
Bipedal Walking Energy Minimization by
Reinforcement Learning with Evolving Policy Parameterization

Petar Kormushev, Barkan Ugurlu, Sylvain Calinon, Nikolaos G. Tsagarakis, Darwin G. Caldwell

Abstract— We present a learning-based approach for min-
imizing the electric energy consumption during walking of a
passively-compliant bipedal robot. The energy consumption is
reduced by learning a varying-height center-of-mass trajectory
which uses efficiently the robot’s passive compliance. To do
this, we propose a reinforcement learning method which evolves
the policy parameterization dynamically during the learning
process and thus manages to find better policies faster than by
using fixed parameterization. The method is first tested on a
function approximation task, and then applied to the humanoid
robot COMAN where it achieves significant energy reduction.

I. INTRODUCTION

Biological systems, for instance humans, store and release
elastic potential energy into/from muscles and tendons during
daily activities such as walking [1]. The management of
the elastic potential energy that is stored in these biological
structures is essential for reducing the energy consumption
and for achieving mechanical power peaks. In this matter,
vertical center of mass (CoM) movement appears to be a
crucial factor in reducing the metabolic cost [2].

Recent advances in robotics and mechatronics have al-
lowed for the creation of a new generation of passively-
compliant robots, such as the humanoid robot COMAN
(derived from the cCub bipedal robot [3]) shown in Fig. 1.
Similar to biological systems, the springs in this robot can
store and release energy, which can be extremely helpful
if properly used. However, it is difficult to pre-engineer a
proper way to utilize the passive compliance for dynamic
and variable tasks, such as walking. Robot bipedal walking
has been investigated many times before, but not much yet in
the context of passive compliance. For a task such as walking
energy minimization, one possible way to find a proper use of
the passive compliance is via machine learning. In this paper,
we present an approach that minimizes the walking energy
by learning a varying-CoM-height walking which efficiently
uses the passive compliance of the robot.

A. Related work

Various approaches exists for reducing the energy con-
sumption of bipedal walking, such as [3]–[5], but not in the
context of learning a varying-height walking, as in this paper.
Machine learning has been successfully used before for

This work was supported by the AMARSi European project under
contract FP7-ICT-248311.

P. Kormushev, S. Calinon, N. G. Tsagarakis and D. G. Caldwell are with
Dept. of Advanced Robotics, Istituto Italiano di Tecnologia, via Morego 30,
16163 Genova, Italy. B. Ugurlu is with Toyota Technological Institute (TTI),
468-8511 Nagoya, Japan.{petar.kormushev, sylvain.calinon,
nikos.tsagarakis, darwin.caldwell}@iit.it;
barkanu@toyota-ti.ac.jp.

Fig. 1. The right leg of the COMAN robot (COmpliant huMANoid robot),
with uncovered springs which implement the passive compliance in the knee
and ankle joints. There are a total of 28 springs in the legs: 6 in each
compliant active joint (knee and ankle pitch) on each leg, and 2 for the
passive joint at the toe of each foot.

learning tasks on bipedal robots, such as dynamic balancing,
or even in tasks involving also the upper body such as learn-
ing to clean vertical surfaces [6]. One especially promising
approach for autonomous robot learning is reinforcement
learning (RL), as demonstrated in [7]–[11].

Stulp et al presented in [8] a Policy Improvement with
Path Integrals (PIˆ2) RL approach for variable impedance
control, where both planned trajectories and gain schedules
for each joint are optimized simultaneously. The approach is
used to let the robot learn how to push and open a door
by minimizing the average stiffness gains controlling the
individual joints, with the aim to reduce energy consumption
and to increase safety.

Kormushev et al presented in [9] the use of Expectation-
Maximization-based RL for a pancake flipping task to re-
fine the trajectory of the pan by learning a mixture of
proportional-derivative systems with full stiffness matrices.
RL in combination with regression yield extremely fast-
converging algorithms, such as ARCHER, used by the iCub
humanoid robot to quickly learn the skill of archery [10].

Rosenstein et al presented in [11] a simple random search
approach to increase the payload capacity of a weightlifting

1



robot by exploiting the robot’s intrinsic dynamics at a syn-
ergy level. Via-points are learned by exploration in a first
phase of learning. RL and simple random search are then
used to refine the joint coordination matrices initially defined
as identity gains.

The work that we present in this paper shares a similar
view that the above papers by providing the robot with ex-
ploration capabilities to optimize energy consumption while
reproducing a desired task. We consider the challenging
task of natural walking with compliant robot, which would
take too many iterations to be learned only by imitation
and reinforcement learning, but where a good compromise
between state-of-the-art control approaches and optimization
of policy parameters through RL is possible.

Adaptive resolution in state space has been studied in RL
(see e.g. [12]). In [13], Moore et al employed a decision-
tree partitioning of state-space and applies techniques from
game-theory and computational geometry to efficiently and
adaptively concentrate high resolution on critical areas. They
address the pitfalls of discretization during reinforcement
learning, and note that in high dimensions it is essential
that learning does not plan uniformly over a state-space.
However, in the context of RL, adaptive resolution in the
policy parameterization remains largely unexplored so far.

Miyamoto et al presented in [14] an actor-critic reinforce-
ment learning scheme with via-point trajectory representation
for a cart-pole swing up task simulation. The actor incre-
mentally generates via-points at a coarse time scale, while a
trajectory generator transforms via-points to primitive action
at the lower level.

Morimoto et al presented in [15] a walking gait learning
approach in which via-points are detected from the observed
walking trajectories, and RL modulates the via-points to
optimize the walking pattern. The system is applied to a
biped robot fixed to a boom that constrains the robot to the
sagittal plane. Exploration tries to minimize the torques while
keeping the robot above a desired height (i.e., not falling).

Wada and Sumita presented in [16] a via-points acquisi-
tion algorithm based on actor-critic reinforcement learning,
where handwriting patterns are reproduced by iterative and
sequential generation of short movements. The approach
finds a set of via-points to mimic a reference trajectory
by iterative learning using evaluation values of generated
movement pattern.

Our approach differs from the above work by combining
the efficiency of EM-based RL with incremental adaptive
resolution in the policy parameterization to solve a complex
real-world walking optimization task.

B. Novelty

In this paper we develop an integrated approach for learn-
ing how to minimize the energy required for walking of a
passively-compliant bipedal robot. The energy minimization
problem is challenging because it is nearly impossible to
be solved analytically, due to the difficulty in modeling
accurately the properties of the springs, the dynamics of the
whole robot and various nonlinearities, such as stiction.

The novelty of the paper spreads in three directions: evolv-
ing policy parameterization, variable CoM-height walking,
and passive compliance for reduction of energy consumption.
First, we introduce a novel reinforcement learning technique
which makes possible to use changeable policy parameteriza-
tion over time. We call it evolving policy parameterization,
and show one possible way to implement it using splines.
Second, we develop a variable CoM-height ZMP-based walk
generator and demonstrate various walking gaits on a bipedal
robot. Third, we exploit the passive compliance built into
our bipedal robot, in order to minimize the energy needed
for walking, using the proposed reinforcement learning al-
gorithm to find the optimal CoM trajectory which minimizes
the consumed energy.

The proposed method is tested on the lower body of the
compliant humanoid robot COMAN. The robot’s legs have
passive compliance (via springs) in the two pitch joints (knee
and ankle) of each leg, as shown in Fig. 1.

II. PROPOSED APPROACH

We propose a RL method which learns optimal trajectory
for the CoM of the robot to be used during walking, in
order to minimize the energy consumption. The proposed
approach consists of 3 interacting components: reinforcement
learning, walk generation, and real-world rollout execution.
Fig. 2 shows a high-level outline of the approach.

A. Reinforcement Learning

The conventional state-action based reinforcement learn-
ing approaches suffer severely from the curse of dimension-
ality. To overcome this problem, policy-based reinforcement
learning approaches were developed, which instead of work-
ing in the huge state/action spaces, use a smaller policy
space, which contains all possible policies representable
with a certain choice of policy parameterization. Thus, the
dimensionality is drastically reduced, and the convergence
speed is much faster.

In order to find a good solution, i.e. a policy which
produces a reward very close to the optimum/desired one,
the policy parameterization has to be powerful enough to
represent a big enough policy space, so that a good candidate
solution is present in it. If the policy parameterization is very
simple, with only a few parameters, then the convergence is
quick, but often a sub-optimal solution is reached. If the
policy parameterization is overly complex, the convergence
is slow, and there is a higher possibility that the learning al-
gorithm will converge to some local optimum, possibly much
worse than the global optimum. The level of sophistication of
the policy parameterization should be just the right amount,
in order to provide both fast convergence and good enough
solution.

Deciding what policy parameterization to use, and how
simple/complex it should be, is a very difficult task, often
performed via trial-and-error manually by the researchers.
This additional overhead is usually not even mentioned in
reinforcement learning papers, and falls into the category
of ”empirically tuned” parameters, together with the reward

2



Reinforcement Learning algorithm

Reinforcement Learning Walking generator Real-world experiment

Walk execution

1 2 3

Past

Rollouts

Data

ZMP based

trajectory

generator

PID joint

position

controller
Evolving policy

parameterization

Consumed electric energyReward

functionR
e
tu
rn
o
f
ro
llo
u
t

z-axis

CoM trajectory

ZMP input (x, y)

Timing profile

Swing leg motion

Inverse

Kinematics

Feedback (Motor

current/voltage,

encoders)

CoM and

swing leg

trajectories

Joint

trajectories

k execution

Fig. 2. Outline of the proposed approach, showing details about each of the three components: reinforcement learning, walk generation, and real-world
rollout execution.

function, decay factor, exploration noise, weights, etc. Since
changing the policy parameterization requires to restart the
learning from scratch, throwing away all accumulated data,
this process is slow and inefficient. As a consequence, the
search for new solutions often cannot be done directly on
a real-world robot system, and requires instead the use of
simulations.

In this paper, we propose an approach that allows to
change the complexity of the policy representation dynami-
cally while the reinforcement learning is running, without
losing any of the collected data, and without having to
restart the learning. What we propose is a mechanism which
can incrementally ”evolve” the policy parameterization as
necessary, starting from a very simple parameterization and
gradually increasing its complexity and thus, its representa-
tional power. The goal is to create an adaptive policy param-
eterization, which can automatically ”grow” to accommodate
increasingly more complex policies and get closer to the
global optimum. A very desirable side effect of this is that
the tendency of converging to a sub-optimal solution will be
reduced, because in the lower-dimensional representations
this effect is less exhibited, and gradually increasing the
complexity of the parameterization helps not to get caught
in a poor local optimum.

The main difficulty to be solved is providing backward
compatibility, i.e. how to design the subsequent policy repre-
sentations in such a way, that they are backward-compatible
with the previously collected data, such as past rollouts and
their corresponding policies and rewards. In general, it is
possible to consider cases in which simplifying the policy
parameterization might be useful, but in this work we are
going to assume that we only want to increase the complexity
of the policy over time.

One of the simplest representations which have the prop-
erty of backward compatibility, are the geometric splines.
For example, if we have a cubic spline with K knots (or
via-points), and then we increase the number of knots, we
can still preserve the exact shape of the generated curve
(trajectory) by the spline. In fact, if we put one additional
knot between every two consecutive knots of the original

spline, we end up with a 2K − 1 knots and a spline
which coincides with the original spline. Based on this,
the idea we propose is to use the spline knots as a policy
parameterization, and use the spline backward compatibility
property for evolving the policy parameterization without
losing the previously collected data. In order to do this, we
need to define an algorithm for evolving the parameterization
from K to L knots (L > K), which is formulated in
Algorithm 1. Without loss of generality, the values of the
policy parameters are normalized in the range [0, 1], and
appropriately scaled/shifted as necessary later upon use.

Algorithm 1 EvolvePolicy(current policy: Pcurrent, desired
new number of parameters: L)

1: K ← Pcurrent.numberOfParameters
2: Xcurrent ← [0, 1

K−1 ,
2

K−1 , ..., 1]
3: Ycurrent ← Pcurrent.parameterV alues
4: Scurrent ← ConstructSpline(Xcurrent, Ycurrent)
5: Xnew ← [0, 1

L−1 ,
2

L−1 , ..., 1]
6: Ynew ← EvaluateSplineAtKnots(Scurrent, Xnew)
7: Snew ← ConstructSpline(Xnew, Ynew)
8: Pnew.numberOfParameters ← L
9: Pnew.parameterV alues ← Snew.Ynew

10: return Pnew

The proposed technique for evolving the policy parame-
terization can be used with any policy-based RL algorithm.
In this paper, we use the EM-based RL algorithm PoWER
[17], due to its low number of parameters that need tuning.

Fig.3 illustrates the process of using spline representation
for the evolving policy parameterization. Fig.4 shows an
example for a reinforcement learning process using evolving
policy parameterization to approximate an unknown function
(further explained in Section III-A).

B. Bipedal Walking Generator

To be able to generate real-time bipedal walking patterns,
we adapted the resolution method explained in [18], using
Thomas Algorithm [19]. Fig. 5 illustrates the one mass model
and ZMP, both on x-z plane and y-z plane. In this figure,

3



Number of knots = 4

Number of knots = 8

Number of knots = 16

Number of knots = 32

Fig. 3. An example for an evolving policy parameterization based on
spline representation of the policy. The set of spline knots is the policy
parameterization. The spline values at the knots are the actual policy
parameter values. The parameterization starts from 4 knots and evolves up
to 32 knots, thus gradually increasing the resolution of the policy.

0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fig. 4. An example for a reinforcement learning process using evolving pol-
icy parameterization. The black trajectory is the unknown global optimum
which the RL algorithm is trying to approximate. The RL policy is encoded
using a spline and parameterized by the spline knots. The policy evolves
by gradually increasing the number of spline knots. Each green trajectory
represents one intermediate policy during the learning process. The policy
evolution is depicted by changing the color from dark green (for the older
policies) to bright green (for the newer ones). The color gradient shows how
the evolving policy gradually converges toward the global optimum.

0 0

Fig. 5. One Mass Models on x-z and y-z planes. The walking direction
coincides with the x axis. (a) Showing the sagittal plane during single
support, which is the same for either the left or the right leg. (b) Showing
the frontal plane during single support on the left leg.

P = (px, py, pz) is the CoM (Center of Mass) position while
Q = (qx, qy, 0) symbolizes ZMP position. For the purpose
of simple bipedal walking planning, angular momentum rate
changes are omitted. Therefore, the x-axis ZMP equation
takes the form:

qx = px −
p̈x

p̈z + g
pz, (1)

where g is the gravitational acceleration. The vertical CoM
position (pz) and acceleration (p̈z) are provided by the learn-
ing algorithm for all times. As next step, (1) is discretized
for px as follows:

p̈x(t) =
px(i+ 1)− 2px(i) + px(i− 1)

∆t2
, (2)

where ∆t is the sampling period, i is the discrete event.
i starts from 0 to n which is the total number of discrete
events. Inserting (2) into (1), we may obtain the following:

px(i+ 1) =
b(i)

c(i)
px(i)− px(i− 1) +

qx(i)

c(i)
(3)

b(i) = 1− 2c(i); c(i) = − pz(i)

(p̈z(i) + g)∆t2
(4)

In order to solve this tridiagonal equation efficiently, we
employ Thomas Algorithm [19]. In this algorithm, we need
to define initial and final position of x-axis CoM position, px.
Therefore, for a given set of reference ZMP trajectory, initial
conditions and final conditions, we are able to calculate CoM
trajectory. For that purpose, we can re-arrange the tridiagonal
equation as below:

px(i) = e(i+ 1)px(i+ 1) + f(i+ 1) (5)

In (5), e(i+ 1) and f(i+ 1) can be defined as follows:

e(i+ 1) = − c(i)

c(i)e(i) + b(i)
(6)

f(i+ 1) =
qx(i)− c(i)f(i)

c(i)e(i) + b(i)
(7)

Combining (5), (6) and (7) we obtain (8):

px(i) = − c(i)

c(i)e(i) + b(i)
px(i+ 1) +

qx(i)− c(i)f(i)

c(i)e(i) + b(i)
(8)

Keeping in mind that px(0) = x0 and px(n) = xn, e(1) and
f(1) are determined as 0 and x0, respectively.

Utilizing the Thomas Algorithm for the solution of this
tridiagonal equation, we can obtain the CoM trajectory’s x-
axis component. If an identical approach is also executed for
y-axis CoM position, we could derive all the components of
the CoM trajectory in real-time since vertical CoM position
is previously determined.

C. Evaluation of Walking Energy Consumption

There are many ways in which energy can be measured.
One possible approach is to estimate the mechanical energy
from motor torque measurements and angular velocities. But
the problem with this approach is that it incorrectly includes
the work done by gravity, and can only infer indirectly

4



11 12 13 14 15 16
0

5

10

15

20

25

30

Time [s]

C
on

su
m

ed
 e

le
ct

ric
 p

ow
er

 [W
·s

]

 

 

Hip pitch
Hip roll
Hip yaw
Knee pitch
Ankle pitch
Ankle roll

11 12 13 14 15 16
0

5

10

15

20

25

30

Time [s]

C
on

su
m

ed
 e

le
ct

ric
 p

ow
er

 [W
·s

]

 

 

Hip pitch
Hip roll
Hip yaw
Knee pitch
Ankle pitch
Ankle roll

(a) Left leg (b) Right leg

Fig. 6. Electric energy consumption of each leg of COMAN during a
4-cycle walk (i.e. 8 steps).

the actual electric power used for walking. Also, electrical
energy may be used by the motors even when the mechanical
energy is zero, e.g. when there is no movement.

We propose, what we think is the best approach, to directly
measure the electrical energy used by all the motors of the
robot, which allows us to explicitly measure the value that we
are trying to minimize. We use the formula P = IU , linking
the electric power P to the electric current I and the voltage
U , and we integrate over time to calculate the consumed
electric energy in Joules. The COMAN robot is equipped
with both current and voltage sensors at each motor, so
we can accurately measure these values. Fig. 6 shows the
accumulated consumed electric energy values for the motor
of each individual joint of COMAN, calculated as:

Ej(t1, t2) =

∫ t2

t1

Ij(t)Uj(t) dt, (9)

where j is a selected joint for which the energy consumption
is calculated, and [t1, t2] is the time interval.

For evaluation of a whole walking rollout, we define the
energy consumption measure of a rollout τ to be the average
electric energy consumed per walking cycle, and estimate it
using the formula:

E(τ) =
1

c

∑
j∈J

Ej(t1, t2), (10)

where J is the set of joints in the sagittal plane (hip, knee,
and ankle pitch of both legs, 6 in total) whose energy
consumption we try to minimize.

In order to reduce the effect of noise on the measurement,
for each rollout we make the robot walk for 16 seconds,
and we take the electric current measurement of the c = 4
consecutive walk cycles (4 repetitions of phases 7 to 10 in
Table I), which contain a total of 8 steps. Therefore, the value
of t1 is the start of phase 7, and the time t2 is the end of
phase 10 in the fourth cycle. Then, we average the energy
consumption and use this value as the estimate of the electric
energy used for this walking rollout.

Since the installed springs can only help to reduce the
energy in the sagittal plane, in our evaluation metric we
use the sum of all electric energy consumed by the motors
controlling the motion in the sagittal plane, i.e. the hip, knee,
and ankle pitch joints on both legs. Fig 6 shows that, in fact,
the biggest amount of electric energy is used for the hip roll

TABLE I
SEQUENCE OF WALKING PHASES

No. Phase description Start time[s] Duration[s]
1 Wait 1 0.00 1.00
2 Knee bend 1.00 1.00
3 Wait 2 2.00 5.00
4 Transfer phase (Double) 7.00 0.60
5 Right single 7.60 0.50
6 Double 8.10 0.15
7 Left single 8.25 0.50
8 Double 8.75 0.15
9 Right single 8.90 0.50

10 Double 9.40 0.15

joint motor, because it has to sustain half of the body mass
during the single support phase. This cannot be minimized
without using an upper body to counter-balance the swing leg
(and also because there are no springs in the hip roll joint),
that is why we do not include the hip roll in the evaluation
metric.

Finally, we define the return of a rollout τ as:

R(τ) = e−kE(τ), (11)

where k is a scaling constant. The lower the energy con-
sumed, the higher the reward is.

III. EXPERIMENTS

A. Simulation experiment

In order to evaluate the proposed reinforcement learning
with evolving policy parameterization, we conduct an exper-
iment in simulation. The goal is to compare the proposed
method with a conventional fixed policy parameterization
method that uses the same reinforcement learning algorithm
as a baseline. The following synthetic function is used as the
(unknown) goal for the optimization process:

τ̃(t) = 0.5 + 0.2 sin(10t) + 0.07 sin(20t)+

+0.04 sin(30t) + 0.04 sin(50t),
(12)

where τ̃(t) is a synthetic function which the learning algo-
rithm is trying to approximate by minimizing the difference
between it and the policy-generated trajectory, with domain
t ∈ [0, 1], and range τ̃(t) ∈ [0, 1].

The reward function used for the simulated experiment is
defined as follows:

R(τ) = e−
∫ 1
0
[τ(t)−τ̃(t)]2dt, (13)

where R(τ) is the return of a rollout (trajectory) τ ; τ̃ is
the unknown (to the learning algorithm) function that the
algorithm is trying to approximate.

Fig. 7 shows a comparison of the generated policy output
produced by the proposed evolving policy parameterization
method, compared with the output from the conventional
fixed policy parameterization method. Fig. 8 shows that the
convergence properties of the proposed method are signifi-
cantly better than the conventional approach.

5



0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a) Fixed policy parameterization (b) Evolving policy parameterization

Fig. 7. Comparison of the policy output from RL with fixed policy parame-
terization (30-knot spline) versus evolving policy parameterization (from 4-
to 30-knot spline). In black, the unknown to the algorithm global optimum
which it is trying to approximate. In green, all the rollouts performed during
the learning process. In red, the current locally-optimal discovered policy
by each RL algorithm. Due to the lower policy-space dimensionality at the
beginning, the evolving policy parameterization approaches much faster the
shape of the globally-optimal trajectory. The fixed policy parameterization
suffers from inefficient exploration due to the high dimensionality, as well
as from overfitting problems, as seen by the high-frequency oscillations of
the discovered policies.

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of rollouts

A
ve

ra
ge

 r
et

ur
n

 

 

Evolving parameterization
Fixed parameterization

Fig. 8. Comparison of the convergence of the RL algorithm with fixed
policy parameterization (30-knot spline) versus evolving policy parame-
terization (from 4- to 30-knot spline). The results are averaged over 20
runs of each of the two algorithms in simulation. The standard deviation
is indicated with error bars. In addition to faster convergence and higher
achieved rewards, the evolving policy parameterization also achieves lower
variance compared to the fixed policy parameterization.

B. Real-world bipedal walking experiment

Based on the results from the simulation experiment, the
proposed evolving policy parameterization method is chosen
for the real-world walking experiment. The experimental
setup is shown in Fig. 9.

We use the lower body of the passively-compliant hu-
manoid robot COMAN that we developed earlier to explore
compliant humanoid characteristics. The lower body has a
total of 17 DoF (degrees of freedom): 6 active and 1 passive
(toe joint) DoF in each leg, plus 3 active DoF at the waist.
Each joint incorporates three position sensors (2 absolute and
1 relative) and one torque sensor. Fig. 10 shows the COMAN
robot’s lower body and its kinematic configuration. Fig. 1
shows the springs that implement the passive compliance of
the legs.

Fig. 11 shows the convergence results from the walking
experiments. Fig. 12 visualizes the 180 rollouts that were
performed and the discovered optimal policy by the RL

Fig. 9. The experimental setup, showing a snapshot of the COMAN robot’s
lower body during one walking rollout execution.

z

x
y

{1}

{2}

{3}

{4}

{5}

{6}

{7}

{8}

{9}

{10}

{11}

{12}

{0}

{13}

Left

foot

Pitch

Roll

Roll

Yaw

Pitch

Pitch

Yaw

Right

foot

{14}

Roll

{15}

Pitch

Passive toe joints

 

Fig. 10. Lower-body design of the compliant humanoid robot COMAN.

algorithm. A video of the experiment is available at [20].

IV. DISCUSSION

The total distance traveled by the robot during our exper-
iments is around 0.5 km. For the evaluation of the energy
consumption, we did not include the traveled distance, as the
speed of walking was the same for all rollouts, because the
stride length was fixed. In the future, we plan to conduct
other experiments with varying stride length.

The passive compliance proved to be extremely beneficial
also to the stability of the walking. From a total of 180
walking gaits, less than 10 were unstable and resulted in
undesirable oscillations. These rollouts were automatically
demoted by the learning algorithm due to the low reward
they generated.

With respect to the learning, the focus of the paper is not
on the encoding scheme (spline), but on the evolving policy
parameterization. Spline-based techniques have well-known
limitations such as providing a non-autonomous (time-based)
control policy, discarding variability and synergy information
in the representation, and having difficulty to cope with
unforeseen perturbations (see e.g. [21]). Being aware of
their limitations, splines provided us with a simple encoding

6



0 20 40 60 80 100 120 140 160 180
15

20

25

30

35

40

Rollout number

E
ne

rg
y 

co
ns

um
ed

 p
er

 c
yc

le
 [W

·s
]

Fig. 11. Results from the real-world minimization of the consumed energy
for walking. The figure shows the convergence of the consumed energy
over time during the reinforcement learning. Each rollout corresponds to a
walking experiment that was executed. For each rollout, the average energy
consumed per cycle is shown (averaged over 8 walking steps, i.e. 4 full
walk cycles), calculated from Eq. (10). The first value (green dot) is the
baseline, which is the average energy consumption of the fixed-CoM-height
walk. At rollout number 126 (red dot) the lowest energy consumption was
achieved, which is 18% lower than the baseline.

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

0.456

0.458

0.46

0.462

0.464

0.466

0.468

0.47

0.472

Time (cyclic)

C
o

M
 h

e
ig

h
t 

[m
]

Fig. 12. The discovered optimal policy (in red) by the reinforcement
learning, among all tried 180 CoM trajectories (in green), which were
executed on the real robot. The RL algorithm discovered by itself the timings
for single and double support phases, as well as the moment when the
heel strikes the ground (shown with dotted vertical line), and adjusted the
trajectory so that the CoM height is bounced off upward in that exact same
moment. Note that this is the reference trajectory, which means that the
actual trajectory will differ slightly due to the passive compliance of the
robot. All trajectories have been made cyclic in time, so that walking can
be executed continuously over many cycles.

scheme to be used as a first step to study the possibility to
dynamically evolve the policy parameterization during the
learning.

V. CONCLUSION

We proposed a reinforcement learning approach that can
evolve the policy parameterization dynamically during the
learning process. The gradually increasing representational
power of the policy parameterization helps to find better
policies faster than a fixed parameterization. We successfully
applied it to a bipedal walking energy minimization task by
developing a variable-CoM-height ZMP-based walk gener-

ator. The method achieved 18% reduction of energy con-
sumption in the sagittal plane by learning to use efficiently
the passive compliance of the robot.

REFERENCES

[1] M. Ishikawa, V. Komi, M. J. Grey, V. Lepola, and P. Bruggemann,
“Muscle-tendon interaction and elastic energy usage in human walk-
ing,” Journal of Appl. Physiol., vol. 99, no. 2, pp. 603–608, 2005.

[2] J. D. Ortega and C. T. Farley, “Minimizing center of mass vertical
movement increases metabolic cost in walking,” Journal of Appl.
Physiol., vol. 581, no. 9, pp. 2099–2107, 2005.

[3] B. Ugurlu, N. G. Tsagarakis, E. Spyrakos-Papastravridis, and D. G.
Caldwell, “Compiant joint modification and real-time dynamic walk-
ing implementation on bipedal robot cCub,” in IEEE Intl. Conf. on
Mechatronics, 2011.

[4] C. A. Amran, B. Ugurlu, and A. Kawamura, “Energy and torque
efficient zmp-based bipedal walking with varying center of mass
height,” in IEEE Intl. Workshop on Advanced Motion Control, 2010,
pp. 408 – 413.

[5] M. Uemura, K. Kimura, and S. Kawamura, “Generation of energy sav-
ing motion for biped walking robot through resonance-based control
method,” in IROS, 2009, pp. 2928 – 2933.

[6] P. Kormushev, D. N. Nenchev, S. Calinon, and D. G. Caldwell, “Upper-
body kinesthetic teaching of a free-standing humanoid robot,” in Proc.
IEEE Intl Conf. on Robotics and Automation (ICRA), Shanghai, China,
2011, pp. 3970–3975.

[7] P. Pastor, M. Kalakrishnan, S. Chitta, E. Theodorou, and S. Schaal,
“Skill learning and task outcome prediction for manipulation,” in Intl
Conf. on Robotics and Automation (ICRA), Shanghai, China, 2011.

[8] F. Stulp, J. Buchli, E. Theodorou, and S. Schaal, “Reinforcement
learning of full-body humanoid motor skills,” in Proc. IEEE Intl Conf.
on Humanoid Robots (Humanoids), Nashville, TN, USA, December
2010, pp. 405–410.

[9] P. Kormushev, S. Calinon, and D. G. Caldwell, “Robot motor skill co-
ordination with EM-based reinforcement learning,” in Proc. IEEE/RSJ
Intl Conf. on Intelligent Robots and Systems (IROS), Taipei, Taiwan,
October 2010, pp. 3232–3237.

[10] P. Kormushev, S. Calinon, R. Saegusa, and G. Metta, “Learning the
skill of archery by a humanoid robot iCub,” in Proc. IEEE Intl Conf.
on Humanoid Robots (Humanoids), Nashville, TN, USA, December
2010, pp. 417–423.

[11] M. T. Rosenstein, A. G. Barto, and R. E. A. Van Emmerik, “Learning
at the level of synergies for a robot weightlifter,” Robotics and
Autonomous Systems, vol. 54, no. 8, pp. 706–717, 2006.

[12] A. Bernstein and N. Shimkin, “Adaptive-resolution reinforcement
learning with polynomial exploration in deterministic domains,” Ma-
chine Learning, vol. 81, no. 3, pp. 359–397, 2010.

[13] A. W. Moore and C. G. Atkeson, “The parti-game algorithm for
variable resolution reinforcement learning in multidimensional state-
spaces,” Machine Learning, vol. 21, pp. 199–233, December 1995.

[14] H. Miyamoto, J. Morimoto, K. Doya, and M. Kawato, “Reinforcement
learning with via-point representation,” Neural Networks, vol. 17, pp.
299–305, April 2004.

[15] J. Jun Morimoto and C. G. Atkeson, “Learning biped locomotion:
Application of poincare-map-based reinforcement learning,” IEEE
Robotics and Automation Magazine, vol. 14, no. 2, pp. 41–51, 2007.

[16] Y. Wada and K. Sumita, “A reinforcement learning scheme for
acquisition of via-point representation of human motion,” in Proc. of
the IEEE Intl Conference on Neural Networks, vol. 2, July 2004, pp.
1109–1114.

[17] J. Kober and J. Peters, “Policy search for motor primitives in robotics,”
in Advances in Neural Information Processing Systems, 2009, vol. 21,
pp. 849–856.

[18] S. Kagami, T. Kitagawa, K. Nishiwaki, T. Sugihara, T. Inaba, and
H. Inoue, “A fast dynamically equilibrated walking trajectory gener-
ation method of humanoid robot,” Autonomous Robots, vol. 2, no. 1,
pp. 71–82, 2002.

[19] B. Ugurlu, T. Hirabayashi, and A. Kawamura, “A unified control
frame for stable bipedal walking,” in IEEE Intl. Conf. on Industrial
Electronics and Control, Porto, Portugal, 2009, pp. 4167–4172.

[20] Video accompanying this paper. [Online]. Available:
http://kormushev.com/research/videos/

[21] J. Peters and S. Schaal, “Reinforcement learning of motor skills with
policy gradients,” Neural Networks, vol. 21, no. 4, pp. 682–697, 2008.

7


