
Robot Motor Skill Coordination with EM-based
Reinforcement Learning

Petar Kormushev, Sylvain Calinon and Darwin G. Caldwell

Abstract— We present an approach allowing a robot to
acquire new motor skills by learning the couplings across
motor control variables. The demonstrated skill is first encoded
in a compact form through a modified version of Dynamic
Movement Primitives (DMP) which encapsulates correlation
information. Expectation-Maximization based Reinforcement
Learning is then used to modulate the mixture of dynamical
systems initialized from the user’s demonstration. The approach
is evaluated on a torque-controlled 7 DOFs Barrett WAM
robotic arm. Two skill learning experiments are conducted:
a reaching task where the robot needs to adapt the learned
movement to avoid an obstacle, and a dynamic pancake-flipping
task.

I. INTRODUCTION

Acquiring new motor skills involves various forms of
learning. The efficiency of the process lies in the intercon-
nections between imitation and self-improvement strategies.
Similarly to humans, a robot should be able to acquire new
skills by employing such mechanisms.

Some tasks can be successfully transferred to the robot
using only imitation strategies [1], [2]. Other tasks can
be learned very efficiently by the robot alone using Re-
inforcement Learning (RL) [3]. The recent development
of compliant robots progressively moves the robots from
industrial applications to home and office uses, where the
role and tasks given to the robots cannot be determined in
advance. While some tasks allow the user to interact with
the robot to teach it new skills, it is preferable to provide a
mechanism for the robot to improve and extend its skills to
new contexts on its own.

A tremendous effort has been brought by researchers
in machine learning and robotics to move RL algorithms
from discrete to continuous domains, thus extending the
possibilities for robotic applications [4]–[7]. Until recently,
policy gradient algorithms (such as Episodic REINFORCE
[8] and Episodic Natural Actor-Critic eNAC [9]) have been
a well-established approach to cope with the high dimen-
sionality. Unfortunately, they also have shortcomings, such
as high sensitivity to the learning rate. Trying to overcome
this drawback, the following two recent approaches were
proposed.

Theodorou et al proposed in [5] a RL approach for learn-
ing parameterized control policies based on the framework of
stochastic optimal control with path integrals. They derived

The authors are with the Advanced Robotics Depart-
ment, Italian Institute of Technology (IIT), 16163 Genova,
Italy. {petar.kormushev,sylvain.calinon,
darwin.caldwell}@iit.it.

Fig. 1. Experimental setup for the Pancake-Flipping task. A torque-
controlled 7-DOF Barrett WAM robot learns to flip pancakes in the
air and catch them with a real frying pan attached to its end-effector.
Artificial pancakes with passive reflective markers are used to evaluate the
performance of the learned policy.

update equations for learning which avoid numerical instabil-
ities because neither matrix inversions nor gradient learning
rates are required. The approach demonstrates significant per-
formance improvements over gradient-based policy learning
and scalability to high-dimensional control problems, such
as control of a quadruped robot dog.

Kober et al proposed in [10] an episodic RL algo-
rithm called Policy learning by Weighting Exploration with
the Returns (PoWER), which is based on Expectation-
Maximization algorithm (EM). One major advantage over
policy-gradient-based approaches is that it does not require
a learning rate parameter. This is desirable because tuning a
learning rate is usually difficult to do for control problems but
critical for achieving good performance of policy-gradient
algorithms. PoWER also demonstrated high performance in
tasks learned directly on real robots, such as underactuated
pendulum swing-up and ball-in-a-cup tasks [11].

In order to reduce the number of trials required to learn
a skill in a real robot learning scenario, another body of
work explored the use of efficient representations of the skill
that can be applied to RL. Guenter et al explored in [7]
the use of Gaussian Mixture Model (GMM) and Gaussian
Mixture Regression (GMR) to respectively encode compactly
a skill and reproduce a generalized version of it. The model
was initially learned by demonstration through Expectation-
Maximization techniques. RL was then used to move the
Gaussian centers in order to alter the reproduced trajectory
by regression. It was successfully applied to the imitation of
constrained reaching movements, where the learned move-
ment was refined in simulation to avoid an obstacle that was
not present during the demonstration attempts.

Kober and Peters explored in [12] the use of Dynamic
Movement Primitives (DMP) [13] as a compact represen-
tation of a movement. In DMP, a set of attractors is used
to reach a target, whose influence is smoothly switched



along the movement.1 The set of attractors is first learned
by imitation, and a proportional-derivative controller is used
to move sequentially towards the sequence of targets. RL is
then used to explore the effect of changing the position of
these attractors. The proposed approach was demonstrated
with pendulum swing-up and ball-in-a-cup tasks.

Pardo et al proposed in [14], [15] a framework to learn
coordination for simple rest-to-rest movements, by taking
inspiration of the motor coordination, joint synergies, and
the importance of coupling in motor control [16]–[19].
The authors suggested to start from a basic representation
of the movement by considering point-to-point movements
driven by a proportional-derivative controller, where each
variable encoding the task is decoupled. They then extended
the possibilities of movement by encapsulating coordination
information in the representation. RL was then used to learn
how to efficiently coordinate the set of variables which were
originally decoupled. They showed simulation experiments
in which a humanoid learns how to stand up by coordinating
its joint angles to avoid falling during the rest-to-rest motion,
and in which a robot learns how to throw a ball to a desired
target.

Rosenstein et al proposed in [20] a robot weightlifting
experiment, where an appropriate coordination of the joints
exploiting the robot’s intrinsic dynamics is searched through
RL. Their work highlight the advantage of considering off-
diagonal elements in gain matrices to enable active coupling
of the individual joints. They showed through experiments
that skillful movements that exploit dynamics are best ac-
quired by first learning (or specifying) simple kinematic
movement,2 and then using practice to transform that move-
ment into dynamic solution with tighter coupling from the
control system.

We propose here to build upon the works above by taking
into consideration the efficiency of DMP to encode a skill
with a reduced number of states, and by extending the ap-
proach to take into consideration local coupling information
across the different variables.

II. PROPOSED APPROACH

The proposed approach represents a movement as a super-
position of basis force fields, where the model is initialized
from imitation. RL is then used to adapt and improve the
encoded skill by learning optimal values for the policy
parameters. The proposed policy parameterization allows the
RL algorithm to learn the coupling across the different motor
control variables.

A. Encoding of the skill

A demonstration consisting of T positions x, velocities
ẋ and accelerations ẍ is shown to the robot (x has D =
3 dimensions). By considering flexibility and compactness

1This approach can similarly be interpreted as a force disturbing a point-
to-point reaching movement.

2In contrast to DMP, their approach only considers hard-switching among
the different sub-controllers.

issues, we propose to use a controller based on a mixture of
K proportional-derivative systems (see also [21])

ˆ̈x =

K∑
i=1

ℎi(t)
[
KP
i (�X

i − x)− �V ẋ
]
. (1)

The above formulation shares similarities with the Dy-
namic Movement Primitives (DMP) framework originally
proposed by Ijspeert et al [22], and further extended in
[13], [23] (see [24] for a discussion on the similarities of
the proposed controller with DMP). We extend here the use
of DMP by considering synergy across the different motion
variables through the association of a full matrix KP

i with
each of the K primitives (or states) instead of a fixed �P

gain.
The superposition of basis force fields is determined in (1)

by an implicit time dependency, but other approaches using
spatial and/or sequential information could also be used [25],
[26]. Similarly to DMP, a decay term defined by a canonical
system ṡ = −�s is used to create an implicit time depen-
dency t = − ln(s)

� , where s is initialized with s = 1 and
converges to zero. We define a set of Gaussians N (�T

i ,Σ
T
i )

in time space T , with centers �T
i equally distributed in time,

and variance parameters ΣT
i set to a constant value inversely

proportional to the number of states. � is fixed depending on
the duration of the demonstrations. The weights are defined
by ℎi(t) =

N (t; �T
i ,Σ

T
i )∑K

k=1N (t; �T
k ,Σ

T
k )

.
In (1), {KP

i }Ki=1 is a set of full stiffness matrices, also
called coordination matrices in [15] (in this paper we use
the term coordination matrix rather than stiffness matrix).
Using the full coordination matrices allows us to consider
different types of synergies across the variables, where
each state/primitive encodes local correlation information.
Both attractor vectors {�X

i }Ki=1 and coordination matrices
{KP

i }Ki=1 in Eq. (1) are initialized from the observed data
through least-squares regression (see [21] for details).

B. Controller
To control the robot, we exploit the torque-feedback prop-

erties of the manipulator, where the robot remains actively
compliant for the degrees of freedom that are not relevant for
the task. We control the 7 degrees of freedom (DOFs) robot
through inverse dynamics solved with recursive Newton
Euler algorithm [27]. The joint forces fi at each joint i ∈
{1, . . . , 7} are calculated as fi = fai −fei +

∑
j∈c(i) fj , where

fai is the net force acting on link i, fj with j ∈ c(i) are the
forces transmitted by the child c(i) of link i. fei = FT +FG
are the external forces, where FT = [fT ,MT ]⊤ ∈ ℝ6 is
the vector of force and momentum requested to accomplish
the task (only applied at the end-effector, i.e. when i = 7),
and FG = [fG, 0]⊤ ∈ ℝ6 is the gravity compensation force.
Tracking of a desired path in Cartesian space is insured by
the force command fT = mT

ˆ̈x, where mT is a virtual mass
and ˆ̈x is the desired acceleration command defined in (1).

C. Reinforcement Learning
To learn new values for the coordination matrices, we use

the state-of-the-art EM-based RL algorithm called PoWER



developed by Kober and Peters [10]. PoWER inherits from
EM algorithm two major advantages over policy-gradient-
based approaches: firstly, PoWER does not need a learning
rate, unlike policy-gradient methods; secondly, PoWER can
be combined with importance sampling to make better use
of the previous experience of the agent in the estimation of
new exploratory parameters.

Similar to policy gradient RL, PoWER uses a parame-
terized policy and tries to find values for the parameters
which maximize the expected return of rollouts (also called
episodes or trials) under the corresponding policy. In our ap-
proach the policy parameters are represented by the elements
of the full coordination matrices KP

i and the attractor vectors
�X
i .3

The return of a rollout � is given by the undiscounted
cumulative reward R(�) =

∑T
t=1 r(t), where T is the

duration of the rollout, and r(t) is the reward received at
time t, defined differently according to the goal of the task.

In general, as an instance of an EM algorithm, PoWER
estimates the policy parameters � such as to maximize the
lower bound on the expected return from following the
policy. The policy parameters �n at the current iteration n
are updated to produce the new parameters �n+1 using the
following rule (see also [11])

�n+1 = �n +

〈
(�k − �n)R(�k)

〉
w(�k)〈

R(�k)
〉
w(�k)

. (2)

In the above equation, (�k − �n) = Δ�k,n is a vector
difference which gives the relative exploration between the
policy parameters used in the k-th rollout and the current
ones. Each relative exploration Δ�k,n is weighted by the
corresponding return R(�k) of rollout �k, and the result is
normalized using the sum of the same returns.4

In order to minimize the number of rollouts which are
needed to estimate new policy parameters, we use a form of
importance sampling technique adapted for RL [3], [10] and
denoted by ⟨⋅⟩w(�k) in Eq. (2). It allows the RL algorithm to
re-use previous rollouts �k and their corresponding policy
parameters �k during the estimation of the new policy
parameters �n+1. The importance sampler we use is defined
as 〈

f(�k, �k)
〉
w(�k)

=

�∑
k=1

f(�ind(k), �ind(k)), (3)

where � is a fixed parameter denoting the number of rollouts
used by the importance sampler, and ind(k) is an index
function which returns the index of the k-th best rollout
in the list of all past rollouts sorted by their corresponding
returns, i.e. for k = 1 we have ind(1) = argmaxiR(�i),
and R(�ind(1)) ≥ R(�ind(2)) ≥ ... ≥ R(�ind(�)). The effect

3Note that the magnitudes of the values in KP
i and �X

i are different,
which is taken into account when determining the exploration variance for
the policy parameters.

4Intuitively, this update rule can be thought of as a weighted sum of
parameter vectors where higher weight is given to the vectors which result
in higher returns.

(a) Using only the main diagonal of
KP

i and �X
i

(b) Using the full coordination matri-
ces KP

i and �X
i

Fig. 2. Simulation of a Reaching task with obstacle avoidance, using two
primitives to represent the trajectories. In (a), only the diagonal values of
KP

i and �X
i are used, and in (b), the full matrices KP

i and �X
i are used

as parameters to be optimized by the RL algorithm. In the figures, the red
sphere represents the obstacle, the green box is the target for the reaching
task, the 4 blue lines are the demonstrations recorded on the real robot,
and the green dot is the starting position of the end-effector for all rollouts.
Some of the rollout trajectories generated during the RL process are shown
with thin green lines. The final learned trajectory is shown with thick dark
green line.

of the importance sampler is significant because it allows the
RL algorithm to re-use the top-� best rollouts so far in order
to calculate the new policy parameters. This helps to reduce
the number of required rollouts and makes the algorithm
applicable to online learning, which we demonstrate with
the Pancake-Flipping task described in Section III-B.

III. EXPERIMENTS
The proposed method is evaluated on two experiments:

Reaching task with obstacle avoidance learned in simulation
using data from real-world demonstrations, and Pancake-
Flipping task performed both in simulation and on a real
physical robot.

A. Reaching task with obstacle avoidance

The goal of the Reaching task is for the robot to reach
with its end-effector towards a target, while at the same time
trying to avoid collision with a fixed obstacle.

1) Experimental setup: The demonstrations needed for
the initialization with imitation learning were recorded on
a gravity-compensated robot via kinesthetic teaching, i.e. a
human demonstrator is holding the arm of the robot and
manually guiding the robot to execute the task. These demon-
strations were done without any obstacle. The recorded
trajectories are then represented with the model described
in Sec. II-A. The model is initialized with least squares
regression (see [21] for details), and is later altered by the
RL algorithm in order to avoid a newly appeared obstacle
between the robot’s end-effector and the target for the
reaching task.

To better emphasize the differences between the proposed
method of using the full coordination matrices KP

i and
attractor points �X

i , and using only the main diagonal of



KP
i and �X

i , we deliberately use a low number of primitives
(or states). To avoid a simple spherical obstacle, it is in this
case possible to use only two primitives.

For each rollout �k the end-effector trajectory is simulated
for a fixed number of steps T = 200. In case a collision is
detected, the end-effector remains still until the end of the
current episode. The reward function r(t) is defined based
on two criteria: to reach the goal and to stay as close as
possible to the original demonstrations

r(t) =

{
w1

T e−∣∣x
R
t −x

D
t ∣∣, t ∕= te

w2 e
−∣∣xR

t −x
G∣∣, t = te

, (4)

where te is the end of the rollout, xRt ∈ ℝ3 is the position
of the robot’s end-effector at time t, xDt ∈ ℝ3 is the
initial demonstrated position at time t, xG is the position
of the target, and ∣∣ ⋅ ∣∣ is Euclidean distance. The first
term is maximized when the rollout trajectory matches the
demonstrated trajectory. The second term is maximized when
the goal is reached at the end of the task. The weights used
are w1 = 0.5 and w2 = 0.5.

2) Experimental results: A visualization of the Reaching
task with obstacle avoidance is shown in Fig. 2. Using only
the main diagonal of KP

i and �X
i with two primitives can

produce only trajectories which have at most one turn along
them, as shown in Fig. 2(a). On the other hand, the proposed
method of using the full coordination matrices KP

i and
attractor points �X

i is capable of producing more complex
trajectories, as shown in Fig. 2(b). The learned trajectory has
two turns and smoother curvature around the obstacle, which
allows it to be closer to the demonstrated trajectories without
colliding with the obstacle. Using the proposed method,
the expected return after 100 rollouts (averaged over 10
experiments) is increased from 0.61 to 0.73.

B. Pancake-Flipping task

The real-world evaluation of the presented method is done
on a dynamic Pancake-Flipping task. The goal of the task
is to toss a pancake in the air so that it rotates 180 degrees
before being caught. Due to the complex dynamics of the
task, it is unfeasible to try to learn it directly using tabula
rasa RL. Instead, a person presents a demonstration of the
task first, which is then used to initialize the policy.

1) Experimental setup: The experimental setup is shown
in Fig. 1. The experiment is conducted with a torque-
controlled Barrett WAM 7 DOFs robotic arm. Using a
gravity-compensation controller, the Pancake-Flipping task
is first demonstrated via kinesthetic teaching. The number
of states is fixed at 8, which is determined empirically by
examining the quality of the initial reproduced trajectories
with different number of states.

Custom-made artificial pancakes are used, which have 4
highly-reflective passive markers, in order to track both the
position and the orientation of the pancakes during the task
execution (See Fig. 1). For easier visual inspection, the two
sides of the pancakes are colored in different colors - white
and yellow. The pancake weights only 26 grams, which

makes it susceptible to air flow influence and makes its
motion less predictable.

The pancake’s position and orientation are tracked by a
marker-based NaturalPoint OptiTrack motion capture system
with 12 cameras. It tracks the position xp and orientation (qp

in quaternion representation, Mp in direction cosine matrix
representation) of the pancake at a rate of 30 frames per
second.

The return of a rollout � is calculated from the timestep
reward r(t). It is defined as a weighted sum of two cri-
teria (orientational reward and positional reward), which
encourage successful flipping and successful catching of the
pancake

r(tf ) = w1

[arccos(v0.vtf )

�

]
+w2e

−∣∣xp−xF ∣∣+w3x
M
3 , (5)

where tf is the moment when the pancake passes with
downward direction the horizontal level at a fixed height
Δℎ above the frying pan’s current vertical position, v0 is
the initial orientation vector of the pancake (unit vector
perpendicular to the pancake), vtf is the orientation vector
of the pancake at time tf , xP is the position of the pancake
at time tf , xF is the position of the frying pan at time tf ,
and xM3 is the maximum reached altitude of the pancake.
The first term is maximized when the pancake’s orientation
vector at time tf goes in the opposite direction to the initial
orientation vector, which corresponds to a successful flip.
The second term is maximized when the pancake lands
in the center of the frying pan. The weights we use are
w1 = w2 = w3 = 0.5. For all other time steps t ∕= tf
we define r(t) = 0.

The learning process is based on the PoWER algorithm
implementation provided by Kober et al [11]. � = 6 is used
as parameter for the importance sampler. The parameters �n
for the RL algorithm are composed of two sets of variables:
the first set contains the full 3×3 coordination matrices KP

i

with the positional error gains in the main diagonal and the
coordination gains in the off-diagonal elements; the second
set contains the vectors �X

i with the attractor positions for the
primitives. The RL algorithm is stopped when a successful
and reproducible pancake flipping is achieved with return
R(�) ≥ 0.9.

2) Experimental results: At each iteration of the RL loop,
the trajectory generated by the current policy is transferred to
the real robot for execution. While the rollout is performed,
the trajectory of the pancake is being recorded by the
motion capture system, and the trajectory of the end-effector
(obtained through forward kinematics) is recorded by the
robot controller. At the end of the rollout, the two trajectories
are transferred back to the RL algorithm. The rollout is then
evaluated using Eq. (5) and the data from the two recorded
trajectories. Using the update rule in Eq. (2), new values for
the policy parameters �n+1 are estimated, taking into account
previous experience via the importance sampler. Then, a new
trajectory for the end-effector is generated and the loop starts
over. Fig. 3 shows one sample rollout performed during the
online RL phase, during which the pancake rotated only



Fig. 3. Semi-successful real-world pancake flipping rollout performed on
the robot. The pancake (in yellow) was successfully tossed and caught with
the frying pan (in grey), but it only rotated 90 degrees (for better visibility
of the pancake’s trajectory, the frying pan’s trajectory has been shifted to
the right). The calculated return of the rollout is 0.7. The normal vectors
perpendicular to the pancake and the frying pan are shown with blue arrows.

90 degrees before falling on the frying pan. The estimated
return of this rollout was 0.7, because the positional reward
was high in this case. Fig. 4 shows another rollout from
the online RL phase, during which the pancake rotated fully
180 degrees and was caught successfully with the frying pan.
The estimated return of this rollout was 0.9. Fig. 5 shows
the average expected return over rollouts.

A video of the Pancake-Flipping experiment accompanies
the submission (see also Fig. 6). It is interesting to notice the
up-down bouncing of the frying pan towards the end of the
learned skill, when the pancake has just fallen inside of it.
The bouncing behavior is due to the increased compliance
of the robot during this part of the movement. This was
produced by the RL algorithm in an attempt to catch the
fallen pancake inside the frying pan. Without it, a controller
being too stiff would let the pancake bounce off from the
surface of the frying pan and fall out of it. Such undesigned
discoveries made by the RL algorithm highlight its important
role for achieving adaptable and flexible robots.

IV. DISCUSSION

The Pancake-Flipping task is difficult to learn from mul-
tiple demonstrations because of the high variability of the
task execution, even when the same person is providing the
demonstrations. Extracting the task constraints by observing
multiple demonstrations, as in [21], is not appropriate in
this case for two reasons: (1) when considering such skillful
movements, extracting the regularities and correlations from
multiple observations would be too long, as consistency in
the skill execution would appear only after the user has
mastered the skill; and (2) the generalization process may
smooth important acceleration peaks and sharp turns in the
motion. Therefore, in such highly dynamic skilful tasks, early
trials have shown that it was more appropriate to select a
single successful demonstration (among a small series of
trials) to initialize the learning process.

Fig. 4. Successful real-world pancake flipping rollout performed on the
robot. The pancake (in yellow) was successfully tossed and caught with the
frying pan, and it rotated 180 degrees (for better visibility of the pancake’s
trajectory, the frying pan is not displayed here). The calculated return of
the rollout is 0.9. The trajectory of the end-effector is displayed with black
dots, and its orientation with blue arrows. The normal vectors perpendicular
to the pancake are shown with black arrows.

0 10 20 30 40 50

0.6

0.7

0.8

0.9

1

1.1

Number of rollouts

A
ve

ra
ge

 r
et

ur
n

Fig. 5. This figure shows the expected return of the learned policy for
pancake flipping averaged over 6 sessions with 50 rollouts in each session.

The importance sampling technique proved to be ex-
tremely helpful for the online learning because it re-uses
efficiently previous rollouts. In practice, less than 100 roll-
outs were necessary to find a good solution for the Pancake-
Flipping task. Importance sampling is also computationally
efficient. It needs only linear O(n) memory to store the
return R(�k) and the RL parameters �k for all rollouts,
without need to store the whole rollout trajectories. The
value of the � parameter for the importance sampler was set
manually, but a possible future extension would be to have
an automatic mechanism to select � or even dynamically
change it during the learning.

In the experiments presented here, imitation learning is
used as an initialization phase, and afterwards RL is used to
explore for better solutions. Both processes could, however,
be interlaced. Depending on his/her availability, the user can,



Fig. 6. Sequence of video frames showing a successful pancake flipping (after 50 rollouts), performed on the WAM robot.

for example, occasionally participate in the evaluation of
new policies explored by the robot. For example, the user
can manually give reward or punishment signals to the RL
module. He/she can also provide new examples in case the
robot’s improvement is too slow, or if the robot is looking for
inappropriate solutions. We plan to consider such interaction
in future work.

V. CONCLUSION

We have presented an approach based on a mixture of
dynamical systems for learning the couplings across multiple
motor control variables. An extension of Dynamic Move-
ment Primitive encapsulating synergy information is used to
compactly encode a demonstrated skill, where Reinforcement
Learning is used to refine the coordination matrices and
attractor vectors associated with the set of primitives. The
paper provides a mechanism to learn the local coupling
information across the different variables. It highlights the
advantages of considering probabilistic approaches in RL,
and of applying importance sampling to reduce the number
of rollouts required to learn the skill. The proposed method
was successfully implemented in two experiments. A Reach-
ing task experiment with obstacle avoidance illustrates the
advantages of using the full coordination matrices to learn
a skill with minimum number of states. A Pancake-Flipping
experiment that demonstrates the fitness of the proposed
approach to cope with real-world highly-dynamic tasks.

REFERENCES

[1] A. Billard, S. Calinon, R. Dillmann, and S. Schaal, “Robot program-
ming by demonstration,” in Handbook of Robotics, B. Siciliano and
O. Khatib, Eds. Secaucus, NJ, USA: Springer, 2008, pp. 1371–1394.

[2] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey
of robot learning from demonstration,” Robot. Auton. Syst., vol. 57,
no. 5, pp. 469–483, 2009.

[3] R. S. Sutton and A. G. Barto, Reinforcement learning : an introduction,
ser. Adaptive computation and machine learning. Cambridge, MA,
USA: MIT Press, 1998.

[4] J.Peters and S.Schaal, “Policy gradient methods for robotics,” in Proc.
IEEE/RSJ Intl Conf. on Intelligent Robots and Systems (IROS), 2006.

[5] E. Theodorou, J. Buchli, and S. Schaal, “Reinforcement learning of
motor skills in high dimensions: a path integral approach,” in Proc.
IEEE Intl Conf. on Robotics and Automation (ICRA), 2010.

[6] A. Coates, P. Abbeel, and A. Y. Ng, “Apprenticeship learning for
helicopter control,” Commun. ACM, vol. 52, no. 7, pp. 97–105, 2009.

[7] F. Guenter, M. Hersch, S. Calinon, and A. Billard, “Reinforcement
learning for imitating constrained reaching movements,” Advanced
Robotics, vol. 21, no. 13, pp. 1521–1544, 2007.

[8] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Mach. Learn., vol. 8, no. 3-4,
pp. 229–256, 1992.

[9] J. Peters and S. Schaal, “Natural actor-critic,” Neurocomput., vol. 71,
no. 7-9, pp. 1180–1190, 2008.

[10] J. Kober and J. Peters, “Learning motor primitives for robotics,” in
Proc. IEEE Intl Conf. on Robotics and Automation (ICRA), May 2009,
pp. 2112–2118.

[11] J. Kober, “Reinforcement learning for motor primitives,” Master’s
thesis, University of Stuttgart, Germany, August 2008.

[12] J. Kober and J. Peters, “Policy search for motor primitives in robotics,”
in Advances in Neural Information Processing Systems, 2009, vol. 21,
pp. 849–856.

[13] S. Schaal, P. Mohajerian, and A. J. Ijspeert, “Dynamics systems vs.
optimal control a unifying view,” Progress in Brain Research, vol.
165, pp. 425–445, 2007.

[14] D. Pardo, “Learning rest-to-rest motor coordination in articulated
mobile robots,” PhD thesis, Technical University of Catalonia (UPC),
2009.

[15] D. E. Pardo and C. Angulo, “Collaborative control in a humanoid dy-
namic task,” in Proc. Intl Conf. on Informatics in Control, Automation
and Robotics, Robotics and Automation (ICINCO), Angers, France,
May 2007, pp. 174–180.

[16] T. Flash and N. Hogan, “The coordination of the arm movements:
an experimentally confirmed mathematical model,” Neurology, vol. 5,
no. 7, pp. 1688–1703, 1985.

[17] E. Todorov and M. I. Jordan, “Optimal feedback control as a theory
of motor coordination,” Nature Neuroscience, vol. 5, pp. 1226–1235,
2002.

[18] R. Huys, A. Daffertshofer, and P. J. Beek, “The evolution of coordina-
tion during skill acquisition: the dynamical systems approach,” in Skill
Acquisition in Sport: Research, Theory and Practice, A. M. Williams
and N. J. Hodges, Eds. Routledge, 2004, pp. 351–373.

[19] M. Bernikera, A. Jarcb, E. Bizzic, and M. C. Trescha, “Simplified
and effective motor control based on muscle synergies to exploit
musculoskeletal dynamics,” in Proc. Natl Acad. Sci. USA, vol. 106,
no. 18, 2009, pp. 7601–7606.

[20] M. T. Rosenstein, A. G. Barto, and R. E. A. Van Emmerik, “Learning
at the level of synergies for a robot weightlifter,” Robotics and
Autonomous Systems, vol. 54, no. 8, pp. 706–717, 2006.

[21] S. Calinon, I. Sardellitti, and D. G. Caldwell, “Learning-based control
strategy for safe human-robot interaction exploiting task and robot
redundancies,” in Proc. IEEE/RSJ Intl Conf. on Intelligent Robots and
Systems (IROS), Taipei, Taiwan, October 2010.

[22] A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Trajectory formation for
imitation with nonlinear dynamical systems,” in Proc. IEEE Intl Conf.
on Intelligent Robots and Systems (IROS), 2001, pp. 752–757.

[23] H. Hoffmann, P. Pastor, D. H. Park, and S. Schaal, “Biologically-
inspired dynamical systems for movement generation: automatic real-
time goal adaptation and obstacle avoidance,” in Proc. IEEE Intl Conf.
on Robotics and Automation (ICRA), 2009, pp. 2587–2592.

[24] S. Calinon, F. D’halluin, D. G. Caldwell, and A. G. Billard, “Handling
of multiple constraints and motion alternatives in a robot programming
by demonstration framework,” in Proc. IEEE-RAS Intl Conf. on
Humanoid Robots (Humanoids), Paris, France, December 2009, pp.
582–588.

[25] S. Calinon, F. D’halluin, E. L. Sauser, D. G. Caldwell, and A. G.
Billard, “Learning and reproduction of gestures by imitation: An
approach based on hidden Markov model and Gaussian mixture
regression,” IEEE Robotics and Automation Magazine, vol. 17, no. 2,
pp. 44–54, 2010.

[26] M. Khansari and A. G. Billard, “BM: An iterative method to learn
stable non-linear dynamical systems with Gaussian mixture models,”
in Proc. IEEE Intl Conf. on Robotics and Automation (ICRA), An-
chorage, Alaska, USA, May 2010, pp. 2381–2388.

[27] R. Featherstone and D. E. Orin, “Dynamics,” in Handbook of Robotics,
B. Siciliano and O. O. Khatib, Eds. Secaucus, NJ, USA: Springer,
2008, pp. 35–65.


