
al [9], and further extended in [10], [11] (see [12] for a
discussion on the similarities of the proposed controller with
DMP) is extended by considering a full matrix KP

i associated
with each of the K primitives (or states) instead of a fixed
κP gain. This allows us to take into consideration variability
and correlation information along the movement for learning
and reproduction.

To encode the positional profile of the task, an extended
DMP framework is used to take into consideration the
variability of the movement during the learning process.
M examples of a skill are demonstrated to the robot

in slightly different situations. Each demonstration m ∈
{1, . . . ,M} consists of a set of Tm positions x, velocities
ẋ and accelerations ẍ of the end-effector in Cartesian space,
where each position x has D = 3 dimensions. A dataset
is formed by concatenating the N =

∑M
m=1 Tm datapoints

{{xj , ẋj , ẍj}Tm
j=1}Mm=1. A desired acceleration is computed

based on a mixture of K proportional-derivative systems

ˆ̈x =

K∑
i=1

hi(t)
[
KP
i (µX

i − x)− κV ẋ
]
. (1)

Parts of the movement where the variations across the
different demonstrations are large indicate that the reference
trajectory does not need to be tracked precisely. By using this
information, the controller can focus on the other constraints
of the task such as collision avoidance. On the other hand,
parts of the movement exhibiting strong invariance across the
demonstrations should be tracked precisely, i.e., the stiffness
used to track the position errors needs to be high.

The superposition of basis vector fields is determined in
(1) by an implicit time dependency, but other approaches

−10 −5 0 5

−5

0

5

10

x1

x
2

−10 −5 0 5

−5

0

5

10

x1

x
2

−10 −5 0 5

−5

0

5

10

x1

x
2

Fig. 1. Illustration of the learning and retrieval processes. Left: Four examples of
the task provided as demonstrations. Center: Learned model represented by Gaussians
N (µX

i ,Σ
X
i), and multiple reproduction attempts. Right: The trajectory in green lines

shows a generalized reproduction attempt. The points show positions at constant time
intervals.

using spatial and/or sequential information could also be
used [13], [14]. Similarly to DMP, a decay term defined
by a canonical system ṡ = −αs is used to create an
implicit time dependency t = − ln(s)

α , where s is initialized
with s = 1 and converges to zero. We define a set of
Gaussians N (µT

i ,Σ
T
i) in time space T , with centers µT

i

equally distributed in time, and variance parameters ΣT
i set

to a constant value inversely proportional to the number of
states. α is initially fixed depending on the duration of the
demonstrations. The weights hi(t) are defined by

hi(t) =
N (t; µT

i ,Σ
T
i)∑K

k=1N (t; µT

k ,Σ
T

k)
. (2)

By determining the weights through the decay term s, the
system will sequentially converge to the set of attractors in
Cartesian space defined by µX

i . The centers µX
i in task space

and stiffness matrices KP
i are learned from the observed

data, either incrementally or in a batch mode (through least-
squares regression). For example, parts of the movement
where the variations between the demonstrations are high
indicate that the reference trajectory does not need to be
tracked precisely. By using this information, the controller
can focus on the other constraints of the task such as moving
away from the user. On the other hand, parts of the move-
ment exhibiting strong invariance among the demonstrations
should be tracked precisely, i.e., the stiffness used to track
the position errors needs in this case to be high.

In a batch mode, by concatenating the training examples
in a matrix Y = [ẍ 1

κP + ẋ κ
V

κP + x] ∈ RN×D, and by
concatenating the corresponding weights computed with (2)
in a matrix H ∈ RN×K , we can write the linear equation
Y = HµX , with µX ∈ RK×D representing the concatenated
attractor centers µX

i . The least-squares solution to estimate
the attractor centers is then given by µX = H†Y , where
H† = (H>H)−1H> is the pseudoinverse of H . By defining
a desired range of stiffness values [κP

min, κ
P
max], we define

the stiffness and damping gains for the estimation of the
parameters as κP = κP

min +
κP
max−κ

P
min

2 and κV = 2
√
κP .

To take into account variability and correlation along
the movement and among the different demonstrations, we
compute for each state i ∈ {1, . . . ,K} the residual errors
of the least-squares estimation, in the form of covariance

matrices

ΣX

i =
1

N

N∑
j=1

(Y ′j,i−Ȳ ′i)(Y ′j,i−Ȳ ′i)> ∀i ∈ {1, . . . ,K} where

(3)

Y ′j,i = Hj,i(Yj − µX

i). (4)

In the above equation, Ȳ ′i is the mean of Y ′i over the
N datapoints. N (µX

i ,Σ
X
i) thus describes a Gaussian in

Cartesian space X . The set of K Gaussians defines the
sequence of virtual attractor points in Cartesian space that the
system will try to reach, where each attractor encapsulates
variability and correlation information. The residuals terms
of the regression process are then used to estimate the
stiffness matrices KP

i in Eq. (1) through eigencomponents
decomposition KP

i = ViDiV
−1
i , with

Di = κP
min + (κP

max − κP
min)

λi − λmin

λmax − λmin
. (5)

In the above equation, λi and Vi are the concatenated
eigenvalues and eigenvectors of the inverse covariance matrix
(ΣX

i)
−1. The basic idea is to determine a stiffness matrix

proportional to the inverse of the observed covariance. For
example, if high variability is observed, stiffness will become
low as the tracking does not need to be precise. If Di in
(5) is set to λi, the eigencomponents decomposition gives
KP
i = (ΣX

i)
−1. We rescale Di to obtain stiffnesses in the

desired range [κP
min, κ

P
max] (determined by the user and hard-

ware’s limitation) based on the initial range of eigenvalues
[λmin, λmax] (determined by the variability within the motion
and among several demonstrations). The minimal stiffness
limit allows us to set a degree of compliance that still allows
the system to move (e.g. to limit friction effects), while the
maximum stiffness limit can be fixed depending on the robot
capabilities, or based on desired safety limits.

Fig. 1 illustrates the approach with a 2-dimensional exam-
ple. In the top-right graph, we see that the trajectories repro-
duced stochastically from the learned model show different
levels of variability along the trajectory. This variability
shows similar characteristics to the one of the training set.
We also see that the reproduced trajectories share similar
smoothness to the demonstrated trajectories. The trajectories
have been represented with dots showing the position of the
robot at fixed time intervals.

B. Self-learned variability approach

Sometimes it is impossible for a non-expert human teacher
to demonstrate a task with variable stiffness. For example,
baseball batting - it would be very difficult for a non-trained
person to demonstrate to the robot a good way to perform
the task. Even more, with the requirement of multiple such
demonstrations, it becomes practically impossible to use the
Extracted variability approach.

For such situations, a self-learning approach might be
more appropriate. In this method, first the positional profile
of the task is (only roughly) demonstrated. After that, the

Fig. 2. Experimental setup for the Pancake-Flipping task. A torque-
controlled 7-DOF Barrett WAM robot learns to flip pancakes in the
air and catch them with a real frying pan attached to its end-effector.
Artificial pancakes with passive reflective markers are used to evaluate the
performance of the learned policy.

robot uses exploration algorithm to find an appropritate stiff-
ness level for every part along the demonstrated trajectory.

Since such dynamic motor skills are very task-specific. In
this study we show the results from a pancake flipping task.

The self-learning approach represents a movement as a
superposition of basis force fields, where the model is
initialized from imitation. Reinforcement Learning (RL) is
then used to adapt and improve the encoded skill by learning
optimal values for the policy parameters. The policy param-
eterization allows the RL algorithm to learn the coupling
across the different motor control variables and, in effect,
variable (active) compliance.

To learn new values for the full stiffness matrices, we use
the state-of-the-art EM-based RL algorithm called PoWER
developed by Kober and Peters [15]. PoWER inherits from
EM algorithm two major advantages over policy-gradient-
based approaches: firstly, PoWER does not need a learning
rate, unlike policy-gradient methods; secondly, PoWER can
be combined with importance sampling to make better use
of the previous experience of the agent in the estimation of
new exploratory parameters.

Similar to policy gradient RL, PoWER uses a parame-
terized policy and tries to find values for the parameters
which maximize the expected return of rollouts (also called
episodes or trials) under the corresponding policy. In our ap-
proach the policy parameters are represented by the elements
of the full stiffness matrices KP

i and the attractor vectors µX
i .

The return of a rollout τ is given by the undiscounted
cumulative reward R(τ) =

∑T
t=1 r(t), where T is the

duration of the rollout, and r(t) is the reward received at
time t, defined differently according to the goal of the task.

In general, as an instance of an EM algorithm, PoWER
estimates the policy parameters θ such as to maximize the
lower bound on the expected return from following the
policy. The policy parameters θn at the current iteration n
are updated to produce the new parameters θn+1 using the
following rule (see also [16])

θn+1 = θn +

〈
(θk − θn)R(τk)

〉
w(τk)〈

R(τk)
〉
w(τk)

. (6)

In the above equation, (θk − θn) = ∆θk,n is a vector
difference which gives the relative exploration between the

policy parameters used in the k-th rollout and the current
ones. Each relative exploration ∆θk,n is weighted by the
corresponding return R(τk) of rollout τk, and the result is
normalized using the sum of the same returns.

In order to minimize the number of rollouts which are
needed to estimate new policy parameters, we use a form of
importance sampling technique adapted for RL [5], [15] and
denoted by 〈·〉w(τk) in Eq. (6). It allows the RL algorithm to
re-use previous rollouts τk and their corresponding policy
parameters θk during the estimation of the new policy
parameters θn+1. The importance sampler we use is defined
as 〈

f(θk, τk)
〉
w(τk)

=

σ∑
k=1

f(θind(k), τind(k)), (7)

where σ is a fixed parameter denoting the number of rollouts
used by the importance sampler, and ind(k) is an index
function which returns the index of the k-th best rollout
in the list of all past rollouts sorted by their corresponding
returns, i.e. for k = 1 we have ind(1) = argmaxiR(τi),
and R(τind(1)) ≥ R(τind(2)) ≥ ... ≥ R(τind(σ)). The effect
of the importance sampler is significant because it allows the
RL algorithm to re-use the top-σ best rollouts so far in order
to calculate the new policy parameters. This helps to reduce
the number of required rollouts and makes the algorithm
applicable to online learning, which we demonstrate with
the Pancake-Flipping task described in Section III-D.

III. EXPERIMENTS

A. Experimental setup

The proposed methods are evaluated on two human-robot
interaction experiments, which aim to teach the robot to
perform two tasks: ironing task and door opening task.
All experiments are conducted using a torque-controlled 7-
DOF Barrett WAM robotic arm with 3-finger Barrett Hand
attached.

The demonstrations needed for learning the positional
profile of each task are recorded via kinesthetic teaching,
i.e. a human demonstrator is holding the arm of the robot
and manually guiding the robot to execute the task. During
this, the WAM robot is put in a gravity-compensation mode
which allows the user to move it effortlessly.

At this point, an autonomous reproduction of the task
can be attempted by the robot using the extracted positional
constraints.

The demonstration phase of the teaching process is shown
in Fig. 3 for the ironing task and the door opening task.
Each task is encoded using the proposed model, by fixing
the number of states (or primitives) empirically with respect
to the length of the demonstrations. For the ironing task, 6
demonstrations were provided for the positional profile, and
for the door opening task - 5 demonstrations.

B. Ironing task

The ironing task poses a wide variety of challenges for
robotics. These challenges range from the detection, grasping
and folding of clothes, to position and orientation analysis

Kinesthetic teaching of the ironing task Kinesthetic teaching of door opening task

Fig. 3. Teaching the positional profiles of the ironing task and door opening task.

Ironing task Door opening task

0.4 0.5 0.6 0.7 0.8
−0.3

−0.2

−0.1

0

0.1

0.2

x
1

x 2

0 50 100 150 200
0.4

0.5

0.6

0.7

0.8

t

x 1

0 50 100 150 200
−0.3

−0.2

−0.1

0

0.1

0.2

t

x 2

0 50 100 150 200

−0.2

−0.1

0

0.1

0.2

t

x 3

−1 −0.5 0 0.5
−1

−0.5

0

0.5

x
1

x 2

0 50 100 150 200
−1

−0.5

0

0.5

t

x 1

0 50 100 150 200
−1

−0.5

0

0.5

t

x 2

0 50 100 150 200
−0.4

−0.2

0

0.2

0.4

t

x 3

Fig. 4. Positional profiles of the ironing task and door opening task. Demonstrations
(in black) and separate reproductions (in red) based on the learned individual profiles.
The position axis x1 and x2 are in the horizontal plane, and x3 is the vertical axis.

of the iron depending on the regions of garment and on
the proximity to an operator. Here we concentrate on the
simultaneous consideration of position information for the
ironing skill. For example, while the iron is being moved, it
should be pushed down towards the table top, to press the
clothes well. In addition, the exerted force on the iron should
be stronger when the tip of the iron is moving forward, and
weaker when the iron is moving backward, to avoid creating
wrinkles on the clothes.

1) Learning the task profiles: The ironing skill imposes
varying positional constraints throughout the execution of
the task. For example, the path that the iron should follow is
more constrained in the vertical axis than in the horizontal
plane because it is more important to have the iron in contact
with the table than to follow a specific path on the table.
These varying positional constraints are reflected by the
collected data from the demonstrations and incorporated in
the task profile.

Fig. 4 shows the obtained positional and profiles of the
ironing task after the teaching process. Fig. 5 demonstrates
the ability of the proposed method to encode the variable
positional task constraints and to use adaptive stiffness gain
matrix to perform adequate task reproductions. In particular,
the learned model shows that it is more important to track
the movement in the vertical direction than in the other two
directions of the horizontal plane (nearly flat ellipsoids in
the second graph). As a result, the stiffness matrices have an
elongated shape reflecting this property.

The two simulated perturbation experiments demonstrate
that the robot learned to keep its end-effector stiff in vertical
direction and compliant (soft) in horizontal direction. As a
result, when applying a constant force to the end-effector
during reproduction, the deformation is stronger if the force
is parallel to the table than if the force is vertical. The

Multiple demonstrations Extraction of the task constraints Σ̂X

0.4
0.45

0.5
0.55

0.6
0.65

0.7

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

−0.2

−0.15

−0.1

x1
x2

x
3

Reproduction with variable stiffness K̂P Stochastic reproduction attempts

0.4
0.45

0.5
0.55

0.6
0.65

0.7

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

−0.2

−0.15

−0.1

x1
x2

x
3

Horizontal perturbation Vertical perturbation

0.4
0.45

0.5
0.55

0.6
0.65

0.7

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

−0.2

−0.15

−0.1

x1
x2

x
3

0.4
0.45

0.5
0.55

0.6
0.65

0.7

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

−0.2

−0.15

−0.1

x1
x2

x
3

Fig. 5. Learned positional profile for the ironing task. Top: Extracting task con-
straints from demonstrations through the residuals of the regression process. Adaptive
stiffness gain matrix computed from the residuals information. The covariance matrices
Σ̂X =

∑K
i=1 hi(t)Σ

X
i and stiffness gain matrices K̂P =

∑K
i=1 hi(t)K

P
i are

represented with grey and green ellipsoids respectively. Bottom: Stochastic reproduc-
tions of the movement. Two perturbed reproduction attempts: one with applying a
constant force parallel to the table at the end-effector of the robot, and another with
applying a constant force with the same amplitude, but perpendicular to the table.

covariance matrices Σ̂X and stiffness gain matrices KP are
respectively depicted with grey and green ellipsoids in Fig.
5. The variability of the demonstrations reflects the important
characteristics of the task. The model correctly encapsulates
these variations through the set of covariance matrices Σ̂X

estimated through the residuals of the regression process. A
variable stiffness gain matrix K̂P is automatically calculated
in order to fulfill the learned task constraints.

C. Door opening task

The second task consists of opening a door which has a
horizontal bar that needs to be pushed with a larger force
than a standard door handle to open it, as shown in Fig.
2. In this task, the robot first has to push with its hand the
horizontal bar downwards (which unlocks the door) and then
to push forward and to the right in an arc-shaped trajectory
to open the door wider.

1) Learning the task profiles: The teaching process for
the door opening task is shown in Fig. 3. The individual po-
sitional and force profiles obtained from the demonstrations
are shown in Fig. 4.

Regarding the positional profile of the task, the position
of the hand needs to be more constrained when it pushes
on the handle than during its approach, in order to bring it
to the desired position of the horizontal bar. These varying
positional constraints are reflected by the collected data and
learned by the proposed method.

D. Pancake-Flipping task

The real-world evaluation of the Self-learning variability
approach is done on a dynamic Pancake-Flipping task. The
goal of the task is to toss a pancake in the air so that it
rotates 180 degrees before being caught. Due to the complex
dynamics of the task, it is unfeasible to try to learn it
directly using tabula rasa RL. Instead, a person presents a
demonstration of the task first, which is then used to initialize
the policy.

1) Experimental setup: The experimental setup is shown
in Fig. 2. The experiment is conducted with a torque-
controlled Barrett WAM 7 DOFs robotic arm. Using a
gravity-compensation controller, the Pancake-Flipping task
is first demonstrated via kinesthetic teaching. The number
of states is fixed at 8, which is determined empirically by
examining the quality of the initial reproduced trajectories
with different number of states.

Custom-made artificial pancakes are used, which have 4
highly-reflective passive markers, in order to track both the
position and the orientation of the pancakes during the task
execution (See Fig. 2). For easier visual inspection, the two
sides of the pancakes are colored in different colors - white
and yellow. The pancake weights only 26 grams, which
makes it susceptible to air flow influence and makes its
motion less predictable.

The pancake’s position and orientation are tracked by a
marker-based NaturalPoint OptiTrack motion capture system
with 12 cameras. It tracks the position xp and orientation (qp

in quaternion representation, Mp in direction cosine matrix
representation) of the pancake at a rate of 30 frames per
second.

The return of a rollout τ is calculated from the timestep
reward r(t). It is defined as a weighted sum of two cri-
teria (orientational reward and positional reward), which
encourage successful flipping and successful catching of the
pancake

r(tf) = w1

[arccos(v0.vtf)

π

]
+w2e

−||xp−xF ||+w3x
M
3 , (8)

where tf is the moment when the pancake passes with
downward direction the horizontal level at a fixed height
∆h above the frying pan’s current vertical position, v0 is
the initial orientation vector of the pancake (unit vector
perpendicular to the pancake), vtf is the orientation vector
of the pancake at time tf , xP is the position of the pancake
at time tf , xF is the position of the frying pan at time tf ,
and xM3 is the maximum reached altitude of the pancake.
The first term is maximized when the pancake’s orientation
vector at time tf goes in the opposite direction to the initial
orientation vector, which corresponds to a successful flip.
The second term is maximized when the pancake lands
in the center of the frying pan. The weights we use are
w1 = w2 = w3 = 0.5. For all other time steps t 6= tf
we define r(t) = 0.

The learning process is based on the PoWER algorithm
implementation provided by Kober et al [16]. σ = 6 is used
as parameter for the importance sampler. The parameters θn

Fig. 6. Sequence of video frames showing a successful pancake flipping
(after 50 rollouts), performed on the WAM robot.

for the RL algorithm are composed of two sets of variables:
the first set contains the full 3 × 3 stiffness matrices KP

i

with the positional error gains in the main diagonal and the
stiffness gains in the off-diagonal elements; the second set
contains the vectors µX

i with the attractor positions for the
primitives. The RL algorithm is stopped when a successful
and reproducible pancake flipping is achieved with return
R(τ) ≥ 0.9.

IV. DISCUSSION

The three presented experiments demonstrate the ability of
the proposed methods to successfully encode and reproduce
the variable stiffness needed to perform the corresponding
motor skills successfully. For example, the ironing task
requires variable stiffness in vertical and horizontal direction
during the reproduction. Also, it requires exerting a variable
force with constant direction on an object which does not
move, regardless of the exerted force (the table top in this
case). The door opening task, on the other hand, focuses on
exerting a large force at a particular part of the trajectory, and
also varying the direction of the force during the task repro-
duction. In both cases, the tasks are difficult to realize using
fixed stiffness, which shows the advantage of incorporating
variable stiffness information in the task model.

This paper does not deal with the concrete implementation
of stiffness/compliance: the discussed points apply to both
active and passive variable stiffness implementations.

The robot remains gravity-compensated throughout all the
interactions presented in the paper for both demonstration
and reproduction phases. During reproduction, this allows
the user to physically move the robot using the redundancy
of the robot’s structure and the redundancy of the task. The
same property can be exploited to improve the safety of the
human-robot interaction by using the available redundancy
to avoid hitting obstacles or other people close to the robot.

V. CONCLUSION

The presented methods allow a robot to learn motor skills
requiring variable stiffness during execution.

In the Extracted variability approach, the user teaches
the robot how to perform a task by providing multiple
demonstrations of the skill he/she wishes to transfer. After
extraction of the task constraints, the robot reproduces the

task by automatically selecting an adequate level of com-
pliance to reproduce the essential positional characteristics
of the skill. We demonstrated the feasibility of the approach
with an ironing task and a door opening task.

In the Self-learning variability approach, RL is used to
find appropriate stiffness. The pancake flipping task is a good
example for this approach, because of its dynamism and wide
range of stiffness required.

REFERENCES

[1] A. Billard, S. Calinon, R. Dillmann, and S. Schaal, “Robot program-
ming by demonstration,” in Handbook of Robotics, B. Siciliano and
O. Khatib, Eds. Secaucus, NJ, USA: Springer, 2008, pp. 1371–1394.

[2] P. Kormushev, S. Calinon, and D. G. Caldwell, “Robot motor skill co-
ordination with EM-based reinforcement learning,” in Proc. IEEE/RSJ
Intl Conf. on Intelligent Robots and Systems (IROS), Taipei, Taiwan,
October 2010.

[3] A. Albu-Schaeffer, S. Haddadin, C. Ott, A. Stemmer, T. Wimboeck,
and G. Hirzinger, “The DLR lightweight robot - Design and control
concepts in human environments,” Industrial Robot, vol. 34, no. 5, pp.
376–385, 2007.

[4] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey
of robot learning from demonstration,” Robot. Auton. Syst., vol. 57,
no. 5, pp. 469–483, 2009.

[5] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction,
ser. Adaptive computation and machine learning. Cambridge, MA,
USA: MIT Press, 1998.

[6] A. De Luca and L. Ferrajoli, “Exploiting robot redundancy in collision
detection and reaction,” in IEEE/RSJ Intl Conf. on Intelligent Robots
and Systems (IROS), Nice, France, September 2008.

[7] J.-O. Kim, M. Wayne, and P. K. Khosla, “Exploiting redundancy
to reduce impact force,” Journal of Intelligent and Robotic Systems,
vol. 9, no. 3, pp. 273–290, 1994.

[8] M. Howard, S. Klanke, M. Gienger, C. Goerick, and S. Vijayaku-
mar, “Methods for learning control policies from variable-constraint
demonstrations,” in From Motor Learning to Interaction Learning in
Robots, O. Sigaud and J. Peters, Eds. Springer Berlin / Heidelberg,
2010, pp. 253–291.

[9] A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Trajectory formation for
imitation with nonlinear dynamical systems,” in Proc. IEEE Intl Conf.
on Intelligent Robots and Systems (IROS), 2001, pp. 752–757.

[10] S. Schaal, P. Mohajerian, and A. J. Ijspeert, “Dynamics systems vs.
optimal control a unifying view,” Progress in Brain Research, vol.
165, pp. 425–445, 2007.

[11] H. Hoffmann, P. Pastor, D. H. Park, and S. Schaal, “Biologically-
inspired dynamical systems for movement generation: automatic real-
time goal adaptation and obstacle avoidance,” in Proc. IEEE Intl Conf.
on Robotics and Automation (ICRA), 2009, pp. 2587–2592.

[12] S. Calinon, F. D’halluin, D. G. Caldwell, and A. G. Billard, “Handling
of multiple constraints and motion alternatives in a robot programming
by demonstration framework,” in Proc. IEEE-RAS Intl Conf. on
Humanoid Robots (Humanoids), Paris, France, December 2009, pp.
582–588.

[13] S. Calinon, F. D’halluin, E. L. Sauser, D. G. Caldwell, and A. G.
Billard, “Learning and reproduction of gestures by imitation: An
approach based on hidden Markov model and Gaussian mixture
regression,” IEEE Robotics and Automation Magazine, vol. 17, no. 2,
pp. 44–54, 2010.

[14] M. Khansari and A. G. Billard, “BM: An iterative method to learn
stable non-linear dynamical systems with Gaussian mixture models,”
in Proc. IEEE Intl Conf. on Robotics and Automation (ICRA), An-
chorage, Alaska, USA, May 2010, pp. 2381–2388.

[15] J. Kober and J. Peters, “Learning motor primitives for robotics,” in
Proc. IEEE Intl Conf. on Robotics and Automation (ICRA), May 2009,
pp. 2112–2118.

[16] J. Kober, “Reinforcement learning for motor primitives,” Master’s
thesis, University of Stuttgart, Germany, August 2008.

