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Abstract— In this paper we present an approach that uses
machine learning to determine the location of a contact between
a gripper and a T-bar valve based on force/torque sensor data.
The robot performs an exploratory behaviour that produces
distinct force/torque data for each contact location of interest:
no contact, a contact aligned with the central axis of the
valve, and an off-center contact. Probabilistic clustering is
utilised to transform the multidimensional data into a one-
dimensional sequence of symbols, which is then used to train
a hidden Markov model classifier. We present the results of an
experiment where the learned classifier can predict a contact
location with an accuracy of 97% on an unseen dataset.

I. INTRODUCTION

There is an increased interest in developing robots that
can dexterously manipulate objects. Events such as the
2011 Fukushima Daiichi nuclear disaster have sparked an
increased interest in the research community to develop
disaster response robots that can autonomously inspect and
manipulate objects in hazardous environments. In such envi-
ronments often sensing modalities such as vision are limited
or unreliable, hence, direct contact information is important
to successfully inspect and/or manipulate an object. Applica-
tions of such a system include search and rescue operations
and underwater manipulation of objects.

In this paper we propose a method that can be used
to inspect an object. As part of the EU FP7 PANDORA
project [1], [2] we investigate an object inspection task that
consists of determining the location of a contact between a
robotic gripper and a T-bar valve. We use an exploratory
behavior that at different contact locations induces the
force/torque sensor differently. This produces a multidimen-
sional time-series data on the contact location. A contact
location, namely, an edge-contact, a center-contact and no-
contact can be detected by studying the temporal patterns
in the data. Our contribution is a robust autonomous contact
determination based on machine learning that relies on non-
vision sensing, namely, a force/torque sensor.

To learn a classifier for the gripper-valve contact, we
use our previously developed method to analyze temporal
patterns in a multidimensional time-series data [3]. In this
paper we apply the learning method to a new problem,
i.e, gripper-valve contact location classification, we also
introduce the use of active exploratory actions to enable the
robot to perceive the contact state.

This research was sponsored by the PANDORA EU FP7-Project under
the Grant agreement No. ICT-288273.

The authors are with the Department of Advanced Robotics,
Istituto Italiano di Technologia, via Morego 30, 16163 Genoa,
Italy email: {nawid.jamali, petar.kormushev,
darwin.caldwell}@iit.it

Force/torque sensor

Angle of rotation

Gripper
KUKA arm

Valve

Fig. 1. Experimental setup.

The learning algorithm is divided into two stages: dimen-
sionality reduction using clustering; and temporal pattern
extraction. In the first stage, probabilistic clustering [4] is ap-
plied to discover the intrinsic structure of the data. Clustering
transforms the multidimensional time-series into a sequence
of symbols, each of which is an identifier for a cluster. Thus,
an abstract contact condition such as the location of a contact
can be represented by a sequence of cluster identifiers. In
the second stage, using a supervised hidden Markov model
(HMM), the algorithm analyses the sequence and builds a
probabilistic model of temporal patterns that correspond to
different abstract contact conditions.

Fig. 1 shows the experimental setup, which consists
of a gripper attached to a KUKA arm. An ATI Mini45
force/torque sensor is sandwiched between the gripper and
the robot’s end-effector. A T-bar valve is placed in the robot’s
workspace. The robot performs an exploratory behavior,
which, as illustrated by the green arrow in Fig. 1, is a periodic
rotary movement around the handle of the valve with a
given angle-of-rotation. This action induces the force/torque
sensor differently at different contact locations. For example,
a contact at the center limits the angle of rotation, resulting
in the force/torque sensor registering higher values, which is
different to an edge-contact. We show that using this method
the robot can successfully predict a contact location.

II. BACKGROUND

Earlier research in valve detection and manipulation as-
sumes a structured environment, where the robot stores de-
tailed information about the environment [5], [6]. Non-vision



sensors such as force/torque sensors, binary touch sensors
and inductive proximity sensors have been used to confirm
contact and monitor applied forces [5], and detect orientation
of a valve handle and manipulate the valve without over-
tightening/loosening [6]. However, these approaches have
been limited to in-air applications. To facilitate underwater
manipulation, grippers instrumented with tactile sensors that
can operate underwater have been developed [7], [8].

Anisi et al. [6] propose use of an inductive proximity
sensor and a torque sensor to detect the orientation of a
metallic T-bar valve handle and subsequently manipulate
the valve without over-tightening/over-loosening the valve.
However, use of inductive proximity sensor limits the use of
the system to metallic objects.

Marani et al. [9] used vision to locate an underwater object
and hook a cable to it so that it can be lifted to surface.
Recently, Prats et al. [10] used a laser scanner to build a 3D
point cloud of an underwater object, which is then used to
plan and execute a grasp. However, in both cases an operator
has to indicate the region of interest to the robot. Moreover,
vision and laser are adversely affected by turbidity in water.

Recently, Ahmedzadeh et al. [11] proposed a hierarchical
learning approach that allows a robot to safely approach
and manipulate a valve. The authors developed a reactive
controller that commands the robot to retract its gripper when
the relative movement between the robot’s gripper and the
valve is oscillating with a large variance. When it is safe, the
robot approaches the valve and turns it. However, the valve
turning is hardcoded and doesn’t consider contact forces.

III. METHODOLOGY

The sensing information for the learning algorithm is
produced by a force/torque sensor. We also include the
control signal, that is, the commanded angle-of-rotation,
resulting in a seven-dimensional time-series data. To learn
concepts from a multi-dimensional time-series we divide
the problem into two stages: dimensionality reduction using
clustering and temporal pattern extraction.

The first step of the analysis involves preprocessing the
data. The clustering method assumes that all of the variables
are independent [4]. Hence, in the first stage of training, the
data are projected onto a new basis using principal compo-
nent analysis (PCA). The principal component coefficients
from the training data are saved. Later, these coefficients
are used to transform the test data to the new coordinate
system. The output of the PCA is used as an input to
the clustering algorithm. Clustering plays two roles. Firstly,
clustering is used to discover the intrinsic structure within
the data. Secondly, it reduces the high dimensional time-
series data into a one-dimensional sequence of clusters. The
mixture model output by the clustering algorithm is also
saved, which, is subsequently used to transform the test data
into a sequence of clusters. Each cluster is denoted by a
letter. S = {BEDBCCACDDADECBCCAEBDA. . . } is an
example of a sequence of cluster memberships.

In the second stage, the output of the clustering algorithm,
that is, the sequence of cluster memberships is analysed to

discover and learn different patterns that represent different
contact locations. We want to discover unique patterns that
emerge during each contact. For example, in the sequence S,
BCCA is a recurring pattern that can be learned as a pattern
that represents, say, a center-contact. The model for these
patterns is also saved.

The algorithm is tested using an unseen test set. In the
testing phase, the models saved during training are used
to transform the data into a temporal sequence of cluster
memberships. The models for the patterns discovered during
training is used to predict the state of contact. For example,
encountering the pattern BCCA will signify a center-contact.
We use hidden Markov models to discover the patterns for
each contact condition. The following sections provide a
detailed description of each step.

A. Preprocessing

All signals are preprocessed before any further analysis is
performed. The preprocessing procedures are implemented
in MATLAB.

1) Zero-mean normalization: The force/torque data are
zero-mean normalized from the point of first contact. This
process is necessary to make the forces and the torques
comparable between different trials.

2) Filtering: The force/torque data are sampled at 500 Hz,
the control signals change at 0.5 Hz. Hence, the force torque
data is filtered using a digital filter with a 3 dB point of 5 Hz,
which is ten times the frequency of the control signals.

B. Principal Component Analysis

Principal component analysis (PCA) is a mathematical
transformation that converts a set of variables to a new basis,
called the principal components. Each principal component
is a linear combination of the original variables. In this
space, all variables are orthogonal to each other, i.e, they are
uncorrelated. Moreover, in the principal component space,
the first component explains the greatest variance in the
data, every subsequent component captures lower variance
as compared to the preceding component. A consequence of
this property is that PCA can also be used as a dimensionality
reduction tool.

Dimensionality reduction is achieved by only keeping the
lower components. A rule of thumb is to drop components
once the ratio of cumulative-variance1 to total-variance has
exceeded a predetermined threshold, usually 0.8. In our
training data set, the first component exceeded this threshold
by reaching a ratio of 0.96. Hence, in the subsequent analysis
we only consider the first principal component.

C. Clustering

We use probabilistic clustering [4], which uses the min-
imum message length (MML) principle as the optimization
criterion, to build a Gaussian mixture model of the data. In
this section we explain the theory behind MML clustering
and show how we use it to extract features.

1Cumulative-variance is calculated by summing the variance of all
components up to the component of interest.



Soriginal = {BCCDDCAAAABAABB. . . }
Slabelled =

{
(B,N )(C,N )(C,N )(D,N )(D,N )(C, E)
(A, E)(A, E)(A, E)(A, E)(B,M)

(A,M)(A,M)(B,M)(B,M) . . .
}

(a) Example of a feature vector.
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(b) A three state hidden Markov model.

Fig. 2. A feature vector and a hidden Markov model. The letters A, B,
C and D indicate membership to the corresponding cluster. The letters N ,
E and C represent contact states: no-contact, edge-contact, center-contact,
respectively

The MML principle is based on the information-theoretic
Bayesian principle of inductive inference[12], [4]. Let D be
the data and H be an hypothesis explaining the data. The
posterior probability of the hypothesis is given in Equation 1,
which is derived by repeated application of Bayes’ Theorem.

Pr(H|D) =
Pr(H&D)

Pr(D)
=

Pr(H)Pr(D|H)

Pr(D)
(1)

MessageLength = −log2
(
Pr(H).P r(D|H)

)
= −log2

(
Pr(H)

)
− log2

(
Pr(D|H)

)
(2)

Since the goal is to infer a hypothesis (H) that best
explains the given data (D), the problem can be viewed
as maximizing the posterior probability, Pr(H|D). From
information theory, we know that an event of probability p
can be coded by a message of length l = −log2 p bits. Equa-
tion 2 is derived by applying the coding theory to equation 1.
Hence, maximizing the posterior probability can be achieved
by minimizing the message length of a two-part message
conveying the theory, H , and the data, D, in the light of
the theory, H . Using the two-part message method, MML
prefers a simple hypothesis over more complex hypotheses.
We use Vanilla-Snob[13] by Chris Wallace to build a mixture
model of our data.

D. Learning

Once the multidimensional signals from the robot are
transformed into a temporal sequence of clusters, we use
HMMs to discover the patterns for each contact condition.
The training examples are generated by allowing the robot
to perform an action. In this case the action is to perform
an exploratory behavior at a contact point. The training
sequence is labeled with the contact location, which is
recorded during the data collection. This allows the algorithm

to learn a mapping from the temporal sequence of clusters
to a classification of the contact state. The accuracy of the
classifier is tested by applying it to a novel sequence, where
the contact state is unknown to the robot.

Fig. 2(a) shows an example of a sequence generated after
the application of the clustering algorithm. The correspond-
ing feature vector is also shown and consists of temporal se-
quence of couples of the form (cluster-membership, contact-
state). Fig. 2(b) is an HMM used to learn a representation
for the the emerging temporal patterns. The HMM has three
states, one for each contact condition. It is trained using the
sequence of clusters as the observation. When the robot is
presented with a novel pattern, the robot uses the model to
make a prediction.

IV. EXPERIMENTAL SETUP

The method was tested using the setup (Fig. 1) described
in Section I. In this section we will define the contact loca-
tions, which is followed by a description of the exploratory
behavior and a detailed description of the experiment.

A. Contact-location categorization

A contact between the gripper and the valve is categorized
as follows:

1) Edge-contact: In an edge-contact, the area of contact
between the valve and the gripper is at least 1

3 of the width of
the gripper, and the central axis of the valve is not covered.

2) Centre-contact: In center-contact, the central axis of
the valve is covered the gripper.

B. The exploratory behavior

The exploratory behavior is chosen to produce distinctive
signals depending on the location of a contact. A roll that is
pivoting on the valve will produce a different signal when
it is on either one of the edges compared to a contact that
is at the center of the valve, where the movement of the
gripper is restrained by the valve’s axis. Thereby, inducing
the force/torque sensor. The angle-of-rotation can take an
arbitrary value, but it should be sufficiently large to guarantee
the tip of the valve makes a contact with the central-axis of
the valve when the gripper is at the center. In our experiments
the angle of rotation was varied by 0.5 radians on either side
of the starting position.

C. The learning task

The experimental setup shown in Fig. 1 is used collect
data to train and test the learning algorithm. In this setup,
the a gripper is attached to a KUKA arm. An ATI Mini-45
force/torque sensor is attached between the gripper and the
robot’s end-effector. A T-bar valve is placed in the robot’s
workspace. The robot performs the exploratory behavior in
the workspace, which we will refer to as a trial henceforth.

Fig. 3 shows the configuration of the valve in the begin-
ning of each trial. Three positions are sampled for an edge-
contact, where the contact area, l, between the valve and the
gripper is varied. In the first position l = 1

3 of the length of
the gripper, in the second position l = 2

3 of the length of



Fig. 3. Gripper placement.

TABLE I
CONFUSION MATRIX 3-CLUSTERS AND 4-CLUSTERS.

N E M N E M Class
Three clusters Four clusters
9 0 0 9 0 0 No-Contact=N
0 17 1 0 17 1 Edge-Contact=E
0 2 7 0 0 7 Center-Contact=M

100 94 78 100 94 100 Accuracy (%)

the gripper, and in the third position there is a full contact.
Similarly, for the center-contact three positions are sampled.
The first position is selected such that the central-axis of the
valve is aligned with the first 1

3 of the length of the gripper,
in the second position the central-axis of the gripper and the
central-axis of the valve are aligned. The third position is a
mirror image of the first position. These positions are chosen
to expose the learning algorithm to positions that are valid
contact positions, within the tolerance of the control of the
robot for safe manipulation.

Two separate datasets were collected: a training set and
a testing set. Each set consists of nine samples for no-
contact, nine samples for center-contact, and nine samples
for edge-contact. The samples for the edge-contact were
collected on either side of the central axis of the valve,
which resulted in eighteen samples for the edge-contact.
Fig. 4 shows the force/torque data where the colored regions
represent a specific contact location.

V. RESULTS

The feature vector for the learning algorithm is a seven-
dimensional vector that consists of the six-dimensional
force/torque sensor data, and the control data, that is, the
commanded angle-of-rotation. An HMM model was learned
using the training set. We also varied the number of clusters
to study the effect of this parameter on the performance.
Table I shows the confusion matrix for three clusters and
four clusters. We get an accuracy of 92% with three clusters,
which is increased to 97% with four clusters. This is expected
as an increase in the number of clusters increases the
expressive power of the models.

VI. CONCLUSION & FUTURE WORK

We have presented a method that can successfully predict
the location of a contact between a gripper and a valve
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Fig. 4. Force/torque data showing the torque data around the y-axis. Each
colored region corresponds to a specific contact location.

using only force/torque sensor data. The presented approach
is suitable for autonomous inspection of objects. In the
future we will consider a larger set of behaviors that can
result in a more detailed information such as the orientation
of the valve or whether the valve is stuck. We will also
study the performance of the proposed method in underwater
scenarios.
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